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Abstract

This paper is a remix of author’s papers [7], [8] and [9].

1 Introduction

Let k = Q(
√
m) be a real quadratic field, where m is a square-free integer greater than

1. In our previous papers [5] and [6], we determined all elliptic curves with everywhere
good reduction over k when m = 37 and 29, respectively. There, in the course of the
determination, we constructed some unramified abelian extensions by applying Serre’s
results (the corollary to Proposition 11 and Proposition 12 in [18]) to the field of 3-
division points. Unfortunately, we cannot apply them to the case m ≡ 0 (mod 3) because
of their assumption. However, without them, we can construct certain abelian extensions
unramified outside 3 and the infinite primes. Thus assuming certain conditions on ray
class numbers, we can deduce some criteria, and using them we can treat the case m ≡ 0
(mod 3).

If 1 < m < 100, m ≡ 0 (mod 3), and the class number of k is prime to 6, then m =
3, 6, 21, 33, 57, 69 or 93. In [6], [10], [12], the proof is given for the nonexistence of elliptic
curves with everywhere good reduction over k when m = 3, 21 and the determination of
such curves is done when m = 6, while the cases m = 33, 57, 69 and 93 are still open. In
this paper, we determine all elliptic curves with everywhere good reduction over Q(

√
33)

and show the nonexistence of such curves over Q(
√
57), Q(

√
69) and Q(

√
93).

We use the following notation throughout this paper. For an algebraic number field
k, Ok, O×

k and hk denote the ring of integers, group of units and class number of k,
respectively. If m is a divisor of k (that is, a formal product of a fractional ideal of k
and some infinite primes of k), hk(m) denotes the ray class number modulo m. If k is
a real quadratic field, then ε and ′ denote the fundamental unit greater than 1 and the
conjugation of k, respectively.

For an elliptic curve E, we denote j(E) and ∆(E) by the j-invariant and the discrim-
inant of E, respectively.
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2 Results

Let k = Q(
√
33). The fundamental unit of k is ε = 23 + 4

√
33. In [12], the following

elliptic curve with everywhere good reduction over k is given:

E1 : y
2 + (5 +

√
33)xy + εy = x3, ∆(E1) = −ε3, j(E1) = −32768.

This curve contains two k-rational subgroups V1, V2 of order 3, namely

V1 = E1(k)tors = ⟨(0, 0)⟩, V2 = ⟨(−6−
√
33, y1)⟩,

where y1 = (40 + 7
√
33 +

√
−ε)/2 = (40 + 7

√
33 + 2

√
−3 +

√
−11)/2. Let E2 := E1/V1,

E3 := E1/V2. Using Vélu’s formula [22], we obtain the following defining equations of E2

and E3:

E2 : y
2 + (5 +

√
33)xy + εy = x3 − (1235 + 215

√
33)x− (35915 + 6252

√
33),

∆(E2) = −ε, j(E2) = −(5 +
√
33)3(5588 + 972

√
33)3ε−1,

E3 : y
2 + (5 +

√
33)xy + εy = x3 + (85 + 15

√
33)x+ (730 + 127

√
33),

∆(E3) = −ε5, j(E3) = −(5−
√
33)3(5588− 972

√
33)3ε.

Although j(E1) = j(E ′
1) (resp. j(E2) = j(E ′

3)), E1 and E ′
1 (resp.E2 and E ′

3) are not iso-
morphic over k, since ∆(E1)/∆(E ′

1) = ∆(E2)/∆(E ′
3) = ε6 is not a 12-th power. Hence

there are at least six k-isomorphism classes of elliptic curves with everywhere good reduc-
tion over k.

By definition, E2 and E3 are 3-isogenous over k to E1. Further we see that E1 and E ′
1

are 11-isogenous over k, since E1 and E ′
1 are quadratic twist by −π11/11 and π′

11/11
2 of the

curves 121B1 and 121B2 in Table 1 of [2], respectively, 121B1 and 121B2 are 11-isogenous
over Q, and (−π11/11)(π

′
11/11

2) = 1/112. Here π11 = 11 + 2
√
33 is a prime element of k

dividing 11. Below is the isogeny graph among the related elliptic curves:

E2 E1 E ′
1 E ′

2

E3 E ′
3

3 311

3 3

Here, for a prime p and elliptic curves E and E defined over k, the graph

E
p

E

means that E and E are p-isogenous over k. Hence there is at least one k-isogeny class
of elliptic curves with everywhere good reduction over k.

In this paper we prove

Theorem 1. Up to isomorphism over k = Q(
√
33), the six curves listed above are all the

elliptic curves with everywhere good reduction over k. In particular, there is exactly one
k-isogeny class of such curves.
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We simultaneously prove the following theorem.

Theorem 2. There are no elliptic curves with everywhere good reduction over Q(
√
m) if

m = 57, 69 or 93.

Let d be the discriminant of a real quadratic field and χd the Dirichlet character
associated to d. Let Sd = S2(Γ0(d), χd) be the space of cuspforms of Neben-type of weight
2 and level d. It is conjectured (cf. [16]) that any elliptic curve having everywhere good
reduction over the real quadratic field Q(

√
d) and admitting an isogeny over Q(

√
d) to

its conjugate should be isogenous over Q(
√
d) to so-called Shimura’s elliptic curve which

arises from a 2-dimensional Q-simple factor of Sd. When d = 33, 57, 69, 93, it is known
that Sd is 2-dimensional and Q-simple, 4-dimensional and Q-simple, 6-dimensional and
Q-simple, 8-dimensional and Q-simple, respectively. Thus Theorems 1 and 2 confirm the
conjecture for these four values of d.

