Resource Wars: Oil Movement in Syria During the Iran-Iraq War

Ian Robert Gibson*

Abstract

This paper is a personal reflection of events occurring in Syria during the time of the Iran Iraq war in the 1980s. At this time the writer was working as a laboratory manager for a company of marine surveyors and consultants based in the UK. Analytical chemists within the laboratory carried out and advised on independent investigations into hydrocarbon claims on behalf of clients such as P&I (Protection and Indemnity) marine insurance groups, oil and engineering companies and law firms. The work was often extremely dangerous and arduous. Marine cargoes of crude oil, related oil products, and chemicals are highly inflammable and potentially toxic, with the work also involving long hours spent on oil tankers and in oil terminals during the discharge of products. Tensions would also arise during these times as conflicting parties disputed liability of damage. Much of the carriage of oil came from the Middle East, itself an area of great tensions, and the writer’s company handled many cases involving Saudi, Iranian and Iraqi crude oil. Because of Syria’s position taken against Iraq during the Iran Iraq war in the 1980s, the pipeline between Syria and Iraq was closed necessitating oil supply from Iran, transported by sea through the Persian Gulf by oil tankers. These ships were independent carriers, chartered by interested parties to transport cargoes of oil, and were often liable to claims against loss of cargo or contamination of cargo on receivership into Syria. As a result of claims brought against owners by receivers, the writer’s company was instructed on behalf of ship’s owners to attend a cargo discharge during the early 1980s at the Banias Oil Terminal in Syria. Due to the Iran Iraq war and events in the Lebanon this area was suffering a period of immense conflict.

Author’s note: The second part of this paper refers extensively to the lab report and surveyor’s report at Banias Terminal but owing to much of the content of these

* Associate Professor, Interfaculty Institute for International Studies, Ritsumeikan University, Kyoto, Japan

© The International Studies Association of Ritsumeikan University:
reports being privileged information between client and company, the report title, vessel's name and many of the details of the reports' findings therein cannot be quoted. The author is however deeply indebted to his colleagues at his previous company for granting him access to this report. The author is also deeply grateful for the professionalism, tolerance and expertise shown by the surveyor who the author accompanied to Syria.

The Outbreak of the Iran Iraq War

The Hague Agenda for Peace and Justice in the 21st Century states ‘the allocation of resources are seriously distorted. Many of today’s conflicts are fueled by economic greed and the grab for raw materials’ (1999:7). In other words most wars stem from the need for resources. As an overview, the outbreak of the Iran Iraq War in 1980 was from an historical perspective, ‘just another phase of the ancient Persian-Arab conflict that had been fueled by twentieth-century border disputes’ (http://countrystudies.us/). Saddam Hussein feared Iran’s new revolutionary leadership as a threat to Iraq’s Sunni Shia balance and a threat to Iraq’s geostrategic vulnerabilities such as Iraq’s limited access to the Persian Gulf (ibid). As with many wars, the conflict arose from the intangible need for power and the tangible need for land and connected recourses therein.

During the 1970s both Iran and Iraq had sought to build up their military capabilities. In April 1972 Iraq signed a fifteen-year Treaty of Friendship and Cooperation with the USSR the only nation at that time willing to sell Iraq advanced weapons. As a result of this deal, a month later in May, Nixon and National Security Advisor Kissinger visited the Shah in Tehran, and over the next six years Iran was allowed to purchase $20 billion in US weapons (Neff, 1991: 26). In September 1975 Saddam visited France seeking arms purchases and secured Exocet air to surface missiles and the Super Etendard and Mirage F-1 military jets (ibid., 27), weapons that were effectively used by Argentine forces against British forces in the Falklands conflict of 1982 and during the ‘Tanker War’ of 1984 to 1987 in the Persian Gulf where tankers outward bound from the Iranian oil terminal at Kharg island were targeted by Iraqi forces.

