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1. Introduction

Let P and Q be non-zero relatively prime integers. The Lucas sequence {Un}
and the companion Lucas sequence {Vn} with parameters P and Q are defined
as follows:

U0 = 0, U1 = 1, Un+2 = PUn+1 − QUn,

V0 = 2, V1 = P , Vn+2 = PVn+1 − QVn.

For all odd relatively prime values of P and Q such that P 2 −4Q is positive,
Ribenboim and McDaniel [6] recently determined all indices n such that Un,
2Un, Vn or 2Vn is a square(= �). (See introduction in [6] for known other
results.)

In this paper, we consider the above problem when P is even and Q = −1.
Using elementary properties of elliptic curves as well as the methods in [6],
we show that if P = 2t with t even and Q = −1, then Un, 2Un, Vn or
2Vn = � implies n ≤ 3 under some assumptions.

Applying these results, we prove some theorems concerning Diophantine
equations of the forms

4x4 − Dy2 = ±1, x4 − Dy2 = −1, x2 − 4Dy4 = ±1, x2 − Dy4 = 1.

This provides the main result of Kagawa [3], who uses Baker theory, with an
elementary proof.
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2. Preliminaries

Let t be even and D = t2 + 1. The sequences {vn}, {un} are defined by{
v0 = 1, v1 = t, vn+2 = 2tvn+1 + vn,

u0 = 0, u1 = 1, un+2 = 2tun+1 + un.
(1)

Note that vn = Vn/2 and un = Un for all integers n. We easily find from (1)
that

vn is even ⇐⇒ n is odd, un is even ⇐⇒ n is even.

We also have the following relations:

v2
n − Du2

n = (−1)n, v−n = (−1)nvn, u−n = (−1)n+1un, (2)

vm+n = vmvn + Dumun, um+n = vmun + vnum, (3)

v2n = 2v2
n + (−1)n+1, u2n = 2vnun, (4){

v3n = vn (4v2
n + 3(−1)n+1),

u3n = un(4v2
n + (−1)n+1),

(5)

{
v5n = vn {16v4

n + (−1)n+120v2
n + 5},

u5n = un{16v4
n + (−1)n+112v2

n + 1}, (6)

{
v7n = vn {64v6

n + (−1)n+1112v4
n + 56v2

n + (−1)n+1 · 7},
u7n = un{64v6

n + (−1)n+180v4
n + 24v2

n + (−1)n+1}. (7)

It is clear from (1) that if n > 0, then vn, un > 0. Thus from (2) if n < 0,
then

vn > 0 ⇐⇒ n is even, un > 0 ⇐⇒ n is odd.

We need the following Diophantine lemmas which will be used in the
proofs of the theorems.

Lemma 1 (Ljunggren [4]). The Diophantine equation

x2 − 3y4 = 1

has only the positive integral solutions (x, y) = (2, 1), (7, 2).

Lemma 2. The Diophantine equation

x2 − Dy4 = 1 (D = 12, 111, 444)

has no positive integral solutions x, y.

(See Mordell [5] for the cases D = 12, 444, and Cohn [1] for the case
D = 111.)
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3. Theorems

For a prime p and an integer t 6= 0, let ep(t) be the integer such that pep(t)

exactly divides t . We assume that t is an even integer such that

ep(t) is odd for p = 3, 5 or 7.

In this paper, we devote ourselves to the study of this case.
Under this assumption, we prove the following:

Theorem 1. The equation vn = 2� has only the solution n = 3, t = 6,
D = 37.

Theorem 2. The equation vn = � with n odd has no solutions.

Theorem 3. The equation un = 2� has only the solution n = 0.

Theorem 4. The equation un = � with n even has only the solution n = 0.

Proof of Theorem 1. Since vn is even, we see that n is odd. Thus if n < 0,
then vn < 0. Hence we may suppose that n > 0.

The proof is divided into two cases: n ≡ 0 (mod p) and n 6≡ 0 (mod p)

with p = 3, 5 or 7.

Case 1: n ≡ 0 (mod p). Then let n = pk. Note that k is odd.

(i) If p = 3, then from (5) we have v3k = vk(4v2
k + 3) = 2�. Since

k is odd and t ≡ 0 (mod 3), we see from (1) that vk ≡ 0 (mod 3), so
gcd(vk, 4v2

k + 3) = 3. Thus we have

vk = 2 · 3x2
1 and 4v2

k + 3 = 3x2
2 ,

so

3(2x1)
4 + 1 = x2

2 .