3 Preliminaries

Later we will give criteria for every elliptic curve with everywhere good reduction over a
real quadratic field k to admit a 3-isogeny defined over k (Propositions 11 and 12 below).
Thus we first study elliptic curves with 3-isogeny and some Diophantine equations arising
from the investigation of such curves. Further, since a key tool to prove the criteria is the
field L = k(E[3]) of 3-division points and Gal(L/k) can be viewed as a subgroup of the
general linear group GL2(F3), we will also study subgroups of GL2(F3).

3.1 Elliptic curves with 3-isogeny

Let E and E be elliptic curves defined over a number field k which are 3-isogenous over
k. We define a rational function J(x) by

J(x) =
(x+ 27)(x+ 3)3

x
.

Then, by Pinch [17], the j-invariants of E and E can be written as

j(E) = J(t), j(E) = J(t), t, t ∈ k, tt = 729 = 36.

(This is nothing other than a parameterization of the modular curve Y0(3).) Moreover,
let c4(E) and c6(E) be the usual quantities associated to E. Then the following relations
hold.

j(E) =
c4(E)3

∆(E)
=

(t+ 27)(t+ 3)3

t
, (3.1)

j(E)− 1728 =
c6(E)2

∆(E)
=

(t2 + 18t− 27)2

t
. (3.2)

Lemma 3. Let E, E, t and t be as above. Then
(a) If j(E) ̸= 1728, then t/∆(E) is a square in k.
(b) If E and E have everywhere good reduction over k and j(E), j(E) ̸= 0, 1728, then

the principal ideals (t) and (t) are integral and sixth-powers.
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Proof. (a) follows immediately from (3.2).
(b) It suffices to prove the assertions only for t. Equation (3.1) and the assumption

that E has everywhere good reduction over k imply that t is an integer in k. By the
same assumption, the principal ideal (∆(E)) is a 12-th power, say (∆(E)) = a12. Since
j(E) ̸= 1728, we see from (3.2) that (t) = ((t2+18t−27)/c6(E))2a12 is a square. To show
that (t) is a cube, it is enough to show that ordp(t) ≡ ordp(27) (mod 3) for any prime ideal
p dividing 3, where ordp is the normalized valuation corresponding to p, since t, t ∈ Ok

and tt = 36. If ordp(t) = ordp(27), then there is nothing to prove. If ordp(t) > ordp(27),
then ordp((t + 27)/t) = ordp(27) − ordp(t). On the other hand, since j(E) ̸= 0, we see
from (3.1) that ((t + 27)/t) = (c4(E)/(t + 3))3/a12 is a cube. Hence ordp(t) ≡ ordp(27)
(mod 3).

Let k be a real quadratic field in which 3 does not split and let E be an elliptic curve
having everywhere good reduction over k and admitting a 3-isogeny defined over k with
j(E) = J(t). In this case, j(E) is neither 0 nor 1728 (Theorem 2, (a) in [20]). Thus it
follows from Lemma 3, (b) that

(t) =

{
(1), (729) if 3 is inert,

(1), (27), (729) if 3 ramifies.

From (3.1), we have (
c4(E)

t+ 3

)3

= ∆(E)(1 + 27u), u =
1

t
∈ O×

k (3.3)

if (t) = (1), (
3c4(E)

t+ 3

)3

= ∆(E)(u+ 27), u =
729

t
∈ O×

k (3.4)

if (t) = 729, and (
c4(E)

t+ 3

)3

= ∆(E)(1 + u), u =
27

t
∈ O×

k (3.5)

if 3 is ramified and (t) = (27). Note that c4(E) ̸= 0 since j(E) ̸= 0.
Consequently, to investigate elliptic curves having everywhere good reduction over k

with unit discriminant and admitting a 3-isogeny defined over k, we need to study the
equations

X3 = u+ 27v, X3 = u+ v

in X ∈ Ok \ {0}, u, v ∈ O×
k . We will study them in the next subsection.

3.2 Some Diophantine equations

Using the software KASH, SageMath or Magma, we obtain the following lemma.
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Lemma 4. (a) The equation 27y2 = x3 − 676 (x, y ∈ Z) has no solutions.
(b) The equation 27y2 = x3 + 784 (x, y ∈ Z) has no solutions.
(c) The only x, y ∈ Z satisfying 27y2 = x3 + 676 are (x, y) = (−1,±5), (26,±26).
(d) The only x, y ∈ Z satisfying 27y2 = x3 − 784 are (x, y) = (19,±15), (28,±28).

Lemma 5. Let k be a real quadratic field. If there exist u, v ∈ O×
k , X ∈ Ok such that

X3 = u+ 27v (3.6)

and uv = ±2k (2k is a square element of k), then k is equal to Q(
√
29) and the only

solutions are (X, u, v) = (±εn−1,∓ε3n+1,±ε3n−1), (±εn+1,∓ε3n−1,±ε3n+1) (n ∈ Z), where
ε = (5 +

√
29)/2 is the fundamental unit of Q(

√
29).

