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1. Introduction

Let P and Q be non-zero relatively prime integers. The Lucas sequence {U},}
and the companion Lucas sequence {V,,} with parameters P and Q are defined
as follows:

UO = 0’ Ul == 1’ Un+2 == PUn+1 - QUna
Vo=2, Vi=P, Vi =PV — 0V,

For all odd relatively prime values of P and Q such that P? —4Q is positive,
Ribenboim and McDaniel [6] recently determined all indices n such that U,
2U,, V, or 2V, is a square(= [J). (See introduction in [6] for known other
results.)

In this paper, we consider the above problem when P isevenand Q = —1.
Using elementary properties of elliptic curves as well as the methods in [6],
we show that if P = 2¢ with ¢t even and Q = —1, then U,, 2U,, V, or
2V, = Uimplies n < 3 under some assumptions.

Applying these results, we prove some theorems concerning Diophantine
equations of the forms

4x* — Dy* =41, x*—Dy* = —1, x> —4Dy* =41, x> —Dy*=1.

This provides the main result of Kagawa [3], who uses Baker theory, with an
elementary proof.
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2. Preliminaries
Let t be even and D = > 4 1. The sequences {v,}, {u,} are defined by

Vg = 1, vy =1¢, Up42 =2tv,,+1 + v,, (1)

uo =0, uy =1, upr2="2tupy +u,.
Note that v, = V,,/2 and u,, = U, for all integers n. We easily find from (1)
that
v, is even <= n is odd, u, is even <= n is even.

We also have the following relations:

vy — Dup = (=", vy =(=D"vp, u_y==D"""uy, Q)
Un+n = UnUp + Dumuna Um4n = Uply + vy, (3)
Vyp = 2112 + (_1)n+1’ Uyy = 2vnun’ (4)
U3n = vy (dvp + 3(=1)"H, )
Uzp = un(4v3 + (_l)n-i-l)’
Usy = v, {1607 + (—=1)" 12002 + 5}, ©
sy = up{16vy + (—D"11207 + 1},
V70 = U, {6408 + (= 1) 1202 + 5602 + (= 1)+ 7}, o
U7y = Uy {6408 + (—1)"180v* + 2402 + (—1)"*1).

It is clear from (1) that if n > O, then v,, u,, > 0. Thus from (2) if n < 0,
then

v, >0 <= niseven, u, >0 <= nisodd.

We need the following Diophantine lemmas which will be used in the
proofs of the theorems.

Lemma 1 (Ljunggren [4]). The Diophantine equation
x2=3y*t=1
has only the positive integral solutions (x,y) = (2, 1), (7, 2).
Lemma 2. The Diophantine equation
x> —Dy*=1 (D=12,111,444)
has no positive integral solutions x, y.

(See Mordell [5] for the cases D = 12, 444, and Cohn [1] for the case
D =111.)
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3. Theorems

For a prime p and an integer # # 0, let e, (¢) be the integer such that p¢r®
exactly divides 7. We assume that 7 is an even integer such that

e,(t)is odd for p = 3,5 0r 7.

In this paper, we devote ourselves to the study of this case.
Under this assumption, we prove the following:

Theorem 1. The equation v, = 20 has only the solutionn = 3, t = 6,
D = 37.

Theorem 2. The equation v, = [ with n odd has no solutions.
Theorem 3. The equation u, = 2] has only the solution n = 0.

Theorem 4. The equation u, = L1 with n even has only the solution n = 0.

Proof of Theorem 1. Since v, is even, we see that n is odd. Thus if n < 0,
then v, < 0. Hence we may suppose that n > 0.

The proof is divided into two cases: n = 0 (mod p) and n £ 0 (mod p)
with p =3,50r 7.

Case 1: n =0 (mod p). Then let n = pk. Note that & is odd.

(i) If p = 3, then from (5) we have vy, = vk(4v,% + 3) = 20. Since
k is odd and + = 0 (mod 3), we see from (1) that vy = 0 (mod 3), so
ged (vg, 4v,§ + 3) = 3. Thus we have

v =2-3x7 and 4v? + 3 = 3x2,
SO
32x)* +1 = x2.

It follows from Lemma 1 that x; = 1, x, = 7, vy = 6. Hence from (2) we
obtain D =37,t=6,k=1,n=3.

