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k : real quadratic field, O, : ring of integers,
Olj . group of units

We consider the Diophantine equation

X% =u+o, (1)
X € O — {0}, u,v € OF.



Motivation

E1, E5/Oy : elliptic curves with unit discrim-
Inants.

SUppose

1f : E1 — Ey isogeny of deg. 3 /k.

Then the j-invariants j(E7), j(E9) are of the
form

J(Ey) = J(t1), j(E2) = J(t2),
t1,to € k, tito = 36,

(where J(X) = (X +27)(X +3)3/X).
Since j(E1), j(Ey) € Oy, we have ty, t9 € Oy.



c4(E1), cg(Eq) : as usual
A(Ey) € OF : discriminant of Ej
—

j(Ey) = A(Ey (2)
(t1 -+ 27) (tl -+ 3)3
t1

. c5(By)?
j(Ey) — 1728 = A(Ell)

(7 4 18] — 27)?

i1 .
Since (A(F7)) = (1) and j(Fq) #£ 0, 1728,
by (2) and (3), the principal ideal (¢1) is 6-th
power. Thus
( (1), (39 (3 is inert in k),
(t1) =< (1), (3%, (39 (3 is ramified in k),
(1), 0% 0", (3% ((3)=pp. p #9).

)

(3)







Theorem 1 (to appear in TJM).
Let k = Q(+/3p), p : prime, # 3, =3 (mod 4).
Then X3 = w + 27v has a solution
in X € O — {0}, u,v € OF

<

k=Q(/33). 1

Thus, we pay attention to (1).

Throughout, let £ be as in Theorem 1
and the class number hy. of k is odd )



We may suppose u =1
or u = (> 1: the fundamental unit of k) ;
1.e. we must solve

X% =1+, (4)
XeO,—{0}, ve O

and
X% =¢+u, (5)
X €O, —{0}, ve O,

Propositon 2. Equation (4) has no solu-
t10ns.

Proof. Since (X —1)(X?+X+1) =v € O,
X—lz:vlEOX)X2+X+1::UQEO;.
v% + Jv1 + 3 = 9.
Taking norm we have

T(v1)* +4T(v1) +4=0 (T =Try ).
S =—1, X =0 --- 1mpossible.
Therefore, we treat equation (5)
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Lemma 3. sv s a cube

Proof. Let " be the conjugation of k/Q. Then

X 3_ e+ v
X') e+

~ ev(e+v)
ev(e! + )
e+
= eV— ,
EE'V + EVV
e+
= &0V
V+ €
= &0V
i
V= gV 18
4+ ot a cube | X
+£9742 14 cube, #£ £0; | 7
+cn+4 1 ot a cube | X
+£0019 ) 4 cube, £0; | 7

(O, = a square in k)



Lemma 4. cv # —0;.

Proof. Suppose the contrary. Then

N(X)} = N(e+0)
= (e +v)(e' +0)
=g’ + (ev' + €'v) + v/
=2 — (w” +w”?) (where w? = —£v)
=2 — (w+w) +2
— 4 — T(w)”.
L T(w)? = {=N(X)}3+4
Since the only (affine) Q-rational points of y? =

x3+4 are (0, £2), X must be 0 - - - impossible.
_

Remaining: v = 56’”+57 :|:€6n+2



When v = €99 then ev = 0. Thus
N(X)? = N(e +v)
= (e +v)(e +0)
= e’ + (ev' + €'v) + v/
= 2+ (w? +w"?) (where w
=24 (w+w')* =2
= T(w)”

.- -not an elliptic curve!

2= ¢'v)

But we have T'(w) = a cube.
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Propositon 5. Let p be a prime, # 3 (not
necessarily p = 3 (mod 4)) and let K =

Q(+v/3p).

If TrK/@(w) = a’ for some a € Z and w €
(’);;-, then p="5 and w = £4 + /15

Proof. Let w = (a® +by/3p)/2, b € Z. Then
N(w) = (a® = 3pb?) /4 = 1.
- 3pb? = (a3 — 2)(a® + 2).

D a:even = (a°—2,a°+2) =2 =
(a) a’—2 = 20, a?+2 = 6p0 (O = a square in Z)
or

(b) a® — 2 = —20, a? 4+ 2 = —6pC

or

(c) a® — 2 =6p0, a’ +2 =20

or

(d) a® — 2= —6p0, a3 +2 = —20

or

(€) a® — 2 =60, a° + 2 = 2p0

or
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(f) a? —2=—60, a> +2 = —2p0
or

(g) a® — 2 =2p0, a® + 2 = 60

or

(h) a® —2=—2p0, @ + 2 = —60

Lemma 6.
(a) {(z,y) €EZ X Z|2y* =2’ — 2} = 0.
1) {(z.y) € ZxZ | 22 = 2% +2)

{(0,£1)}.
() {(z.y) € ZXZ | 6 = o5 —2)

{(2,£1)}.
(d) {(z,y) € Zx Z | 6y* = > + 2} = (.

ca=42 2p0 = £10. - u=+4+ /15

(IT) @ : odd - -- similar. B
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V= EV 1S
+e0n L ot a cube | X
+£9742 4 cube, #£ £0;. | 7
+e0n 4 ot a cube | x
+£0119 ) 4 cube, £0; | x

Thus, if (5) has a solution, then In € Z, s.t.

b = :|:€6n+2.

p |pmod 3| v X N(X)

923 9 2 9+§/69 3

31| 1 |—e?| -3

431 2 g2 | 72421293 | 12=3x2°
439 1 _ 2 —5625—1255\/1317 75— 3 5 52
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Lemma 7. k:= Q(\/3p), € : as above,
w — £0dd
(1) p=1 (mod 3)

— T(w)+2=p0, T(w) — 2 =30

(2) p=2 (mod 3)
— T(w)+2 =30, T(w) — 2 =pO

Proof. Suppose w = (a+b/3p)/2, a,b: odd.
Since N(e) = (a® — 3pb?)/4 = 1, we have
3pb? =a? —4=(a+2)(a—2).

