Determination of elliptic curves with everywhere good
reduction over real quadratic fields Q(1/3p)
(Remix version)

Takaaki Kagawa

Abstract

This paper is a remix of author’s papers [7], [8] and [9].

1 Introduction

Let £k = Q(y/m) be a real quadratic field, where m is a square-free integer greater than
1. In our previous papers [5] and [6], we determined all elliptic curves with everywhere
good reduction over k when m = 37 and 29, respectively. There, in the course of the
determination, we constructed some unramified abelian extensions by applying Serre’s
results (the corollary to Proposition 11 and Proposition 12 in [18]) to the field of 3-
division points. Unfortunately, we cannot apply them to the case m = 0 (mod 3) because
of their assumption. However, without them, we can construct certain abelian extensions
unramified outside 3 and the infinite primes. Thus assuming certain conditions on ray
class numbers, we can deduce some criteria, and using them we can treat the case m =0
(mod 3).

If 1 <m <100, m =0 (mod 3), and the class number of k is prime to 6, then m =
3,6,21,33,57,69 or 93. In [6], [10], [12], the proof is given for the nonexistence of elliptic
curves with everywhere good reduction over k& when m = 3,21 and the determination of
such curves is done when m = 6, while the cases m = 33, 57, 69 and 93 are still open. In
this paper, we determine all elliptic curves with everywhere good reduction over Q(v/33)

and show the nonexistence of such curves over Q(v/57), Q(+/69) and Q(+/93).

We use the following notation throughout this paper. For an algebraic number field
k, Ok, O; and hj denote the ring of integers, group of units and class number of £,
respectively. If m is a divisor of k (that is, a formal product of a fractional ideal of k
and some infinite primes of k), hx(m) denotes the ray class number modulo m. If k is
a real quadratic field, then £ and ' denote the fundamental unit greater than 1 and the
conjugation of k, respectively.

For an elliptic curve E, we denote j(E) and A(E) by the j-invariant and the discrim-
inant of F, respectively.

2010 Mathematics Subject Classification: 11GO05.

1



2 Results

Let & = Q(+v/33). The fundamental unit of k is ¢ = 23 + 4v/33. In [12], the following
elliptic curve with everywhere good reduction over k£ is given:

B2+ (5+V33)ay +ey =2, A(E) = —¢%, j(B) = —32768.
This curve contains two k-rational subgroups Vi, V, of order 3, namely
Vi = Ei(k)iors = ((0,0)), Va = {(=6—V33,11)),
where y; = (40 + 7v/33 + v/—¢)/2 = (40 + 7V/33 + 2/=3 + /—11)/2. Let By := E,/V,

Es := E;/V;. Using Vélu’s formula [22], we obtain the following defining equations of Fs
and FEj:

By 2+ (54 V33)ay + ey = 2° — (1235 + 215v/33)z — (35915 + 6252v/33),
A(Ey) = —e, j(BEy) = —(5+ v/33)%(5588 + 972v/33)%c 7,
y2

+ (5+ V33)xy + ey = 2* + (85 + 15v/33)z + (730 + 127V/33),
A(E3) = —&°, j(Es) = —(5 — v/33)%(5588 — 972v/33)%¢.

Although j(E1) = j(E]) (resp.j(E2) = j(ES)), Ey and E] (resp. By and EY) are not iso-
morphic over k, since A(E;)/A(E}) = A(Fy)/A(E}) = &% is not a 12-th power. Hence
there are at least six k-isomorphism classes of elliptic curves with everywhere good reduc-
tion over k.

By definition, Ey and FEj are 3-isogenous over k to Ey. Further we see that F; and E]
are 11-isogenous over k, since F; and Ej are quadratic twist by —my;/11 and 77, /112 of the
curves 121B1 and 121B2 in Table 1 of [2], respectively, 121B1 and 121B2 are 11-isogenous
over Q, and (—my;/11)(7},/11%) = 1/11%. Here my; = 11 + 24/33 is a prime element of k
dividing 11. Below is the isogeny graph among the related elliptic curves:
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Here, for a prime p and elliptic curves £ and E defined over k, the graph

E—P FE

means that F and E are p-isogenous over k. Hence there is at least one k-isogeny class
of elliptic curves with everywhere good reduction over k.
In this paper we prove

Theorem 1. Up to isomorphism over k = Q(v/33), the siz curves listed above are all the
elliptic curves with everywhere good reduction over k. In particular, there is exvactly one
k-isogeny class of such curves.



We simultaneously prove the following theorem.

Theorem 2. There are no elliptic curves with everywhere good reduction over Q(y/m) if
m = 57,69 or 93.