It follows from Lemma 1 that x1 = 1, x2 = 7, vk = 6. Hence from (2) we
obtain D = 37, t = 6, k = 1, n = 3.

(ii) If p = 5, then from (6) we have v5k = vk(16v4
k +20v2

k +5) = 2�. Since
k is odd and t ≡ 0 (mod 5), we see that gcd(vk, 16v4

k + 20v2
k + 5) is 5. Thus

we have

vk = 2 · 5x2
1 and 16v4

k + 20v2
k + 5 = 5x2

2 ,

so

(22 · 5x2
1)4 + 5(22 · 5x2

1)2 + 5 = 5x2
2 .

Hence we obtain the elliptic curve

E : Y 2 = X3 + 52X2 + 53X
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with x3 = 22 · 5x2
1 , X = 5x2

3 , Y = 52x3x2. The substitution X = X′ − 8,
Y = Y ′ yields the elliptic curve

E′ : Y ′2 = X′3 + X′2 − 83X′ + 88,

which is the curve 400F1 in Cremona’s table [2]. Thus we see that the Mordell-
Weil group E′(Q) of E′ over Q is given by E′(Q) = 〈(8, 0)〉 ∼= Z/2Z.
Therefore we have E(Q) = {O, (0, 0)}, x1 = 0, so vk = 0, which contradicts
vk > 0.

(iii) If p = 7, then we similarly have from (7)

vk = 2 · 7x2
1 and 64v6

k + 112v4
k + 56v2

k + 7 = 7x2
2 ,

so the elliptic curve

E : Y 2 = X3 + 72X2 + 2 · 73X + 74

with x3 = (22 · 7x2
1)2, X = 7x3, Y = 72x2. The substitution X = X′ − 16,

Y = Y ′ yields

E′ : Y ′2 = X′3 + X′2 − 114X′ − 127,

which is the curve 196B1 in Cremona’s table [2]. Thus we see that E′(Q) =
〈(16, 49)〉 ∼= Z/3Z. We therefore have E(Q) = {O, (0, ±49)}, x3 = 0, x1 =
0, so vk = 0, which contradicts vk > 0.

Case 2: n 6≡ 0 (mod p). Then we can put n = pk ± l, where k is even and
l is odd with 1 ≤ l < p.

Now suppose that d = ep(t) is odd. From (2) and (3), we have vpk±l =
±vpkvl + Dupkul = 2�. Then the following claim holds:

Claim. (a) ep(vl) = d, ep(ul) = 0. (b) ep(vpk) = 0, ep(upk) ≥ d +1.

The claim above implies that ep(vpk±l) = d, which is impossible, since
d is odd and vpk±l = 2�. Thus to prove Theorem 1, it suffices to show the
claim.

Proof of claim. (a) Since l is odd (< p ≤ 7), we have l = 1, 3, 5. Then v1 = t ,
v3 = t (4t2 + 3), v5 = t (16t4 + 20t2 + 5). These imply that ep(vl) = d for
each l, p with 1 ≤ l < p ≤ 7. From (vl, ul) = 1, we have ep(ul) = 0.

(b) Since k is even, we have uk ≡ 0 (mod t), so ep(uk) ≥ d, ep(vk) = 0.
Since vpk + upk

√
D = (vk + uk

√
D)p, we have

upk = uk

(p−1)/2∑
j=0

(
p

2j

)
v

2j

k (u2
kD)

p−1
2 −j := uk

(p−1)/2∑
j=0

aj .
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Then ep(upk) ≥ d + 1. In fact, if j < (p − 1)/2, then ep(aj ) ≥ d(p − 1 −
2j) > 1. If j = (p − 1)/2, then ep(aj ) = 1. Thus ep(

∑(p−1)/2
j=0 aj ) = 1.

From (vpk, upk) = 1, we have ep(vpk) = 0. This completes the proof of the
claim and hence of Theorem 1. ut

Proof of Theorem 2. Suppose that n is odd.

Case 1: n ≡ 0 (mod p). In the same way as in the proof of Theorem 1, we
obtain the following, respectively.

(i) If p = 3, then we have the equation

12x4
1 + 1 = x2

2 ,

which has no non-trivial solutions by Lemma 2.
(ii) If p = 5, then we have the elliptic curve defined by

Y 2 = X3 + 52X2 + 53X,

which implies X = 0, so vk = 0, as above.
(iii) If p = 7, then we have the elliptic curve defined by

Y 2 = X3 + 72X2 + 2 · 73X + 74,

which implies X = 0, so vk = 0, as above.