(@ +2,a —2) = 1 implies

{a+2,a —2} ={0,3p0} or {pO, 30}
Assuming {a+2, a—2} = {3p0, 0} = {3py?, 2%},
we get (a+by/3p)/2 = {(z +yv/3p)/2}” -
contradiction.

S Aa+2,a -2} ={p0O,3pa}.
a+2=pae—2=30—= pd —4 = 30
—> p =2 (mod 3)
a+2=30a—2=—-0=p=1 (mod 3).

w = a -+ by/3p, a,b € Z --- similar. I
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Lemma 8. K = Q(y/m) : real quadratic
field (m : square-free), € (> 1) : the funda-
mental unit of K

(a) Tr)g(e)0 odd = m =5 (mod 8).

(b) Bw € O s.t. Try g(w) : odd |

= [Trggle) is odd |

(¢) Suppose that Try (e) is odd.

Then Trpejgle”) : even <= 3| n.
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Theorem 9. X, v : a solution of (5).
(a) p=1 (mod 3) =
ednecZ st v=—cnt?
o Letting 9" = (a+by/3p)/2, ¢ = N(X),
we have ¢> =2 —aq = —30 : odd,
(= T : 0odd = p =7 (mod 8)),
3pb2:c6—403:a2—4, 03—4:—p|2|.
(b) p=2 (mod 3) =
ednecZ st v=e"t2
o Letting 9" = (a+by/3p)/2, ¢ = N(X),
we have 03:a+2:3D,
3pb? = ¥ —4ed = a® —4, S —4 = pO,
p =7 (mod 8).

Proof. (a) Suppose that v = 0712,

on—+2

Taking norm of X5 =¢ + ¢ , we have

¢ = N(X)?
_ (8 4 €6n+2><€—1 4 6—6n—2>
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=24+ T(EMTY =2+

.‘.a:cg—Q.

Since a? — 3pb? = 4. we have 3pb? = b — 4¢3,
From Lemma7, we have ¢ — 4 = q — 2 = 30.
But {(z,y) € Zx Z | 3y* = 25 — 4} = .

Thus v = —e+2,
Lemma7

S=2—q =" =30

Lemma’

O —d=—92_q = —pO

Suppose that ¢ is even.

Then a =2 — ¢ : even.

From ¢3 = —30, we have ¢ = —30.
co—pO = c33— = —4 (mod 64).
—p% = CZ —1 =3 (mod 4).
S.p=1 (mod 4) --- impossible.
Thus c 1s odd

(b) Similar arguments yields v = €92, q =

3 — 2, 3 = 30, A —4 = pO, where a, b, ¢ as
in Theorem.
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If ¢ is odd, then, a is odd. Hence Lemma §
implies p = 7 (mod 8).

If ¢ is even, then, from ¢ = 30, we have ¢ =
30.
cop0=¢ —4=—4 (mod 64).
] 3
.'.pZ:CZ— =7 (mod 8).
S.op=T (mod 8). N

Corollary 10. p = 3 (mod 8) = (1) has
no solutions.
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Theorem 9 tells us how to solve equation (5).

Example. p =23 (=2 (mod 3))
Consider X3 = & + 92, By Theorem 9, we
have

(:S:CLJrQ:BD7
690° = ¥ — 4 = a® — 4,
¢ — 4 =230.
0 {(z,y) € ZxZ | 23y> = 2° — 4} =
{(3,£1)}.
c=3a=c—-2=95p%=
et = (25 4 3V/69) /2 = ¢
-.n=0, X3:5+52:((9+\/@)/2)3.

Hence, the only solution is

(X, v) = ((9+V069)/2,2%)
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p=7 (mod &), 7 < p <500

(a) (5) has solutions <= p = 23,31, 431, 439.

(b) For the above p, the number of solutions
1

1S

p |[pmod3| v X

2 94++/69
23 2 g 5

31 2 —9—4/93

1
)
431 2 g2 | 72+ 241293
1

2| —5625—155v/1317
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Theorem 11. p : prime number, p = 3

(mod 8), p # 3,11, k := Q(/3p).

e (> 1) : the fundamental unit of k

m&), mé%) . the real primes of k({/¢)
If the following 2 conditions are satisfied,
then there are no elliptic curves with every-

where good reducrtion over k.
(a) 31 hy,
(6) 41 hy ) (BB ord by gz = (3))

(For a number field K and a divisor m of
K, let hg(m) be the ray class number of K

modulo m.)

Corollary 12. [f m = 129,177,201 or 249,
then there are no ellptic curves with every-
where good reduction over Q(y/m).
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