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k : real quadratic field, Ok : ring of integers,

O×
k : group of units

We consider the Diophantine equation

X3 = u + v, (1)

X ∈ Ok − {0}, u, v ∈ O×
k .
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Motivation

E1, E2/Ok : elliptic curves with unit discrim-

inants.

Suppose

∃f : E1 −→ E2 isogeny of deg. 3 /k.

Then the j-invariants j(E1), j(E2) are of the

form

j(E1) = J(t1), j(E2) = J(t2),

t1, t2 ∈ k, t1t2 = 36,

(where J(X) = (X + 27)(X + 3)3/X).

Since j(E1), j(E2) ∈ Ok, we have t1, t2 ∈ Ok.
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c4(E1), c6(E1) : as usual

∆(E1) ∈ O×
k : discriminant of E1

=⇒
j(E1) =

c4(E1)
3

∆(E1)
(2)

=
(t1 + 27)(t1 + 3)3

t1
,

j(E1) − 1728 =
c6(E1)

2

∆(E1)
(3)

=
(t21 + 18t1 − 27)2

t1
.

Since (∆(E1)) = (1) and j(E1) �= 0, 1728,

by (2) and (3), the principal ideal (t1) is 6-th

power. Thus

(t1) =

⎧⎪⎪⎨
⎪⎪⎩

(1), (36) (3 is inert in k),

(1), (33), (36) (3 is ramified in k),

(1), p6, p′6, (36) ((3) = pp′, p �= p′).
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(t1) = (1)

=⇒
(

c4(E1)

t1 + 3

)3

= ∆(E1)(1 + 27w),

w =
1

t1
∈ O×

k

=⇒ X3 = u + 27v,

(t1) = (36)

=⇒
(

3c4(E1)

t1 + 3

)3

= ∆(E1)(w + 27),

w =
36

t1
∈ O×

k .

=⇒ X3 = u + 27v

(t1) = (33)

=⇒
(

c4(E1)

t1 + 3

)3

= ∆(E1)(1 + w),

w =
33

t1
∈ O×

k .

=⇒ X3 = u + v
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Theorem 1 (to appear in TJM).

Let k = Q(
√

3p), p : prime, �= 3, ≡ 3 (mod 4).

Then X3 = u + 27v has a solution

in X ∈ Ok − {0}, u, v ∈ O×
k

⇐⇒
k = Q(

√
33).

Thus, we pay attention to (1).

Throughout, let k be as in Theorem 1

(=⇒ N (w) = 1, ∀w ∈ O×
k (N := Nk/Q)

and the class number hk of k is odd )
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We may suppose u = 1

or u = ε (> 1 : the fundamental unit of k) ;

i.e. we must solve

X3 = 1 + v, (4)

X ∈ Ok − {0}, v ∈ O×
k

and

X3 = ε + v, (5)

X ∈ Ok − {0}, v ∈ O×
k .

Propositon 2. Equation (4) has no solu-

tions.

Proof . Since (X−1)(X2+X+1) = v ∈ O×
k ,

X − 1 =: v1 ∈ O×
k , X2 + X + 1 =: v2 ∈ O×

k .

∴ v2
1 + 3v1 + 3 = v2.

Taking norm we have

T (v1)
2 + 4T (v1) + 4 = 0 (T = Trk/Q).

∴ v1 = −1, X = 0 · · · impossible.

Therefore, we treat equation (5)
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Lemma 3. εv is a cube

Proof . Let ′ be the conjugation of k/Q. Then(
X

X ′

)3

=
ε + v

ε′ + v′

=
εv(ε + v)

εv(ε′ + v′)
= εv

ε + v

εε′v + εvv′
= εv

ε + v

v + ε
= εv

v = εv is

±ε6n+1 not a cube ×
±ε6n+2 a cube, �= ±�k ?

±ε6n+4 not a cube ×
±ε6n+5 a cube, ±�k ?
(�k = a square in k)
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Lemma 4. εv �= −�k.

Proof . Suppose the contrary. Then

N (X)3 = N (ε + v)

= (ε + v)(ε′ + v′)
= εε′ + (εv′ + ε′v) + vv′

= 2 − (w2 + w′2) (where w2 = −ε′v)

= 2 − (w + w′)2 + 2

= 4 − T (w)2.

∴ T (w)2 = {−N (X)}3 + 4

Since the only (affine) Q-rational points of y2 =

x3+4 are (0,±2), X must be 0 · · · impossible.