The overthrow of the Shah of Iran in February 1979 by Ayatollah Khomeini, a revolutionary Shia fundamentalist threw US diplomacy into confusion and proved a catalyst to Hussein’s desire for increased power in the Gulf. The US hostage crisis in Tehran put an end to legitimate arms sales between Iran and the USA (the Iran-Contra affair illuminating the illegitimate supply of arms to Iran...
of course) and Iraq, although first recognizing the new leadership in Iran, seized the opportunity of Iranian political and economic disorder to launch attacks along the Iran-Iraq border. This followed deteriorating relations with Iran in the months after the Shah’s fall, sparked off by an alleged Iranian sponsored grenade attack on the Iraqi foreign minister, Tariq Aziz, (www.globalsecurity.org.). On the 17th September 1980 Iraq ‘repudiated the 1975 Algiers agreement on the Iran-Iraq border, declared that Shatt al-Arab was returning to Iraqi sovereignty and five days later invaded Iran.’ (Neff, 1991:28).

The Iran Iraq War 1980-1988 & The Return of Chemical Warfare

Casualty figures are highly uncertain in this war, though estimates suggest close to a million people died, with many more wounded and millions were made refugees. The Iraqis suffered an estimated 375,000 casualties. The Iranians took prisoner another 60,000. The war claimed at least 300,000 Iranian lives and injured more than 500,000, this out of a total population, which by the war’s end was nearly 60 million (www.iranchamber.com). Much of the high casualty rate of this war was due to inadequate training. The IRGC or Islamic Revolutionary Guard Forces of Iran for example, ‘consisted of poorly trained irregular mass infantry forces that specialized in human wave attacks’ (Eisenstadt. M. 2001:17).

Another insidious aspect of this war was the reemergence of chemical gas attacks. Early 20th Century use of gas warfare occurred in the First World War, in clear violation of The Hague Agenda of 1889. Gas warfare, because of its particularly horrific results, together with recommendations in the Geneva Protocol of 1925, was not deployed during the Second World War. However, during the final stages of the Iran Iraq War Hussein ordered the chemical bombing of the Kurdish village of Halabja where an ‘estimated 5,000 Kurds, mostly women and children died.’ (Hooglund, 1991:10).

Chemical Warfare raises many moral and ethical questions and is seen as a particularly barbaric form of killing, though of course it could be argued that any form of killing is barbaric – red-hot shrapnel from US missiles in the Iraqi War of 2003 inflicted terrible ‘collateral damage’ on the Iraqi population for example. Following the First World War and the Geneva Protocol’s forbiddance of what is now termed ‘first strike use,’ gas was however used by Mussolini’s troops in Ethiopia in 1935. Here Price dryly acknowledges the difference in usage of chemical warfare between industrial and non industrial nations where ‘the occasional ruptures of the CW (Chemical Warfare) taboo reflect the

Resource Wars

of course) and Iraq, although first recognizing the new leadership in Iran, seized the opportunity of Iranian political and economic disorder to launch attacks along the Iran-Iraq border. This followed deteriorating relations with Iran in the months after the Shah’s fall, sparked off by an alleged Iranian sponsored grenade attack on the Iraqi foreign minister, Tariq Aziz, (www.globalsecurity.org.). On the 17th September 1980 Iraq ‘repudiated the 1975 Algiers agreement on the Iran-Iraq border, declared that Shatt al-Arab was returning to Iraqi sovereignty and five days later invaded Iran.’ (Neff, 1991:28).

The Iran Iraq War 1980-1988 & The Return of Chemical Warfare

Casualty figures are highly uncertain in this war, though estimates suggest close to a million people died, with many more wounded and millions were made refugees. The Iraqis suffered an estimated 375,000 casualties. The Iranians took prisoner another 60,000. The war claimed at least 300,000 Iranian lives and injured more than 500,000, this out of a total population, which by the war’s end was nearly 60 million (www.iranchamber.com). Much of the high casualty rate of this war was due to inadequate training. The IRGC or Islamic Revolutionary Guard Forces of Iran for example, ‘consisted of poorly trained irregular mass infantry forces that specialized in human wave attacks’ (Eisenstadt. M. 2001:17).