Proof. By changing (u, v,X) to (u4, u3v, uX) if necessary, we may assume that Nk/Q(u) =
Nk/Q(v) = 1. Taking the norm of both sides of (3.6), we have

Nk/Q(X)3 = 730 + 27Trk/Q(uv
−1). (3.7)

Since uv = ±2k and Nk/Q(v) = 1, we have uv−1 = uv/v2 = ±w2 for some w ∈ O×
k . Hence

Nk/Q(X)3 = 730± 27Trk/Q(w
2) = 730± 27{Trk/Q(w)2 − 2Nk/Q(w)}.

If the sign is +, then

27Trk/Q(w)
2 = Nk/Q(X)3 − 730 + 54Nk/Q(w)

=

{
Nk/Q(X)3 − 676 if Nk/Q(w) = 1,

Nk/Q(X)3 − 784 if Nk/Q(w) = −1.

It follows from Lemma 4 that Nk/Q(w) = −1 and Trk/Q(w) = ±15 or ±28, that is, w =

±(15±
√
229)/2 or ±(14±

√
197). If w = ±(15±

√
229)/2, then (u+27v) = (w2+27) = p3,

where p is a prime ideal of Q(
√
229) dividing 19. Since p is not principal, u+27v is not a

cube in Q(
√
229). (Note that the class number of Q(

√
229) is 3.) If w = ±(14 ±

√
197),

then u + 27v is not a cube in Q(
√
197), since (u + 27v) = (227(15 ±

√
197)) = (2)3p27p

′
7,

where (7) = p7p
′
7, p7 ̸= p′7.

If the sign is −, then

27Trk/Q(w)
2 = {−Nk/Q(X)}3 + 730 + 54Nk/Q(w)

=

{
{−Nk/Q(X)}3 + 784 if Nk/Q(w) = 1,

{−Nk/Q(X)}3 + 676 if Nk/Q(w) = −1.

It follows from Lemma 4 that Nk/Q(w) = −1 and Trk/Q(w) = ±5 or ±26, that is, w =

±(13 ±
√
170) or ±(5 ±

√
29)/2. If w = ±(13 ±

√
170), then u + 27v is not a cube in

Q(
√
170), since (u + 27v) = (26(12 ±

√
170)) = p32p

2
13p

′
13, where (2) = p32, (13) = p13p

′
13,

p13 ̸= p′13. If w = ±(5 ±
√
29)/2, then u + 27v = vε±2 (ε = (5 +

√
29)/2). Thus,

if X3 = u + 27v, then there exists an n ∈ Z such that v = ±ε3n−1, X = ±εn−1, or
v = ±ε3n+1, X = ±εn+1.
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Remark. Lemma 5 is a generalization of Proposition 2.3 in [15] which states that the
only m ∈ Z and X ∈ OQ(

√
29) satisfying X3 = ε4+12m − 27ε2 are m = 0 and X = −1.

Using the software mentioned above, we obtain the following.

Lemma 6. (a) There are no integer solutions of y2 = x3 − 784.
(b) The only integer solutions of y2 = x3 + 676 are (x, y) = (0,±26).
(c) The only integer solutions of y2 = x3 − 676 are (x, y) = (10,±18), (13,±39),

(26,±130), (130,±1482), (338,±6214) and (901,±27045).
(d) The integer solutions of y2 = x3 + 784 are (x, y) = (−7,±21), (0,±28), (8,±36)

and (56,±420).

Proposition 7. Let p be a prime number such that p = 2 or p ≡ 3 (mod 4), p >
3. Let k = Q(

√
3p). Then equation (3.6) has a solution in X ∈ Ok, u, v ∈ O×

k only
when k = Q(

√
6) or Q(

√
33), in which cases, the only solutions are (X, u, v) = (w1(4 ±√

6), w3
1, w

3
1(5± 2

√
6)), (−w2(5±

√
33), w3

2,−w3
2(23± 4

√
33)), respectively. Here w1 (resp.

w2) is any unit of Q(
√
6) (resp. Q(

√
33)). Note that 5 + 2

√
6 (resp. 23 + 4

√
33) is the

fundamental unit of Q(
√
6) (resp.Q(

√
33)).

Proof. The case uv = ±2k are treated in Lemma 5 and shown no solutions exist. Thus
we assume that uv−1 = ±εw2, w ∈ O×

k . Taking norm of (3.6), we have (3.7). There exists
a π ∈ Ok such that (π)2 = (3), since 3 ramifies in k and the class number of k is odd. (see
[3], Theorems 39 and 41.) The facts that π2/3 > 0 and k ̸= Q(

√
3) imply

√
3ε = πεn ∈ Ok

(for some n ∈ Z). Thus

27Trk/Q(uv
−1) = ±9Trk/Q((

√
3εw)2) = ±9

{
Trk/Q(

√
3εw)2 − 2Nk/Q(

√
3ε)

}
. (3.8)

When Nk/Q(
√
3ε) = −3, equations (3.7) and (3.8) give

{
3Trk/Q(

√
3εw)

}2
=

{
Nk/Q(X)3 − 784 if uv−1 = εw2,{
−Nk/Q(X)

}3
+ 676 if uv−1 = −εw2.

Thus there is no solution in this case.
When Nk/Q(

√
3ε) = 3, equations (3.7) and (3.8) give

{
3Trk/Q(

√
3εw)

}2
=

{
Nk/Q(X)3 − 676 if uv−1 = εw2,{
−Nk/Q(X)

}3
+ 784 if uv−1 = −εw2.