Remaining: v = ε6n+5, ±ε6n+2
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When v = ε6n+5, then εv = �k. Thus

N (X)3 = N (ε + v)

= (ε + v)(ε′ + v′)
= εε′ + (εv′ + ε′v) + vv′

= 2 + (w2 + w′2) (where w2 = ε′v)

= 2 + (w + w′)2 − 2

= T (w)2

· · · not an elliptic curve !

But we have T (w) = a cube.
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Propositon 5. Let p be a prime, �= 3 (not

necessarily p ≡ 3 (mod 4)) and let K :=

Q(
√

3p).

If TrK/Q(w) = a3 for some a ∈ Z and w ∈
O×

K, then p = 5 and w = ±4 ±√
15

Proof . Let w = (a3 + b
√

3p)/2, b ∈ Z. Then

N (w) = (a6 − 3pb2)/4 = 1.

∴ 3pb2 = (a3 − 2)(a3 + 2).

(I) a : even =⇒ (a3 − 2, a3 + 2) = 2 =⇒
(a) a3−2 = 2�, a3+2 = 6p� (� = a square in Z)

or

(b) a3 − 2 = −2�, a3 + 2 = −6p�

or

(c) a3 − 2 = 6p�, a3 + 2 = 2�

or

(d) a3 − 2 = −6p�, a3 + 2 = −2�

or

(e) a3 − 2 = 6�, a3 + 2 = 2p�

or

11



(f) a3 − 2 = −6�, a3 + 2 = −2p�

or

(g) a3 − 2 = 2p�, a3 + 2 = 6�

or

(h) a3 − 2 = −2p�, a3 + 2 = −6�

Lemma 6.

(a) {(x, y) ∈ Z × Z | 2y2 = x3 − 2} = ∅.
(b) {(x, y) ∈ Z × Z | 2y2 = x3 + 2} =

{(0,±1)}.
(c) {(x, y) ∈ Z × Z | 6y2 = x3 − 2} =

{(2,±1)}.
(d) {(x, y) ∈ Z × Z | 6y2 = x3 + 2} = ∅.
∴ a = ±2, 2p� = ±10. ∴ u = ±4 ±√

15.

(II) a : odd · · · similar.
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v = εv is

±ε6n+1 not a cube ×
±ε6n+2 a cube, �= ±�k ?

±ε6n+4 not a cube ×
±ε6n+5 a cube, ±�k ×

Thus, if (5) has a solution, then ∃n ∈ Z, s.t.

v = ±ε6n+2.

p p mod 3 v X N (X)

23 2 ε2 9+
√

69
2 3

31 1 −ε2 −9−√
93

2 −3

431 2 ε2 72 + 2
√

1293 12 = 3 × 22

439 1 −ε2 −5625−155
√

1317
2 −75 = −3 × 52
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Lemma 7. k := Q(
√

3p), ε : as above,

w = εodd

(1) p ≡ 1 (mod 3)

=⇒ T (w) + 2 = p�, T (w) − 2 = 3�

(2) p ≡ 2 (mod 3)

=⇒ T (w) + 2 = 3�, T (w) − 2 = p�

Proof . Suppose w = (a+b
√

3p)/2, a, b : odd.

Since N (ε) = (a2 − 3pb2)/4 = 1, we have

3pb2 = a2 − 4 = (a + 2)(a − 2).

(a + 2, a − 2) = 1 implies

{a + 2, a − 2} = {�, 3p�} or {p�, 3�}.
Assuming {a+2, a−2} = {3p�,�} = {3py2, x2},
we get (a + b

√
3p)/2 = {(x + y

√
3p)/2}2 · · ·

contradiction.

∴ {a + 2, a − 2} = {p�, 3p�}.
a + 2 = p�, a − 2 = 3� =⇒ p� − 4 = 3�

=⇒ p ≡ 2 (mod 3)

a + 2 = 3�, a− 2 = −� =⇒ p ≡ 1 (mod 3).

w = a + b
√

3p, a, b ∈ Z · · · similar.
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Lemma 8. K = Q(
√

m) : real quadratic

field (m : square-free), ε (> 1) : the funda-

mental unit of K

(a) TrK/Q(ε)：odd =⇒ m ≡ 5 (mod 8).

(b) [∃w ∈ O×
K s.t. TrK/Q(w) : odd ]

⇐⇒ [TrK/Q(ε) is odd ]

(c) Suppose that TrK/Q(ε) is odd.

Then TrK/Q(εn) : even ⇐⇒ 3 | n.
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Theorem 9. X, v : a solution of (5).