Let d be the discriminant of a real quadratic field and y,; the Dirichlet character
associated to d. Let Sy = So(15(d), xa) be the space of cuspforms of Neben-type of weight
2 and level d. It is conjectured (cf. [16]) that any elliptic curve having everywhere good
reduction over the real quadratic field Q(v/d) and admitting an isogeny over Q(v/d) to
its conjugate should be isogenous over @(\/E) to so-called Shimura’s elliptic curve which
arises from a 2-dimensional Q-simple factor of S;. When d = 33, 57, 69, 93, it is known
that S, is 2-dimensional and Q-simple, 4-dimensional and Q-simple, 6-dimensional and
Q-simple, 8-dimensional and Q-simple, respectively. Thus Theorems 1 and 2 confirm the
conjecture for these four values of d.

3 Preliminaries

Later we will give criteria for every elliptic curve with everywhere good reduction over a
real quadratic field k to admit a 3-isogeny defined over k (Propositions 11 and 12 below).
Thus we first study elliptic curves with 3-isogeny and some Diophantine equations arising
from the investigation of such curves. Further, since a key tool to prove the criteria is the
field L = k(FE[3]) of 3-division points and Gal(L/k) can be viewed as a subgroup of the
general linear group GLy(F3), we will also study subgroups of GLy(F3).

3.1 Elliptic curves with 3-isogeny

Let E and E be elliptic curves defined over a number field & which are 3-isogenous over
k. We define a rational function J(x) by

(z +27)(z + 3)3 '

J(z) =
Then, by Pinch [17], the j-invariants of E and E can be written as
J(E)=J), j(E)=J(), t,t €k, tt =729 = 3°.

(This is nothing other than a parameterization of the modular curve Yy(3).) Moreover,
let ¢4(F) and cg(F) be the usual quantities associated to E. Then the following relations
hold.

. a(E)? (427t +3)?
e = 4 - S (3.1)
(B (418t —27)°
- A(E) t '
Lemma 3. Let E, E, t and T be as above. Then

(a) If j(E) # 1728, then t/A(FE) is a square in k.

(b) If E and E have everywhere good reduction over k and j(F),j(E) # 0,1728, then
the principal ideals (t) and (t) are integral and sizth-powers.

(3.2)
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Proof. (a) follows immediately from (3.2).

(b) It suffices to prove the assertions only for ¢. Equation (3.1) and the assumption
that E has everywhere good reduction over k& imply that ¢ is an integer in k. By the
same assumption, the principal ideal (A(E)) is a 12-th power, say (A(F)) = a'?. Since
J(E) # 1728, we see from (3.2) that () = ((t*+ 18t — 27) /cs(F))?a'? is a square. To show
that (¢) is a cube, it is enough to show that ord,(¢) = ord,(27) (mod 3) for any prime ideal
p dividing 3, where ord, is the normalized valuation corresponding to p, since ¢,t € O
and tt = 3° 1If ord,(t) = ord,(27), then there is nothing to prove. If ord,(t) > ord,(27),
then ord,((t 4+ 27)/t) = ord,(27) — ordy(t). On the other hand, since j(E) # 0, we see
from (3.1) that ((t 4+ 27)/t) = (ca(E)/(t + 3))*/a'? is a cube. Hence ord,(t) = ord,(27)
(mod 3). O

Let k£ be a real quadratic field in which 3 does not split and let £ be an elliptic curve
having everywhere good reduction over k£ and admitting a 3-isogeny defined over k£ with
J(E) = J(t). In this case, j(E) is neither 0 nor 1728 (Theorem 2, (a) in [20]). Thus it
follows from Lemma 3, (b) that

() = (1), (729) if 3 is inert,
(1), (27), (729) if 3 ramifies.
From (3.1), we have
< ‘;415;) > = A(E)(1+27u), u=- €O (3.3)
if () = (1),
(icﬁ) ) — A(E)(u+27), u= ? € O (3.4)
if (t) = 729, and
<%E3)> =AE)(14+u), u= 277 e Of (3.5)

if 3 is ramified and (¢) = (27). Note that c4(E) # 0 since j(E) # 0.
Consequently, to investigate elliptic curves having everywhere good reduction over k
with unit discriminant and admitting a 3-isogeny defined over k, we need to study the

equations
X3 =u+27, X®=u+v

in X € Oy \ {0}, v,v € O;. We will study them in the next subsection.

3.2 Some Diophantine equations

Using the software KASH, SageMath or Magma, we obtain the following lemma.



Lemma 4. (a) The equation 27y? = z* — 676 (x,y € Z) has no solutions.
(b) The equation 27y* = x® 4+ 784 (z,y € Z) has no solutions.
(c) The only x,y € Z satisfying 27y* = z* + 676 are (z,y) = (—1,+5), (26, +26).
(d) The only x,y € Z satisfying 27y* = x> — 784 are (z,y) = (19, £15), (28, £28).