In case uv−1 = εw2, Lemma 6 implies that Trk/Q(
√
3εw) = ±6,±13,±247 or ±9015, and

√
3εw =



3±
√
6 if Trk/Q(

√
3εw) = 6,

−3±
√
6 if Trk/Q(

√
3εw) = −6,

(±13±
√
157)/2 if Trk/Q(

√
3εw) = ±13,

±247±
√
3 · 503 · 53857 if Trk/Q(

√
3εw) = ±247,

±9015±
√
2 · 11 · 47 · 59 if Trk/Q(

√
3εw) = ±9015.
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Thus k = Q(
√
6) and ε = 5 + 2

√
6. Since

√
3ε = 3 +

√
6 and

√
3ε ε′ = 3−

√
6, we have

uv−1 = εw2 =

{
ε if

√
3εw = ±(3 +

√
6),

ε′ if
√
3εw = ±(3−

√
6).

When uv−1 = ε, since u+27v = v(ε+27) = vε(4−
√
6)3, there exists a w1 ∈ O×

Q(
√
6)
such

that v = w3
1ε

′, u = w3
1 and X = w1(4−

√
6). When uv−1 = ε′, since u+27v = v(ε′+27) =

vε′(4+
√
6)3, there exists a w1 ∈ O×

Q(
√
6)
such that v = w3

1ε, u = w3
1 and X = w1(4+

√
6).

In case uv−1 = −εw2, Lemma 6 implies that Trk/Q(
√
3εw) = ±7,±12, or ±140, and

√
3εw =


(±7±

√
37)/2 if Trk/Q(

√
3εw) = ±7,

6±
√
33 if Trk/Q(

√
3εw) = 12,

−6±
√
33 if Trk/Q(

√
3εw) = −12,

±70±
√
59 · 83 if Trk/Q(

√
3εw) = ±140.

Thus k = Q(
√
33) and ε = 23 + 4

√
33. Since

√
3ε = 6 +

√
33 and

√
3ε ε′ = 6 −

√
33, we

have

uv−1 = −εw2 =

{
−ε if

√
3εw = ±(6 +

√
33),

−ε′ if
√
3εw = ±(6−

√
33).

When uv−1 = −ε, since u + 27v = vε(5 −
√
33)3, we have u = −w3

2, v = w3
2ε

′ and X =
w2(5−

√
33) for some w2 ∈ O×

Q(
√
33)

. When uv−1 = −ε′, we have u+27v = vε′(5+
√
33)3.

Hence there exists a w2 ∈ O×
Q(

√
33)

such that u = −w3
2, v = w3

2ε and X = w2(5+
√
33).

Proposition 8. Let k be a quadratic field. Then the only solution of the equation

X3 = 1 + v, X ∈ Ok, v ∈ O×
k

is (X, v) = (0,−1).

Proof. Since X3 − 1 = (X − 1)(X2 +X + 1) = v ∈ O×
k , X − 1 =: v1, X

2 +X + 1 =: v2
are units of k. Eliminating X, we have v21 + 3v1 + 3 = v2. Taking norm results in

Nk/Q(v2) = 3Trk/Q(v1)
2 + 3{Nk/Q(v1) + 3}Trk/Q(v1) + 9 + 3Nk/Q(v1) + 1.

Reducinga modulo 3 yieldsNk/Q(v2) = 1. Therefore Trk/Q(v1)
2+{Nk/Q(v1)+3}Trk/Q(v1)+

3 + Nk/Q(v1) = 0. If Nk/Q(v1) = −1, then Trk/Q(v1)
2 + 2Trk/Q(v1) + 2 = 0, which is

impossible. If Nk/Q(v1) = 1 then Trk/Q(v1)
2 + 4Trk/Q(v1) + 4 = 0, from which v1 = −1,

X = 0.

Proposition 9. If the norm of the fundamental unit of a real quadratic field k is 1 and

X3 = u− v, X ∈ Ok, u, v ∈ O×
k , uv = 2k (3.9)

holds, then X = 0.

Proof. By assumption, we have uv′ = w2 for some w ∈ O×
k . Taking the norm of both

sides of (3.9) and noting Nk/Q(u) = Nk/Q(v) = Nk/Q(w) = 1, we obtain

Trk/Q(w)
2 = {−Nk/Q(X)}3 + 4.

It then follows that X = 0, since the only (affine) Q-rational points of the elliptic curve
y2 = x3 + 4, which is the curve 108A1 in Table 1 of [2], are (0,±2).
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3.3 Subgroups of GL2(F3) as a Galois group

Let k be an algebraic number field not containing
√
−3. Let E be an elliptic curve

defined over k, let E[3] = {P ∈ E | 3P = O} be the group of 3-division points of E,
and let L = k(E[3]) be the field generated over k by the points of E[3]. We may regard
G = Gal(L/k) as a subgroup of GL2(F3) by the faithful representation G → GL2(F3)
induced by the action of G on E[3]. Here we study what group G can be. We should
mention that, in his paper [14], Naito studied the same problem for elliptic curves defined
over Q.

Lemma 10. Let G be as above. Let ρ =

(
1 0
0 −1

)
, σ =

(
0 1
1 0

)
, τ =

(
1 −1
1 1

)
∈

GL2(F3), which satisfy the relations ρ2 = σ2 = τ 8 = 1, στσ−1 = τ 3. Then
(a) G is conjugate in GL2(F3) to one of the following :

(i) ⟨ρ⟩ ∼= Z/2Z.
(ii) ⟨−1⟩ × ⟨ρ⟩ ∼= Z/2Z× Z/2Z.

(iii)

(
1 ∗
0 ∗

)
∼= S3 (the symmetric group of degree 3).