(a) p ≡ 1 (mod 3) =⇒
• ∃n ∈ Z s.t. v = −ε6n+2,

• Letting ε6n+1 = (a+b
√

3p)/2, c = N (X),

we have c3 = 2 − a = −3� : odd,

(=⇒ T (ε6n+1) : odd =⇒ p ≡ 7 (mod 8)),

3pb2 = c6 − 4c3 = a2 − 4, c3 − 4 = −p�.

(b) p ≡ 2 (mod 3) =⇒
• ∃n ∈ Z s.t. v = ε6n+2,

• Letting ε6n+1 = (a+b
√

3p)/2, c = N (X),

we have c3 = a + 2 = 3�,

3pb2 = c6 − 4c3 = a2 − 4, c3 − 4 = p�,

p ≡ 7 (mod 8).

Proof . (a) Suppose that v = ε6n+2.

Taking norm of X3 = ε + ε6n+2, we have

c3 = N (X)3

= (ε + ε6n+2)(ε−1 + ε−6n−2)
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= 2 + T (ε6n+1) = 2 + a.

∴ a = c3 − 2.

Since a2− 3pb2 = 4, we have 3pb2 = c6− 4c3.

From Lemma7, we have c3 − 4 = a− 2 = 3�.

But {(x, y) ∈ Z × Z | 3y2 = x3 − 4} = ∅.
Thus v = −ε6n+2,

c3 = 2 − a
Lemma7

= −3�,

c3 − 4 = −2 − a
Lemma7

= −p�

Suppose that c is even.

Then a = 2 − c3 : even.

From c3 = −3�, we have c = −3�.

∴ −p� = c3 − 4 ≡ −4 (mod 64).

∴ −p
�

4
=

c3

4
− 1 ≡ 3 (mod 4).

∴ p ≡ 1 (mod 4) · · · impossible.

Thus c is odd

(b) Similar arguments yields v = ε6n+2, a =

c3 − 2, c3 = 3�, c3 − 4 = p�, where a, b, c as

in Theorem.
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If c is odd, then, a is odd. Hence Lemma 8

implies p ≡ 7 (mod 8).

If c is even, then, from c3 = 3�, we have c =

3�.

∴ p� = c3 − 4 ≡ −4 (mod 64).

∴ p
�

4
=

c3

4
− 1 ≡ 7 (mod 8).

∴ p ≡ 7 (mod 8).

Corollary 10. p ≡ 3 (mod 8) =⇒ (1) has

no solutions.
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Theorem 9 tells us how to solve equation (5).

Example. p = 23 (≡ 2 (mod 3))

Consider X3 = ε + ε6n+2. By Theorem 9, we

have

c3 = a + 2 = 3�,

69b2 = c6 − 4c3 = a2 − 4,

c3 − 4 = 23�.

☆{(x, y) ∈ Z × Z | 23y2 = x3 − 4} =

{(3,±1)}.
∴ c = 3, a = c3 − 2 = 25, b2 =

252 − 4

69
= 32.

∴ ε6n+1 = (25 + 3
√

69)/2 = ε.

∴ n = 0, X3 = ε + ε2 = ((9 +
√

69)/2)3.

Hence, the only solution is

(X, v) = ((9 +
√

69)/2, ε2)
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p ≡ 7 (mod 8), 7 ≤ p ≤ 500

(a) (5) has solutions ⇐⇒ p = 23, 31, 431, 439.

(b) For the above p, the number of solutions

is 1.

p p mod 3 v X

23 2 ε2 9+
√

69
2

31 1 −ε2 −9−√
93

2
431 2 ε2 72 + 2

√
1293

439 1 −ε2 −5625−155
√

1317
2
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Theorem 11. p : prime number, p ≡ 3

(mod 8), p �= 3, 11, k := Q(
√

3p).

ε (> 1) : the fundamental unit of k

P
(1)
∞ ,P

(2)
∞ : the real primes of k( 3

√
ε)

If the following 2 conditions are satisfied,

then there are no elliptic curves with every-

where good reducrtion over k.

(a) 3 � hk,

(b) 4 � hk( 3√ε)((3)P
(1)
∞P

(2)
∞ ) or 4 � hk( 3√ε,

√−3)((3))

(For a number field K and a divisor m of

K, let hK(m) be the ray class number of K

modulo m.)

Corollary 12. If m = 129, 177, 201 or 249,

then there are no ellptic curves with every-

where good reduction over Q(
√

m).
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