Lemma 5. Let k be a real quadratic field. If there exist u,v € O;, X € Oy, such that
X3 =u+27v (3.6)

and wv = £0; (O is a square element of k), then k is equal to Q(v/29) and the only
solutions are (X, u,v) = (F£e" 1, Fe¥ntl Le3n71) (et 31 &34 (n € Z), where

e = (5++/29)/2 is the fundamental unit of Q(v/29).

Proof. By changing (u, v, X) to (u?, uv, uX) if necessary, we may assume that Ny q(u) =
Nijg(v) = 1. Taking the norm of both sides of (3.6), we have

Nijo(X)? = 730 + 27 Try g (uv ™). (3.7)

1

Since uv = £0; and Ny g(v) = 1, we have uv™" = uv/v* = £w? for some w € O}'. Hence

Nijo(X)? = 730 £ 27 Try g (w?) = 730 £ 27{ Tty /0(w)* — 2Ny /g(w)}.
If the sign is +, then

27 Try,j0(w)? = Nijo(X)* — 730 4 54Ny g (w)

[ Niyo(X)? =676 if Nyjg
Nijo(X)? — 784 if Nyjg

(w) =1,

(w) = —1.

It follows from Lemma 4 that Njg(w) = —1 and Tryq(w) = 15 or £28, that is, w =
+(154+/229) /2 or +(14++/197). If w = +(154+/229)/2, then (u+27v) = (w?+27) = p?,
where p is a prime ideal of Q(1/229) dividing 19. Since p is not principal, u + 27 is not a
cube in Q(v/229). (Note that the class number of Q(v/229) is 3.) If w = +(14 + /197),
then u 4 27v is not a cube in Q(v/197), since (u + 27v) = (227(15 £ v/197)) = (2)*p2p.,

where (7) = prp7, p7 # p7.
If the sign is —, then

27 Try,j0(w)® = {—Ni/g(X)} + 730 4+ 54Ny g (w)

_ {{—Nk/@<X>}3 +784if Nijgl
( (

w) =1,
{—Nijo(X)}? + 676 if Nyjp(w) = —1.

w)

It follows from Lemma 4 that Nyg(w) = —1 and Tryg(w) = 5 or £26, that is, w =
+(13 + V/170) or (5 +1/29)/2. If w = +(13 £ v/170), then u + 27v is not a cube in
Q(V170), since (u + 27v) = (26(12 £ V170)) = pipispls, where (2) = p3, (13) = pyap}s,
p1s # ply. Ifw = £(5 £+/29)/2, then u + 27v = ve®? (¢ = (5 + v/29)/2). Thus,
if X3 = u + 27v, then there exists an n € Z such that v = £&3"71, X = £e"! or
v =43t X = et O



Remark. Lemma 5 is a generalization of Proposition 2.3 in [15] which states that the
only m € Z and X € O, gg) satistying X° = e**1*™ —27¢% are m = 0 and X = —1,

Using the software mentioned above, we obtain the following.

Lemma 6. (a) There are no integer solutions of y? = x3 — 784.

(b) The only integer solutions of y* = x3 + 676 are (z,y) = (0, +26).

(c) The only integer solutions of y* = x3 — 676 are (z,y) = (10,£18), (13,439),
(26,+130), (130, +1482), (338, £6214) and (901, +£27045).

(d) The integer solutions of y* = z* + 784 are (z,y) = (—7,%21), (0,£28), (8,+36)
and (56, +420).

Proposition 7. Let p be a prime number such that p = 2 or p = 3 (mod 4), p >
3. Let k = Q(+/3p). Then equation (3.6) has a solution in X € O, u,v € OF only
when k = Q(v/6) or Q(v/33), in which cases, the only solutions are (X,u,v) = (wy(4 £
V6), wi, wi(5+£2v6)), (—wo(5+£+/33), wi, —w3(23+4/33)), respectively. Here w (resp.
wsy) is any unit of Q(v6) (resp. Q(v/33)). Note that 5+ 2v/6 (resp.23 + 4v/33) is the
fundamental unit of Q(v/6) (resp. Q(v/33)).

Proof. The case uv = +0; are treated in Lemma 5 and shown no solutions exist. Thus
we assume that uv™! = +ew?, w € OF. Taking norm of (3.6), we have (3.7). There exists
am € O such that (m)? = (3), since 3 ramifies in & and the class number of & is odd. (see
3], Theorems 39 and 41.) The facts that 72/3 > 0 and k # Q(v/3) imply v/3e = 7" € Oy
(for some n € Z). Thus

27 Try o (uv ™) = £9 Try o (V32 w)?) = £9{ Try 0 (V3e w)? — 2Ny 0(V3e) ). (3.8)
When Ny,/o(v/3¢) = —3, equations (3.7) and (3.8) give

1 2

Nk/Q(X)3_784 lf uv - = ew )
3Tryo(V3ew) ) =
13 ryo(View)) {{—Nk/@(X)}3 +676 if uv~! = —ew?.