Case 2: n 6≡ 0 (mod p). Similarly, comparing p-adic values of both sides
of vn = � leads to a contradiction. ut

Remark 1. In the proof of Theorems 1, 2, the fact that the elliptic curves
above have rank 0 is a lucky thing. Thus the integral points are very easy
to find. When an elliptic curve has positive rank, methods are known for
determining the integral points on such a curve, but these methods are far
from elementary.

In order to prove Theorems 3, 4, we need the following two propositions:

Proposition 1. If the equation un = � or 2� with n even > 0 has any
solutions, then we have D = 37, n = 2e · 3 with e ≥ 1.

Proof. Let n = 2es, where e ≥ 1 and s is odd. Then applying (4) e times
yields

un = 2vn/2un/2 = 22vn/2vn/4un/4 = · · · = 2e

( e∏
j=1

vn/2j

)
us.

Since vn/2j (1 ≤ j ≤ e), us are pairwise relatively prime, we have vs = � or
2� with s odd. By Theorem 2 the first equation has no solutions. By Theorem
1 the second equation has only the solution s = 3, t = 6, D = 37, n = 2e · 3
with e ≥ 1. ut
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Proposition 2. Let D = 37 and n = 2e · 3 with e ≥ 1. Then neither un = �
nor un = 2� has solutions.

Proof. Write n = 3k, where k = 2e. Then by (2) and (5), we have u3k =
uk(4 ·37u2

k +3). Note that k is even. We see that uk ≡ 0 (mod 3). Otherwise,
un = � or 2� implies 4 ·37u2

k +3 = �, which is found impossible by taking
modulo 4. Hence it follows from un = � that

uk = 3x2
1 , 4 · 37u2

k + 3 = 3x2
2 ,

so

444x4
1 + 1 = x2

2 ,

which has no non-trivial solution by Lemma 2. It also follows from un = 2�
that

uk = 3 · 2 · x2
1 , 4 · 37u2

k + 3 = 3x2
2 ,

so

111(2x1)
4 + 1 = x2

2 ,

which has no non-trivial solutions by Lemma 2. ut
Proof of Theorem 3. Since un is even, we see that n is even and hence n ≥ 0.
Thus by (4), we have

vn/2 = �, un/2 = �.

If n/2 is odd, then the first equation has no solution by Theorem 2. If n/2 is
even, then the second equation has only the solution n = 0 by Propositions
1, 2. ut

Proof of Theorem 4. Theorem 4 is clear from Propositions 1, 2. ut

4. Applications

As a corollary to Theorems in § 3, we now deduce some results concerning
the following Diophantine equations. We consider only non-negative integral
solutions.

Now suppose that X = a, Y = b is the fundamental solution of the Pell
equation X2 − DY 2 = −1. Then the general solution is given by

X + Y
√

D = (a + b
√

D)n.



Squares in Lucas sequences and some Diophantine equations 201

Let α = a + b
√

D, β = a − b
√

D. Then α + β = 2a, αβ = −1. We now
define for all integers n

vn = 1

2
(αn + βn), un = 1

2
√

D
(αn − βn).

Then we have vn+2 = 2avn+1 + vn and un+2 = 2aun+1 + un.
Now let a = t and D = t2 + 1. Then X = t, Y = 1 is the fundamental

solution of the Pell equation X2 − DY 2 = −1. As in § 3, we assume that t

is an even integer such that ep(t) is odd for p = 3, 5 or 7.

Theorem 1′. The equation

4x4 − Dy2 = ±1

has only the solution x = 21, y = 145, D = 37.

For, 2x2 = vn, and hence by Theorem 1 we have n = 3, D = 37.
Hence this provides an elementary proof of the main result in Kagawa

[3]. Note that the curve 4x4 − 37y2 = −1 is birationally equivalent over Q
to the elliptic curve y2 = x3 − 372x, whose rank is 1.

Theorem 2′. The equation

x4 − Dy2 = −1

has no solutions.

For, x2 = vn with n odd, and hence by Theorem 2 we have no solutions.

Theorem 3′. The equation

x2 − 4Dy4 = ±1

has only the solution x = 1, y = 0.

For, 2y2 = un, and hence by Theorem 3 we have x = 1, y = 0.

Theorem 4′. The equation

x2 − Dy4 = 1

has only the solution x = 1, y = 0.

For, y2 = un with n even, and hence by Theorem 4 we have x = 1, y = 0.
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