(iv)

(
∗ ∗
0 1

)
∼= S3.

(v) ⟨σ, τ 2⟩ ∼= D8 (the dihedral group of order 8).

(vi) ⟨τ⟩ ∼= Z/8Z.

(vii)

(
∗ ∗
0 ∗

)
∼= S3 × Z/2Z.

(viii) ⟨σ, τ⟩ ∼= SD16 (the semi-dihedral group of order 16).

(ix) GL2(F3).

(b) ∆(E) is a cube in k if and only if G is conjugate in GL2(F3) to one of the groups
in (i), (ii), (v), (vi) or (viii). For each case, G∩SL2(F3) = Gal(L/k(

√
−3)) is conjugate in

GL2(F3) to {1}, ⟨−1⟩ ∼= Z/2Z, ⟨τ 2⟩ ∼= Z/4Z, ⟨τ 2⟩ ∼= Z/4Z, ⟨στ, τ 2⟩ ∼= Q8 (the quaternion
group), respectively.

(c) E admits a 3-isogeny defined over k if and only if G is conjugate in GL2(F3) to
one of the groups in (i), (ii), (iii), (iv) or (vii).

Proof. (a) We have #G ≥ 2, since k(
√
−3) ⊂ L ([21], p. 98) and [k(

√
−3) : k] = 2.

The special linear group SL2(F3) does not contain G, since we have Gal(L/k(
√
−3)) =

G ∩ SL2(F3) by the commutativity of the diagram

G −−−→ GL2(F3)

Res

y ydet

Gal(k(
√
−3)/k)

∼−−−→ F×
3

From these together with the classification of the subgroups of GL2(F3) (cf. [14]), we
obtain the assertion.
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(b) The first part is clear from the fact that ∆(E) is a cube in k if and only if [L : k]
is not divisible by 3 ([18], § 5.3). The second part follows from direct calculation.

(c) Since admitting a 3-isogeny defined over k is equivalent to the existence of a point
P of order 3 such that σ(P ) = ±P for any σ ∈ G, we may assume, by an appropriate

choice of a basis of E[3], that G is a subgroup of

(
∗ ∗
0 ∗

)
. Among the groups appeared in

(a), the only groups which are subgroups of this group are the ones in (i), (ii), (iii), (iv)
and (vii).

4 Some criteria

In this section, we use the following notation: For subgroups H and N of GL2(F3), H ∼ N
means that H is conjugate in GL2(F3) to N .

Proposition 11. Let k be a real quadratic field. Assume that hk((3)p
(1)
∞ p

(2)
∞ ) ̸≡ 0 (mod 4),

where p
(1)
∞ and p

(2)
∞ are the real primes of k, or hk(

√
−3)((

√
−3)) ̸≡ 0 (mod 4). Then every

elliptic curve E with everywhere good reduction over k whose discriminant ∆(E) is a cube
in k admits a 3-isogeny defined over k.

Proof. Let E be an elliptic curve with everywhere good reduction over k with ∆(E) ∈
k×3. Set L := k(E[3]), G := Gal(L/k) and H := Gal(L/k(

√
−3)) = G ∩ SL2(F3). By

Lemma 10, (b), G is conjugate in GL2(F3) to ⟨σ, τ⟩ ∼= SD16, ⟨τ⟩ ∼= Z/8Z, ⟨σ, τ 2⟩ ∼= D8,
⟨−1⟩ × ⟨ρ⟩ ∼= Z/2Z × Z/2Z, or ⟨ρ⟩ ∼= Z/2Z. If G ∼ ⟨τ⟩ or ⟨σ, τ 2⟩, then it is clear that
G has a normal subgroup N such that G/N is of order 4. Further, by Lemma 10, (b),
H ∼= Z/4Z in these cases. If G ∼ ⟨σ, τ⟩, then G has a normal subgroup of N with
G/N ∼= Z/2Z × Z/2Z. Indeed, ⟨σ, τ⟩/⟨τ 2⟩ ∼= Z/2Z × Z/2Z. Further H ∼ ⟨στ, τ 2⟩ ∼= Q8

and ⟨στ, τ 2⟩/⟨τ 2⟩ ∼= Z/2Z×Z/2Z. Thus in view of the criterion of Néron–Ogg–Shafarevich
([21], p. 184), our assumptions on ray class numbers imply that G ∼ ⟨ρ⟩ or ⟨−1⟩ × ⟨ρ⟩.
We therefore see from Lemma 10, (c) that E admits a 3-isogeny defined over k.

Proposition 12. Let k be a real quadratic field with (hk, 6) = 1. Let P
(1)
∞ and P

(2)
∞ be

the real primes of k( 3
√
ε).

(a) If hk( 3√ε)((3)P
(1)
∞ P

(2)
∞ ) ̸≡ 0 (mod 4) or hk( 3√ε,

√
−3)((3)) ̸≡ 0 (mod 4), then every

elliptic curve E with everywhere good reduction over k whose discriminant ∆(E) is not a
cube in k admits a 3-isogeny defined over k.

(b) If hk( 3√ε)((3)P
(1)
∞ P

(2)
∞ ) ̸≡ 0 (mod 4) or hk( 3√ε,

√
−3)((3)) ̸≡ 0 (mod 2), then every

elliptic curve E with everywhere good reduction over k whose discriminant ∆(E) is not a
cube in k has a k-rational subgroup V of order 3, and either E or E/V has a k-rational
point of order 3.