Thus there is no solution in this case.
When Nj/o(v/3¢) = 3, equations (3.7) and (3.8) give

-1 2

Nk/Q(X)3_676 if wv = ew-,
3Try,0(V3ew) ) =
{3Tre/o(v3ew)} {{—Nk/Q(X)}3 + 784 if uwut = —ew?.

In case uv™! = ew?, Lemma 6 implies that Try/q(v/3e w) = &6, £13, £247 or £9015, and

(3+6 if Tryq(v/3ew) =
—3+6 if Try,/0(V3ew) = 6,
V3ew = { (£13 £ V/157)/2 if Tryq(v/3e w) = +13,
+247 £ /3503 - 53857 if Tryo(V/3e w) = £247,
| £9015 + v/2-11-47-59  if Tryq(v/3c w) = £9015.



Thusk:(@(\/é) and € = 5 + 2v/6. Since v3¢ = 3+ /6 and v3ce' = 3 — V6, we have

wot — e 18 EVBEw=£B+ V),
g if V3ew = £(3 — V6).

When uv™! = ¢, since u + 27v = v(e +27) = ve(4 — v/6)?, there exists a w; € O(S(\/é) such
that v = wie’, u = w? and X = w;(4—+/6). When uv™! = &', since u+27v = v(¢' +27) =

ve' (44 +/6)3, there exists a w; € Oé(\/é) such that v = wie, u = w? and X = w;(4+V/6).
In case uv™! = —ew?, Lemma 6 implies that Tryq(v/3sw) = £7,£12, or 140, and

(£7+V37)/2  if Tryo(V3ew) = +7,
VIR w — 6+ /33 if Try, o(V3ew) = 12,
] -6+v33 if Try,q(v/3ew) = —12,

+70 £ /59 - 83 if Try/0(v/3e w) = £140.
Thus & :Q(\/@) and ¢ = 23 4+ 4v/33. Since v/3e = 6 + v/33 and V3c¢' = 6 — /33, we

have
BRI V3ew = +(6 + /33),
w = —ew” =
—&'if V3ew = +(6 — V/33).
When uv™ = —¢, since u + 27v = ve(5 — V/33)3, we have u = —w3, v = wie’ and X =
wsy(5 — +/33) for some wq € 06(\/@). When uv™! = —¢’, we have u + 27v = ve'(5+ v/33)3.
Hence there exists a wq € O(S(\/?E) such that u = —w3, v = wie and X = wy(5++/33). O

Proposition 8. Let k be a quadratic field. Then the only solution of the equation
XP=1+v, X€O, veOf
is (X,v) = (0,—1).
Proof. Since X? —1=(X —1)(X?4+ X +1)=0ve O, X —1=1v, X+ X +1=: v,
are units of k. Eliminating X, we have v} + 3v; + 3 = v,. Taking norm results in
Nijg(va) = 3 Try/q(v1)? + 3{Nijo(v1) + 3} Trrjo(v1) + 9 + 3Nk g (v1) + 1.

Reducinga modulo 3 yields Ny q(v2) = 1. Therefore Try, g (v1)*+{ Ni/q(v1)+3} Try/q(v1)+
3+ Nk/Q(Ul) =0. If Nk/@(vl) = —1, then Trk/@(vl)2 + 2Trk/Q<U1) + 2 = 0, which is
impossible. If Ny g(v1) = 1 then Tryg(v1)? + 4 Try(v1) + 4 = 0, from which vy = —1,

X =0. O
Proposition 9. If the norm of the fundamental unit of a real quadratic field k is 1 and
XP=u—v, X€O, uveO;, w=0, (3.9)

holds, then X = 0.

Proof. By assumption, we have uv’ = w? for some w € O;. Taking the norm of both
sides of (3.9) and noting Ny /q(u) = Ni/g(v) = Nijo(w) = 1, we obtain

Try/g(w)? = {=Nijo(X)}* + 4.
It then follows that X = 0, since the only (affine) Q-rational points of the elliptic curve
y*> = 2® + 4, which is the curve 108A1 in Table 1 of [2], are (0, +2). O

7



3.3 Subgroups of GL,(FF3) as a Galois group

Let k be an algebraic number field not containing /—3. Let E be an elliptic curve
defined over k, let E[3] = {P € E | 3P = O} be the group of 3-division points of E,
and let L = k(E[3]) be the field generated over k by the points of E[3]. We may regard
G = Gal(L/k) as a subgroup of GLy(F3) by the faithful representation G — GLy(F3)
induced by the action of G on E[3]. Here we study what group G can be. We should
mention that, in his paper [14], Naito studied the same problem for elliptic curves defined
over Q.