(i) If p = 5, then from (6) we have vs;, = vk(16v,‘<1 + 20v,% +5) = 201. Since
k is odd and r = 0 (mod 5), we see that gcd (vy, 161),11 + 20v,§ 4+ 5) is 5. Thus
we have

vy =2-5x] and 16v] +20v7 + 5 = 5x3,
SO
(2% 5x2)* 45022 - 5x%)? 4+ 5 = 5x2.
Hence we obtain the elliptic curve

E:Y?=X>+5X>+5%
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with x3 = 2% - Sxf, X = 5x32, Y = 5%x3x,. The substitution X = X' — 8,
Y = Y’ yields the elliptic curve

E:Y?=x"%1+x?%_83X +88,

which is the curve 400F1 in Cremona’s table [2]. Thus we see that the Mordell-
Weil group E’(Q) of E’ over Q is given by E'(Q) = ((8,0)) = Z/2Z.
Therefore we have E(Q) = {0, (0, 0)}, x; = 0, so vy = 0, which contradicts
v > 0.

(iii) If p =7, then we similarly have from (7)
v =2-7x7 and 64v + 112vf 4 5607 +7 = 7x3,
so the elliptic curve
E:Y'=X+7X*+2-PX+7*
with x3 = (2% - 7x12)2, X = 7x3, Y = 7%x,. The substitution X = X’ — 16,
Y =Y’ yields
EY?=X"+X7—114X' —127,

which is the curve 196B1 in Cremona’s table [2]. Thus we see that E'(Q) =
((16,49)) = Z/3Z. We therefore have E(Q) = {0, (0, £49)},x3 =0, x| =
0, so vy = 0, which contradicts v; > 0.

Case 2: n # 0 (mod p). Then we can put n = pk + [, where k is even and
l[isodd with1 <1 < p.

Now suppose that d = e,(¢) is odd. From (2) and (3), we have v, =
£V, + Duyru; = 200. Then the following claim holds:

Claim. (a) ep(v)) =d, e,(u;)) =0. (b) ep(vpr) =0, ep(up) >d+1.

The claim above implies that e, (v,x+;) = d, which is impossible, since
d is odd and v+; = 2[]. Thus to prove Theorem 1, it suffices to show the
claim.

Proofof claim. (a) Sincelisodd (< p < 7),wehavel = 1,3,5.Thenv; =1,
v3 = t (412 + 3), vs = t(16¢* + 20¢*> + 5). These imply that e, (v;) = d for
each/, pwithl <! < p < 7. From (v;, u;) = 1, we have ¢, (u;) = 0.

(b) Since k is even, we have u; = 0 (mod 7), so e, (ux) > d, e,(vy) = 0.
Since v i + upk\/ﬁ = (v + uk«/ﬁ)l’, we have

(p—1/2 » - (p=1/2
2j £ _j
Upk = Uk E (2j)vk’(u,%D) T =y E aj.
Jj=0 j=0
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Then e, (upr) > d + 1. Infact, if j < (p —1)/2,thenep(a;) >d(p —1—
2j) > 1L.If j = (p— 1)/2, then e, (a;) = 1. Thus e,(X 7" a)) = 1.
From (vpk, upr) = 1, we have e, (v,r) = 0. This completes the proof of the
claim and hence of Theorem 1. O

Proof of Theorem 2. Suppose that n is odd.
Case 1: n =0 (mod p). In the same way as in the proof of Theorem 1, we
obtain the following, respectively.

(i) If p = 3, then we have the equation
12x] + 1 = x3,
which has no non-trivial solutions by Lemma 2.
(i) If p =5, then we have the elliptic curve defined by
Y? =X’ +5°X* +5X,
which implies X = 0, so vy = 0, as above.
(iii) If p = 7, then we have the elliptic curve defined by
Y2 =X +7X*+2- X + 7,
which implies X = 0, so vy = 0, as above.

Case 2: n # 0 (mod p). Similarly, comparing p-adic values of both sides
of v, = [ leads to a contradiction. O

Remark 1. In the proof of Theorems 1, 2, the fact that the elliptic curves
above have rank 0 is a lucky thing. Thus the integral points are very easy
to find. When an elliptic curve has positive rank, methods are known for
determining the integral points on such a curve, but these methods are far
from elementary.

In order to prove Theorems 3, 4, we need the following two propositions:

Proposition 1. If the equation u, = [ or 2] with n even > 0 has any
solutions, then we have D = 37, n = 2° -3 withe > 1.