Another insidious aspect of this war was the reemergence of chemical gas attacks. Early 20th Century use of gas warfare occurred in the First World War, in clear violation of The Hague Agenda of 1889. Gas warfare, because of its particularly horrific results, together with recommendations in the Geneva Protocol of 1925, was not deployed during the Second World War. However, during the final stages of the Iran Iraq War Hussein ordered the chemical bombing of the Kurdish village of Halabja where an ‘estimated 5,000 Kurds, mostly women and children died.’ (Hooglund, 1991:10).

Chemical Warfare raises many moral and ethical questions and is seen as a particularly barbaric form of killing, though of course it could be argued that any form of killing is barbaric – red-hot shrapnel from US missiles in the Iraqi War of 2003 inflicted terrible ‘collateral damage’ on the Iraqi population for example. Following the First World War and the Geneva Protocol’s forbiddance of what is now termed ‘first strike use,’ gas was however used by Mussolini’s troops in Ethiopia in 1935. Here Price dryly acknowledges the difference in usage of chemical warfare between industrial and non industrial nations where ‘the occasional ruptures of the CW (Chemical Warfare) taboo reflect the
understanding that modern warfare between industrialized powers is qualitatively different from the war involving an uncivilized country’ (Price, 1995:97). The Italians had justified their chemical attacks because the Ethiopians were not worthy of the status of a ‘civilized nation.’ Price further notes that Chemical Warfare ‘was implicated in the process of the hierarchical ordering of international politics into the civilized and uncivilized arenas’ (ibid.). Of course such ‘dehumanizing of the other’ as the Italians had done to the Ethiopians is always prominent in any conflict, propaganda being a particularly effective measure of a nation state to ‘soften up’ and unite its populace before any military action is taken against the other.

This is not to say that chemical warfare was not considered by ‘civilized’ nations like the US or the UK in the Second World War. Churchill for one ‘suggested that the British Chiefs of Staff consider (chemical) attacks against the flying bomb sites and the German cities’ (Ellis van Courtland Moon, 1982:18). However the attitude to the Iran Iraq war and chemical attacks therein by the West was one of diplomatic non-intervention and at times outright indifference to the casualties in a war between two Islamic nations and echoes Price’s observations of the West’s attitude to ‘the other.’

At that time oil was still plentiful and the war was not as yet affecting supplies to the West. However twenty years later this had changed. Oil resources along with other resources were at last being identified as not limitless and an economic cause for concern. Following 9/11 Islamic terrorist groups had also put world order into a tailspin and direct intervention was now seen as paramount to protect interests. The US and UK administrations had declared that chemical weapons and weapons of mass destruction were the reason behind the invasion of Iraq in 2003, but the subtext was that Iraq needed to be ‘democratized’ by a civilized world to protect Middle East stability with the all important resources of Iraq needed by the West conveniently unstated.

Compare this double standard involving the need for resources to the indifferent attitude of the West towards the genocide in Rwanda in 1994, an ‘uncivilized’ country with no apparent resources. Ten years after this horror in 2004, the Rwandan president, Paul Kagame, controversially commented on this indifference by the West stating ‘that the French “consciously trained and armed” government soldiers and militias who carried out the killings of more than half a million people 10 years ago, and “knew they were going to perpetrate a genocide”’.(Guardian, April 8th 2004). Unvin underscores this:

Adelman and Suhrke argue also that the UN secretariat was well
informed of the extensive preparations and intention of extremists to commit genocide. From January 1994 onwards, General Dallaire, head of the UNAMIR mission, made repeated requests for more troops and equipment as well as for permission to confiscate known illegal arms imports to protect civilians. All these requests were denied. (www.globalpolicy.org)

Rwanda clearly illustrated how resources negate or underpin intervention into other countries by the West.