Lemma 10. Let G be as above. Let p = <(1) _(1)), o= ((1) é), T = (} _D €

GLy(FF3), which satisfy the relations p* = 0> = 8 =1, oro~! = 3. Then
(a) G is conjugate in GLy(F3) to one of the following:
(i) {(p) =Z/2Z.
(i) (—1) x (p) X Z/27 x Z/27.

(iii) ((1] :) = Sy (the symmetric group of degree 3).

(iv) (S 1‘) ~ G,

(v) (0,7%) = Dg (the dihedral group of order 8).
(vi) (1) = Z/8Z.
*

.. *\
(vii) 0 *) = Sy x Z/27.

(viii) (o, 7) = SDsg (the semi-dihedral group of order 16).
(lX) GLQ(Fg)

(b) A(E) is a cube in k if and only if G is conjugate in GLy(F3) to one of the groups
in (1), (ii), (v), (vi) or (viii). For each case, GNSLy(F3) = Gal(L/k(v/—3)) is conjugate in
GLy(F3) to {1}, (1) X Z/27, (1*) X Z/AZ, (1) = ZJAZ, (oT,T*) = Qg (the quaternion
group), respectively.

(¢) E admits a 3-isogeny defined over k if and only if G is conjugate in GLy(F3) to
one of the groups in (i), (ii), (iii), (iv) or (vii).

Proof. (a) We have #G > 2, since k(v/—3) C L ([21], p.98) and [k(v/—=3) : k] = 2.
The special linear group SLs(F3) does not contain G, since we have Gal(L/k(v/—3)) =
G N SLy(F3) by the commutativity of the diagram

G — GLQ(Fg)
Gal(k(V=3)/k) ——  F}

From these together with the classification of the subgroups of GLg(F3) (cf. [14]), we
obtain the assertion.



(b) The first part is clear from the fact that A(F) is a cube in k if and only if [L : k]
is not divisible by 3 ([18], §5.3). The second part follows from direct calculation.

(c) Since admitting a 3-isogeny defined over k is equivalent to the existence of a point
P of order 3 such that ¢(P) = £P for any ¢ € G, we may assume, by an appropriate
*
0
(a), the only groups which are subgroups of this group are the ones in (i), (ii), (iii), (iv)
and (vii). O

choice of a basis of F[3], that G is a subgroup of . Among the groups appeared in

4 Some criteria

In this section, we use the following notation: For subgroups H and N of GLy(F3), H ~ N
means that H is conjugate in GLy(F3) to N.

Proposition 11. Let k be a real quadratic field. Assume that hk((?))pg)pg))) # 0 (mod 4),
where psY and p$ are the real primes of k, or hiy=3((vV/=3)) Z 0 (mod 4). Then every
elliptic curve E with everywhere good reduction over k whose discriminant A(E) is a cube
in k admits a 3-isogeny defined over k.

Proof. Let E be an elliptic curve with everywhere good reduction over k with A(E) €
k3. Set L := k(E[3]), G := Gal(L/k) and H := Gal(L/k(v/=3)) = G N SLy(F3). By
Lemma 10, (b), G is conjugate in GLy(F3) to (0, 7) = SDsg, (1) 2 Z/87Z, {0, 7%) = Ds,
(—1) X {p) X ZJ27 x Z)2Z, or {p) = Z/27. It G ~ (7) or {o,7?), then it is clear that
G has a normal subgroup N such that G/N is of order 4. Further, by Lemma 10, (b),
H = Z/AZ in these cases. If G ~ (o,7), then G has a normal subgroup of N with
G/N = 7/27 x 7/2Z. Indeed, (o,7)/{1?) = Z/27 x Z/27. Further H ~ {(o7,7%) = Qg
and (o7, 72)/(1%) = Z/27x Z/2Z. Thus in view of the criterion of Néron-Ogg—Shafarevich
([21], p. 184), our assumptions on ray class numbers imply that G ~ (p) or (—1) x (p).
We therefore see from Lemma 10, (c) that £ admits a 3-isogeny defined over k. O

Proposition 12. Let k be a real quadratic field with (hy,6) = 1. Let BY and PL be
the real primes of k(3/z).

(a) If hk(%)((?))‘ﬁ&) @) # 0 (mod 4) or hiyzv=3)((3)) Z 0 (mod 4), then every
elliptic curve E with everywhere good reduction over k whose discriminant A(E) is not a
cube in k admits a 3-isogeny defined over k.

(b) If hk(%)((B)‘B&)‘B@) Z 0 (mod 4) or hy sz /=5 ((3)) #Z 0 (mod 2), then every
elliptic curve E with everywhere good reduction over k whose discriminant A(E) is not a
cube in k has a k-rational subgroup V' of order 3, and either E or E/V has a k-rational
point of order 3.