Proof. Let n = 2°s, where e > 1 and s is odd. Then applying (4) e times
yields
e
Uy = 202U j2 = 2202 Vpjallnjs = - = 2° (1_[ Un/zj>us-
j=1

Since v, 5j (1 < j < e), uy are pairwise relatively prime, we have vy = L or
2[ 1 with s odd. By Theorem 2 the first equation has no solutions. By Theorem
1 the second equation has only the solutions = 3,t =6, D =37,n =2¢-3
withe > 1. O
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Proposition 2. Let D = 37 and n = 2°¢ -3 with e > 1. Then neither u, = [
nor u,, = 2U1 has solutions.

Proof. Write n = 3k, where k = 2°. Then by (2) and (5), we have us, =
up(4- 37u% + 3). Note that k is even. We see that u; = 0 (mod 3). Otherwise,
u, = Oor20implies 4-37u? +3 = O, which is found impossible by taking
modulo 4. Hence it follows from u,, = [ that

wp = 3x7, 4-37ul +3 = 3x3,
SO
444x] +1 = x3,

which has no non-trivial solution by Lemma 2. It also follows from u,, = 2[]
that

wp=3-2-x3, 4-37u} +3 =3x3,
SO
11Qx)* + 1 = x3,

which has no non-trivial solutions by Lemma 2. O

Proof of Theorem 3. Since u,, is even, we see that n is even and hence n > 0.
Thus by (4), we have

Ve =, uup =0

If n/2 is odd, then the first equation has no solution by Theorem 2. If n/2 is
even, then the second equation has only the solution n = 0 by Propositions
1,2. O

Proof of Theorem 4. Theorem 4 is clear from Propositions 1,2. O

4. Applications

As a corollary to Theorems in § 3, we now deduce some results concerning
the following Diophantine equations. We consider only non-negative integral
solutions.

Now suppose that X = a, Y = b is the fundamental solution of the Pell
equation X> — DY? = —1. Then the general solution is given by

X + YD = (a + bvD)".
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Leta =a+bvD, B =a—byD. Thena + 8 = 2a, af = —1. We now
define for all integers n

1
Uy = E(an +,Bn)v Uy = (an - ,3’1)-

1
27D
Then we have v,1o = 2av,41 + v, and u,0 = 2au,+ + uy.

Now leta = tand D = t* + 1. Then X = ¢, Y = 1 is the fundamental
solution of the Pell equation X 2 _DY? = —1. Asin § 3, we assume that ¢
is an even integer such that e, (¢) is odd for p = 3,5 or 7.

Theorem 1. The equation
4x* — Dy* = +1
has only the solution x =21, y = 145, D = 37.

For, 2x? = v, and hence by Theorem 1 we have n = 3, D = 37.

Hence this provides an elementary proof of the main result in Kagawa
[3]. Note that the curve 4x* — 37y = —1 is birationally equivalent over Q
to the elliptic curve y? = x* — 37%x, whose rank is 1.

Theorem 2'. The equation
xt — Dy2 =—1
has no solutions.
For, x> = v, with n odd, and hence by Theorem 2 we have no solutions.
Theorem 3'. The equation
x? —4Dy* = +1
has only the solution x =1, y = 0.
For, 2y2 = u,, and hence by Theorem 3 we have x = 1, y = 0.
Theorem 4'. The equation
x?— Dy4 =1
has only the solution x =1, y = 0.

For, y> = u,, with n even, and hence by Theorem 4 we have x = 1, y = 0.



202 T. Kagawa, N. Terai

References

[1] Cohn,J.H.E.: The Diophantine equation y2 = Dx*+1,1I. Math. Scand. 42, 180-188
(1978)

[2] Cremona, J.E.: Algorithms for modular elliptic curves. Second edition, Cambridge
Univ. Press, 1997

[3] Kagawa, T.: The Diophantine equation 4x* — 37y> = —1. Preprint

[4] Ljunggren, W.: Einige Eigenschaften der Einheiten reeller quadratischer und reinbi-
quadratischer Zahlkorper. Oslo Vid.-Akad. Skrifter 1 (1936), Nr. 12

[5] Mordell, L.J.: The Diophantine equation y2 = Dx* + 1. J. London Math. Soc. 39,
161-164 (1964)

[6] Ribenboim, P. and McDaniel, W.L.: The square terms in Lucas sequences. J. Number
Theory 58, 104-123 (1996)