Proof. (a) Let E be an elliptic curve with everywhere good reduction over k and let
L = k(E[3]), G = Gal(L/k). By the corollary to Theorem 1 in [19], which states that every
elliptic curve with everywhere good reduction over k has a global minimal model provided
(hk, 6) = 1, and the assumption that ∆(E) is not a cube, we have k( 3

√
∆(E)) = k( 3

√
ε).

Since L contains k( 3
√
∆(E)) ([18], p. 305), we have [L : k] ≡ 0 (mod 3). Thus, by Lemma

9



10, (b), we have G ∼
(
1 ∗
0 ∗

)
,

(
∗ ∗
0 1

)
,

(
∗ ∗
0 ∗

)
or GL2(F3). Suppose that E admits no 3-

isogeny defined over k. Then, by Lemma 10, (c), we have G = GL2(F3), Gal(L/k( 3
√
ε)) ∼

⟨σ, τ⟩ and Gal(L/k( 3
√
ε,
√
−3)) = Gal(L/k( 3

√
ε)) ∩ SL2(F3) ∼ ⟨στ, τ 2⟩. The criterion of

Néron–Ogg–Shafarevich and the fact that ⟨σ, τ⟩/⟨τ 2⟩ and ⟨στ, τ 2⟩/⟨τ 2⟩ are both isomor-

phic to Z/2Z × Z/2Z imply hk( 3√ε)((3)P
(1)
∞ P

(2)
∞ ) ≡ 0 (mod 4) and hk( 3√ε,

√
−3)((3)) ≡ 0

(mod 4).

(b) According to (a), we have G ∼
(
1 ∗
0 ∗

)
,

(
∗ ∗
0 1

)
or

(
∗ ∗
0 ∗

)
. Supposing G ∼(

∗ ∗
0 ∗

)
, the criterion of Néron–Ogg–Shafarevich implies that L/k( 3

√
ε) is an abelian ex-

tension of degree 4 unramified outside {3,P(1)
∞ ,P

(2)
∞ } and L/k( 3

√
ε,
√
−3) is a quadratic

extension unramified outside 3. These contradict our assumptions.

5 Proof of Theorems 1 and 2

Let k be one of the real quadratic fields Q(
√
33), Q(

√
57), Q(

√
69) and Q(

√
93). The

fundamental unit ε of k larger than 1 is

ε =


23 + 4

√
33 if k = Q(

√
33),

151 + 20
√
57 if k = Q(

√
57),

(25 + 3
√
69)/2 if k = Q(

√
69),

(29 + 3
√
93)/2 if k = Q(

√
93).

Note that Nk/Q(ε) = 1. Let E be an elliptic curve with everywhere good reduction over
k.

5.1 The case where ∆(E) is a cube in k

If ∆(E) is a cube in k, then k must be Q(
√
33) and E is isomorphic over k to E1 or E ′

1.
Indeed, more generally, we have the following.

Proposition 13. Let p be a prime number such that p = 2 or p ̸= 3, p ≡ 3 (mod 4),
and let k := Q(

√
3p). If there is an elliptic curve E which has everywhere good reduction

over k and whose discriminant ∆(E) is a cube in k, then p = 2 or p = 11. If p = 2
(resp. p = 11), then E is isomorphic over k to

E4 : y
2 + (4 +

√
6)xy + (5 + 2

√
6) = x3, ∆(E4) = (5 + 2

√
6)3, j(E4) = 8000

or E ′
4 (resp. to E1 or E ′

1).

First, we give some lemmas.

Lemma 14. Let p and q be distinct primes such that p ≡ q ≡ 3 (mod 4) and let k =
Q(

√
pq). Let q be the prime ideal of k dividing q. Then

(a) hk is odd.

10



(b) k(
√
−ε) = Q(

√
−p,

√
−q).

(c) ε ≡ (p/q) (mod q), where (·/·) is the Legendre symbol. In particular, ε ≡ p
(mod q) if q = 3.

Proof. (a) Theorems 39 and 41 of [3].
(b) By (a), q is principal. Let π ∈ Ok be a generator of q. Since ε > 1, k is real and

k ̸= Q(
√
q), we have q = π2ε2n+1 for some n ∈ Z, whence k(

√
−q) = k(

√
−ε).

(c) We first show that ε ≡ ±1 (mod q), which is equivalent to Trk/Q(ε)
2 ≡ 0 (mod q)

since Nk/Q(ε± 1) = 2±Trk/Q(ε). But this readily follows by writing ε as ε = (Trk/Q(ε) +
b
√
pq)/2, b ∈ Z.
Let K = k(

√
−ε) = Q(

√
−p,

√
−q). By Theorem 23 in [3], q splits in K if and only

if there exists an X ∈ Ok such that X2 ≡ −ε (mod q), which is equivalent to ε ≡ −1
(mod q), since OK/q ∼= Z/qZ and q ≡ 3 (mod 4). On the other hand, q splits in K if and
only if q splits in Q(

√
−p), which is equivalent to (p/q) = −1.

Corollary 15. Let p be a prime number such that p ≡ 3 (mod 4) and p ̸= 3. Let
k = Q(

√
3p) and K = k(

√
−3). Then

(a) hK is odd.
(b) The ray class number hK((

√
−3)) is 2hK or hK according as p ≡ 1 (mod 3) or

p ≡ 2 (mod 3). In particular, hK((
√
−3)) is not a multiple of 4.