Proof. (a) Let E be an elliptic curve with everywhere good reduction over k and let
L =k(E[3]), G = Gal(L/k). By the corollary to Theorem 1 in [19], which states that every
elliptic curve with everywhere good reduction over k£ has a global minimal model provided
(hg,6) = 1, and the assumption that A(E) is not a cube, we have k(v A(E)) = k(/¢).
Since L contains k(VA(E)) ([18], p. 305), we have [L : k] = 0 (mod 3). Thus, by Lemma



10, (b), we have G ~ <(1) i), < ) ( ) or GLy(FF3). Suppose that F admits no 3-

isogeny defined over k. Then, by Lemma 10, (c¢), we have G = GLy(F3), Gal(L/k(/e)) ~
(o,7) and Gal(L/k(/e,v/—3)) = Gal(L/k(\‘"’/E)) N SLg(Fg) ~ (o7,7%). The criterion of
Néron-Ogg—Shafarevich and the fact that (a, 7)/{(r%) and (o7, 7%)/(1?) are both isomor-

phic to Z/2Z x Z/2Z imply hy gz ((3)PYPL) = 0 (mod 4) and hy gz, ,—5((3)) = 0
(mod 4).

. 1 = * ok x ok i
(b) According to (a), we have G ~ (0 *), (0 1) or (0 *> Supposing G ~

(8 :), the criterion of Néron-Ogg-Shafarevich implies that L/k(+/¢) is an abelian ex-

tension of degree 4 unramified outside {3,‘}3&),‘3&?} and L/k(¥/e,4/—3) is a quadratic

extension unramified outside 3. These contradict our assumptions. O

5 Proof of Theorems 1 and 2
Let k be one of the real quadratic fields Q(v/33), Q(+v/57), Q(v/69) and Q(v/93). The

fundamental unit € of k£ larger than 1 is

23 + 4v/33 if k = Q(v/33),
) 151420v57  if k= Q(V/57),
(vV69)

(v93)

(25 +3v/69)/2 if k = Q(+/69),
(29+3v93)/2 if k = Q(+/93).

Note that Nj/g(e) = 1. Let E be an elliptic curve with everywhere good reduction over
k.

5.1 The case where A(F) is a cube in k

If A(E) is a cube in k, then & must be Q(v/33) and E is isomorphic over & to F; or Ef.
Indeed, more generally, we have the following.

Proposition 13. Let p be a prime number such that p = 2 or p # 3, p = 3 (mod 4),
and let k := Q(\/3p). If there is an elliptic curve E which has everywhere good reduction
over k and whose discriminant A(E) is a cube in k, then p = 2 orp = 11. If p = 2
(resp.p = 11), then E is isomorphic over k to

Ey: P + (44 V6)zy + (5+2V6) = 2, A(Ey) = (5+2v6)%, j(E4) = 8000
or B} (resp.to Ey or EY).
First, we give some lemmas.

Lemma 14. Let p and q be distinct primes such that p = ¢ = 3 (mod 4) and let k =
Q(\/pq). Let q be the prime ideal of k dividing q. Then
(a) hy is odd.
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(b) k(v=¢) = Q(v=p, vV=9)

k
(¢) e = (p/q) (mod q), where (-/-) is the Legendre symbol. In particular, ¢ = p
(mod q) if ¢ = 3.

Proof. (a) Theorems 39 and 41 of [3].

(b) By (a), q is principal. Let m € Ok be a generator of q. Since € > 1, k is real and
k # Q(\/q), we have ¢ = m*"*! for some n € Z, whence k(y/—q) = k(v/—¢).

(c) We first show that ¢ = £1 (mod q), which is equivalent to Tryg(e)* =0 (mod g)
since Ny/g(e £1) = 2 £ Tryg(e). But this readily follows by writing ¢ as € = (Try/g(e) +
b\/pq)/2, b € Z.

Let K = k(v/—¢) = Q(v/=p,v/—¢q). By Theorem 23 in [3], q splits in K if and only

if there exists an X € Oy such that X? = —¢ (mod q), which is equivalent to e = —1
(mod q), since Ok /q = 7Z/qZ and ¢ = 3 (mod 4). On the other hand, q splits in K if and
only if ¢ splits in Q(y/—p), which is equivalent to (p/q) = —1. O

Corollary 15. Let p be a prime number such that p = 3 (mod 4) and p # 3. Let
k= Q(/3p) and K = k(v/=3). Then

(a) hx is odd.

(b) The ray class number hy((v/=3)) is 2hx or hx according as p = 1 (mod 3) or
p=2 (mod 3). In particular, hi((~/=3)) is not a multiple of 4.