Proof. (a) By [3], Corollary 3 to Theorem 74, we have hK = hkhQ(
√
−p)hQ(

√
−3) = hkhQ(

√
−p),

which is odd by Lemma 14, (a).
(b) Let G := (OK/

√
−3OK)

× and H := {x +
√
−3OK | x ∈ O×

K} ⊂ G. From
the formula for the ray class number (Theorem 1 of Chapter VI in [13]), it follows that
hK((

√
−3)) = hK(G : H). Thus it is enough to show that

(G : H) =

{
2 if p ≡ 1 (mod 3),

1 if p ≡ 2 (mod 3).

Let ζ6 = (1 +
√
−3)/2 be a primitive sixth root of unity. Since K = k(

√
−ε) by Lemma

14, (b) and ζ6 ∈ K, we have O×
K = ⟨ζ6⟩ × ⟨

√
−ε⟩ (cf. [3], pp. 194, 195). Hence

H = ⟨
√
−ε+

√
−3OK , ζ6 +

√
−3OK⟩. Let q be the prime ideal of k dividing 3.

Assume that p ≡ 1 (mod 3). Then, since (−p/3) = −1, qOK =
√
−3OK is a prime

ideal of K and hence G is a cyclic group of order 8. Lemma 14, (c) and the formula

ζ6 − 1 = ζ26 , ζ26 − 1 =
√
−3ζ6 (5.1)

imply that H = ⟨
√
−ε+

√
−3OK⟩ ∼= Z/4Z. Thus (G : H) = 2.

Assume that p ≡ 2 (mod 3). By Lemma 14, (c), we have X2 + ε ≡ (X − 1)(X + 1)
(mod q). Hence by letting Q1 = (q,

√
−ε − 1), Q2 = (q,

√
−ε + 1), it follows from [3],

Theorem 23 that
√
−3OK = qOK = Q1Q2, G ∼= (OK/Q1)

× × (OK/Q2)
× ∼= (Z/3Z)× × (Z/3Z)×.

The definition ofQi (i = 1, 2) implies that
√
−ε ≡ 1 (mod Q1) and

√
−ε ≡ −1 (mod Q2).

Further, (5.1) means that ζ6 ≡ −1 (mod Qi) (i = 1, 2). Hence H ∼= (Z/3Z)× × (Z/3Z)×,
whence (G : H) = 1.
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Lemma 16 ([11], Corollary 3.4). Let E be an elliptic curve having everywhere good re-
duction over a quadratic field k. Let s denote the number of ramifying rational primes
in the extension k/Q. Then the number of twists of E having everywhere good reduction
over k is 2s−1.

Proof of Proposition 13. Let E be an elliptic curve having everywhere good reduction
over k and having cubic discriminant in k. Then, by Proposition 11 and Corollary 15, E
admits a 3-isogeny over k. Thus by the argument in section 3.1, j(E) is of the form J(t),
t ∈ Ok, t | 36, and the principal ideal (t) is a sixth power. By (3.3), (3.4), and (3.5), we
see that there exist an X ∈ Ok \ {0} and a u ∈ O×

k such that

X3 = 1 + 27u if (t) = (1), (5.2)

X3 = u+ 27 if (t) = (729), (5.3)

X3 = 1 + u if (t) = (27). (5.4)

From Propositions 7 and 8, neither of the equations (5.3) and (5.4) has solutions. From
Proposition 7, the only units u satisfying equation (5.2) are 5± 2

√
6 and −(23± 4

√
33).

If u = 5± 2
√
6 (resp.u = −(23± 4

√
33)), then j(E) = J(5∓ 2

√
6) = 8000 (resp. j(E) =

J(−(23 ∓ 4
√
33)) = −32768). We have two elliptic curves with everywhere good reduc-

tion over Q(
√
6) (resp.Q(

√
33)) with j invariant 8000 (resp.−32768), namely E4 and E ′

4

(resp.E1 and E ′
1). Lemma 16 therefore implies our assertion.

Remark. All elliptic curves with everywhere good reduction over Q(
√
6) have been de-

termined in [6], [10].

5.2 The case where ∆(E) is not a cube

Consider the case where ∆(E) is not a cube in k. Table 1 and Proposition 12 imply that
E admits a 3-isogeny defined over k. Thus j(E) is of the form J(t), (t) = (1), (27), (729).

k hk( 3√ε)((3)P
(1)
∞ P

(2)
∞ ) hk( 3√ε,

√
−3)((3))

Q(
√
33) 2 · 33 35

Q(
√
57) 22 · 3 2 · 33

Q(
√
69) 2 · 3 32

Q(
√
93) 22 · 3 2 · 32

Table 1: Ray class numbers

The field K := k(
√
∆(E)) is one of the fields k, k(

√
−1) or k(

√
±ε), since we may

assume that ∆(E) is a unit (see the above-cited result in [19]). The field k(E[2]) is a cyclic
cubic extension of K, since in [1], it is shown that E has no k-rational points of order 2.

This means that, in view of the criterion of Néron–Ogg–Shafarevich, h
(2)
K := hK

(∏
p|2 p

)
is divisible by 3. Thus Table 2 implies that ∆(E) = −ε2n+1 for some n ∈ Z. In view of
the formulae for an admissible change of variables, we may assume that ∆(E) = −ε±1

12



h
(2)
K

k K = k K = k(
√
−1) K = k(

√
ε) K = k(

√
−ε)

Q(
√
33) 1 2 1 3

Q(
√
57) 1 2 1 3

Q(
√
69) 1 4 1 3

Q(
√
93) 1 2 1 3

Table 2: h
(2)
K (K = k, k(

√
−1), k(

√
±ε))

or −ε±5. We may further assume that ∆(E) = −ε6n+1 (n = 0,−1) by considering the
conjugate of E.

Suppose first that (t) = (1). By (3.3), we obtain

X3 = ε+ 27u, X =
−c4(E)

(t+ 3)ε2n
∈ Ok, u =

ε

t
∈ O×

k ,

which is impossible by Proposition 7.
Suppose next that (t) = (27). Then, by (3.5), we obtain

X3 = ε+ εu, X =
−c4(E)

(t+ 3)ε2n
∈ Ok \ {0}, u =

27

t
∈ O×

k .

Let

π =


6 +

√
33 if k = Q(

√
33),

15 + 2
√
57 if k = Q(

√
57),

(9 +
√
69)/2 if k = Q(

√
69),

(9 +
√
93)/2 if k = Q(

√
93)

be a prime element of k dividing 3. Lemma 3, (a) and the fact π2 = 3ε imply u = −ε2m

for some m ∈ Z, whence
X3 = ε− ε2m+1, X ̸= 0,

which is impossible by Proposition 9.
Finally, suppose that (t) = (729). Since t/∆(E) = −t/ε6n+1 is a square by Lemma 3,

(a), we have u = 729/t = −ε2m−1 for some m ∈ Z, and hence by (3.4) we have

X3 = ε2m − 27ε, X =
3c4(E)

(t+ 3)ε2n
.

By Proposition 7, this is possible only if k = Q(
√
33) and m = 0, whence j(E) =

J(−729ε) = −(5 +
√
33)3(5588 + 972

√
33)3ε−1, which equals to j(E2) and j(E ′

3). Lemma
16 therefore implies that E is isomorphic overQ(

√
33) to E2 or E

′
3 according as∆(E) = −ε

or ∆(E) = −ε−5.
The proof of Theorems 1 and 2 is now complete.

13



6 Appendix

In section 5, we gave a characterization of elliptic curves having everywhere good reduction
over a real quadratic field k, admitting a 3-isogeny defined over k, and having cubic
discriminant (Proposition 13). Here we give a similar characterization of the curves whose
discriminant is equal to ±2k. More precisely, we prove

Proposition 17. Let k be a real quadratic field. If there exists an elliptic curve E with
everywhere good reduction over k given by a global minimal model with j(E) = J(t)
(t ∈ Ok, (t) = (1) or (729)) and ∆(E) = ±2k, then k = Q(

√
29) and E is isomorphic

over k to

E5 : y
2 + xy + ε2y = x3, ∆(E5) = −ε10, j(E5) = (ε2 − 3)3/ε4,

E6 : y
2 + xy + ε2y = x3 − 5ε2x− (ε2 + 7ε4),

∆(E6) = −ε14, j(E6) = −(1 + 216ε2)3/ε14,

or to their conjugates E ′
5, E

′
6. Here ε = (5 +

√
29)/2 is the fundamental unit of Q(

√
29)

and J(t) is the one given in section 3.1.

Proof. Suppose that there exists an elliptic curve E with properties stated in the propo-
sition. We take ∆(E) ∈ O×

k . Letting

(X, u, v) =

{
(c4(E)/(t+ 3), ∆(E), ∆(E)/t) if (t) = (1),

(3c4(E)/(t+ 3), 729∆(E)/t,∆(E)) if (t) = (729),

we have X3 = u+ 27v, X ∈ Ok, u, v ∈ O×
k , uv = ±2k by (3.3), (3.4) and Lemma 3, (a).

Hence, by Lemma 5, we have k = Q(
√
29), u/v = −ε2,−ε′2, where ε = (5 +

√
29)/2 is

the fundamental unit of Q(
√
29).

If (t) = (1), then t = u/v = −ε2,−ε′2, and j(E) is equal to J(−ε2) = (ε2 − 3)3/ε4 or
J(−ε′2) = (ε′2 − 2)3ε4. If (t) = (729), then t = 729v/u = −729ε2, −729ε′2, and j(E) is
equal to J(−729ε2) = −(1+216ε′2)3ε14 or J(−729ε′2) = −(1+216ε2)3ε′14. Since the values
of j-invariant obtained above are equal to j(E5), j(E

′
5), j(E

′
6) and j(E6) respectively,

Lemma 16 implies our assertion.

Using Propositions 11, 12 and 17, we can give another proof of the following theorem
which is the main theorem of [6]:

Theorem 18. Up to isomorphism over k = Q(
√
29), the only elliptic curves with every-

where good reduction over k are E5, E
′
5, E6 and E ′

6

Proof. Let E be an elliptic curve with everywhere good reduction over k = Q(
√
29)

and let ∆(E) ∈ O×
k . Since h

(2)
k = h

(2)

k(
√
±ε)

= 1, h
(2)

k(
√
−1)

= 3, and E has no k-rational

point of order 2 (see [1], [4]), we have ∆(E) = −ε2n = −2k. Since hk((3)p
(1)
∞ p

(2)
∞ ) = 2,

hk( 3√ε)((3)P
(1)
∞ P

(2)
∞ ) = 2, and the prime number 3 is inert in k, we have by Propositions 11

and 12 that j(E) is of the form J(t), (t) = (1) or (729). Proposition 17 therefore implies
that E is isomorphic over k to E5, E

′
5, E6 or E ′

6, as claimed.
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