Proof. (a) By [3], Corollary 3 to Theorem 74, we have hx = hxhg(/=5hov=3) = Prho/=),
which is odd by Lemma 14, (a).

(b) Let G := (Ok/vV=30k)* and H = {z +/-30k | z € O} C G. From
the formula for the ray class number (Theorem 1 of Chapter VI in [13]), it follows that
hi((v/=3)) = hx(G : H). Thus it is enough to show that

G H) = 2 ?fpzl (mod 3),
1 ifp=2 (mod 3).

Let (s = (1 ++1/=3)/2 be a primitive sixth root of unity. Since K = k(y/—¢) by Lemma
14, (b) and (s € K, we have O = () x (/—¢) (cf. [3], pp. 194, 195). Hence
H = {/—¢ +v/=30k, (s + V-30k). Let q be the prime ideal of k dividing 3.

Assume that p = 1 (mod 3). Then, since (—p/3) = —1, qOx = v/—30f is a prime
ideal of K and hence G is a cyclic group of order 8. Lemma 14, (¢) and the formula

G6—1=G G—1=vV-3G (5.1)

imply that H = (y/—¢ + /=30k) & Z/4Z. Thus (G : H) = 2.

Assume that p = 2 (mod 3). By Lemma 14, (c¢), we have X? + ¢ = (X — 1)(X + 1)
(mod q). Hence by letting Q; = (q,v/—¢ — 1), Qo = (q,/—¢ + 1), it follows from [3],
Theorem 23 that

\/—_30[( = qOK = Q1Q2, G = (OK/Ql)X X (OK/DQ)X = (Z/3Z)X X (Z/3Z)X

The definition of Q; (i = 1,2) implies that /—¢ =1 (mod 9Q;) and /—¢ = —1 (mod Q»).
Further, (5.1) means that (¢ = —1 (mod ;) (i = 1,2). Hence H = (Z/3Z)* x (Z/37Z)*,
whence (G : H) = 1. O

11



Lemma 16 ([11], Corollary 3.4). Let E be an elliptic curve having everywhere good re-
duction over a quadratic field k. Let s denote the number of ramifying rational primes
in the extension k/Q. Then the number of twists of E having everywhere good reduction
over k is 2571,

Proof of Proposition 13. Let E be an elliptic curve having everywhere good reduction
over k and having cubic discriminant in k. Then, by Proposition 11 and Corollary 15, £
admits a 3-isogeny over k. Thus by the argument in section 3.1, j(F) is of the form J(¢),
t € O, t| 3% and the principal ideal (¢) is a sixth power. By (3.3), (3.4), and (3.5), we
see that there exist an X € Oy \ {0} and a u € O} such that

X?=1+27u if () = (1), (5.2)
X} =u+27 if (t) = (729),
X3=1+u if (t) = (27).

From Propositions 7 and 8, neither of the equations (5.3) and (5.4) has solutions. From
Proposition 7, the only units u satisfying equation (5.2) are 5 4 2v/6 and —(23 # 41/33).
If u =526 (resp.u = —(23 & 44/33)), then j(E) = J(5 F 2v/6) = 8000 (resp. j(E) =
J(—(23 F 4v/33)) = —32768). We have two elliptic curves with everywhere good reduc-
tion over Q(v/6) (resp. Q(v/33)) with j invariant 8000 (resp. —32768), namely £, and E
(resp. By and Ef). Lemma 16 therefore implies our assertion. O

Remark. All elliptic curves with everywhere good reduction over Q(v/6) have been de-
termined in [6], [10].

5.2 The case where A(F) is not a cube

Consider the case where A(F) is not a cube in k. Table 1 and Proposition 12 imply that
E admits a 3-isogeny defined over k. Thus j(E) is of the form J(t), (t) = (1), (27), (729).

k[ (BERR) | hygevs(3)) |
Q(v/33) 2.3° 3
Q(+/57) 22.3 2.33
Q(V69) 2-3 32
Q(v93) 22.3 2.3

Table 1: Ray class numbers

The field K := k(VA(E)) is one of the fields k, k(v/—1) or k(v/=£e), since we may
assume that A(E) is a unit (see the above-cited result in [19]). The field k(E[2]) is a cyclic
cubic extension of K, since in [1], it is shown that E has no k-rational points of order 2.
This means that, in view of the criterion of Néron-Ogg-Shafarevich, hg) = hg (pr p)

is divisible by 3. Thus Table 2 implies that A(E) = —?"*! for some n € Z. In view of

the formulae for an admissible change of variables, we may assume that A(E) = —e*!

12



%

k K=k|K=k(V-1)[K=k(e) | K=k(/—¢)
Q(v/33) 1 2 1 3
Q(v/57) 1 2 1 3
Q(v/69) 1 4 1 3
Q(v/93) 1 2 1 3

Table 2: BY (K = k, k(v/=1), k(vEz))

or —&*5. We may further assume that A(E) = —&5"*! (n = 0, —1) by considering the

conjugate of E.
Suppose first that (¢) = (1). By (3.3), we obtain

—cy(E)

X3 = 2, X =——""2_
€+ 2(u, (t+3)en

€
EOk, U:?EO;,

which is impossible by Proposition 7.
Suppose next that (¢) = (27). Then, by (3.5), we obtain

—cu(E) 27

X3:€+€U, X:meOk\{O}, U:TGO;

Let
6+ /33 ifthk=0Q

(
1542567 if k= Q(
(9+v69)/2 if k= Q(
(9+V93)/2 if k= Q(+/93)

be a prime element of k dividing 3. Lemma 3, (a) and the fact 72 = 3¢ imply u = —¢
for some m € 7Z, whence

b

)
)7
)

Y

2m

X3=g -t X 40,

which is impossible by Proposition 9.
Finally, suppose that (t) = (729). Since t/A(E) = —t/e5"! is a square by Lemma 3,
(a), we have u = 729/t = —?™~! for some m € Z, and hence by (3.4) we have

XP = em_oge x = SalB)
(t+3)e2n
By Proposition 7, this is possible only if & = Q(v/33) and m = 0, whence j(E) =
J(=729¢) = — (5 + v/33)(5588 + 972/33)%c !, which equals to j(Fs) and j(F}). Lemma
16 therefore implies that E is isomorphic over Q(v/33) to By or E} according as A(E) = —&
or A(E) = —e75.
The proof of Theorems 1 and 2 is now complete.
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6 Appendix

In section 5, we gave a characterization of elliptic curves having everywhere good reduction
over a real quadratic field k, admitting a 3-isogeny defined over k, and having cubic
discriminant (Proposition 13). Here we give a similar characterization of the curves whose
discriminant is equal to +0;. More precisely, we prove

Proposition 17. Let k be a real quadratic field. If there exists an elliptic curve E with
everywhere good reduction over k given by a global minimal model with j(E) = J(t)
(t € O, (t) = (1) or (729)) and A(E) = £0;, then k = Q(v/29) and E is isomorphic

over k to

Es:y’+ay+ey=a°, A(Es)=—¢" j(E;) =(e?—3)%/e",
E¢:y® +ay+e’y =a° —bew — (2 4 1Y),
A(EG) = _8147 j(EG) = _<1 + 21682)3/614a

or to their conjugates EL, Ef. Here ¢ = (5 + v/29)/2 is the fundamental unit of Q(v/29)
and J(t) is the one given in section 3.1.

Proof. Suppose that there exists an elliptic curve E with properties stated in the propo-
sition. We take A(E) € O;. Letting

(Xu0) = {<c4<E>/<t +3),AB), A(B)/) if (t) = (1),
Y (3ca(E)/(t + 3), T29A(E) /t, A(E)) if (t) = (729),

we have X3 = u+ 27v, X € O, u,v € O;, uv = £0;, by (3.3), (3.4) and Lemma 3, (a).
Hence, by Lemma 5, we have k = Q(v/29), u/v = —?, —&”?, where ¢ = (5 + 1/29)/2 is
the fundamental unit of Q(1/29).

If (t) = (1), then t = u/v = —%, —&, and j(E) is equal to J(—&?) = (¢ — 3)3/e* or
J(—€?) = (e — 2)3¢h If (t) = (729), then t = T29v/u = —729e%, —729¢”, and j(E) is
equal to J(—729¢?) = —(1+216e%)3e™ or J(—729¢"?) = —(1+216%)3¢"™*. Since the values
of j-invariant obtained above are equal to j(Es), j(EL), j(E§) and j(Eg) respectively,
Lemma 16 implies our assertion. [

Using Propositions 11, 12 and 17, we can give another proof of the following theorem
which is the main theorem of [6]:

Theorem 18. Up to isomorphism over k = Q(v/29), the only elliptic curves with every-
where good reduction over k are Ey, EY, Eg and Ej

Proof. Let E be an elliptic curve with everywhere good reduction over k = Q(1/29)

and let A(E) € Of. Since h,(f) = h](f()\/E) =1, hl(f()\/j) = 3, and E has no k-rational

point of order 2 (see [1], [4]), we have A(F) = —?" = —0,. Since hk((?))p(()i)pg)) =2,
hk(%)((:s)m&? ©)) = 2, and the prime number 3 is inert in k, we have by Propositions 11
and 12 that j(E) is of the form J(¢), (¢) = (1) or (729). Proposition 17 therefore implies
that E' is isomorphic over k to Es, EL, Eg or Ef, as claimed. [
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