Oil Concerns, Security Concerns and Veiled Intervention

The Western powers despite their diplomatic non-intervention were however concerned about a potential power shift in the Middle East during the Iran Iraq war, that the supply of oil to industrialized nations would be potentially affected, and US allies, the Saudis and the Israelis, would be in danger from the perceived power shift. As an Israeli website notes, ‘One of the great concerns was that one nation would win a convincing victory and emerge the dominant power in the Persian Gulf. This would affect security in that area and weaken the economic security of western nations and Asian countries such as Japan that depend on gulf oil’ (www.us-israel.org/jsource)

US support of Iraq following the Iranian Hostage Crisis certainly made Iraq more confident in its capabilities and Yetiv argues that this confidence in part led to the Iraqi invasion of Kuwait, although Yetiv is quick to point out that Iran’s threat to the region after the Al Faw Peninsular victory in 1986 left Washington few options but to support Iraq in order to prevent an Iranian victory (Yetiv, 1992:212). Many Iranians saw US strategies differently:

The Iran-Iraq war was not a conflict between good and evil. But though both regimes were repugnant, it was the people of the two countries who served as the cannon fodder, and thus ending the war as soon as possible was a humane imperative. Instead of lending its good offices to mediation efforts and diplomacy, however, Washington maneuvered for advantage, trying to gain vis-à-vis the Soviet Union and to undercut the left. The United States provided intelligence information, bogus and real, to both sides, provided arms to one side, funded paramilitary exile groups, sought military bases, and sent in the U.S. Navy - and all the while Iranians and Iraqis died.

For Washington the important issue was whether it would be able to maintain the status quo in a region of great strategic value to the Pentagon and economic value to the oil companies. But for those outside the corridors of
power, the real issues have been, and will continue to be, how to promote peace, justice, and self-determination in the Gulf and elsewhere - and these issues do not lend themselves to gunboat diplomacy. (www.iranchamber.com/history).

Indeed only three months after the end of the Iran Iraq war, the U.S. Deputy Undersecretary of the Navy Seth Cropsy declared that he hoped the outcome of U.S. operations in the Gulf would dispel the ‘national reluctance to interpose American military forces in third world conflicts when important issues are at stake.’(Trainor: 1988 B10). Important issues presumably involving oil supplies to Western economies.

Syria Closes its Border with Iraq

On April 8th 1982 as a result of the alleged support by Iraq for the Syrian Muslim Brotherhood, Syria shut its borders with Iraq. The Syrian regime’s relations with the Brotherhood had deteriorated in the late 1970s, and were characterized by increasingly violent clashes. Matters came to a head for the ruling party when in June 1980 the Brotherhood attempted to assassinate president Hafiz al-Asad. Following this in July 1980, a government law made membership in the Brotherhood a capital offense. In 1982 armed conflict between the regime and the Brotherhood escalated with the Syrian army attempting to entirely destroy the group by entering the city of Hama and killing an estimated 10,000 members of the Brotherhood. (See Jacobson 2005, www.washington institute.org)

The Banias Oil Terminal in Syria

On April 10th 1982 Damascus severed the flow of Iraqi oil to the Syrian oil terminal in Banias. This move ‘cut some $5 billion from Iraqis expected export earnings’ (Hiro, 1984: 8) The oil was transported from Iraq into Syria by the 500 mile, 50-year-old 32-inch Banias oil pipeline, which stretched from Iraq’s northern Kirkuk oil fields to Syria’s Mediterranean port of Banias and on to Tripoli, Lebanon (www.eia.doe.gov/emeu/cabs). The 650,000-bbl/d-capacity Banias pipeline, had been a vital Iraqi access route to the Mediterranean Sea and European oil markets, and pumped Iraqi oil to the main Syrian refineries at Homs and Banias. By 1983, Iraq’s export capabilities were less than 30% of operable field production capacity at that time. (globalsecurity.org)

During 1982, ship’s owners instructed the company the writer worked for to
investigate claims brought against ship’s owners for alleged losses and contamination of cargo transported from Kharg Island in Iran to Syria via the Banias Terminal. The writer together with a consultant hydrocarbon surveyor from the company (referred to from now on as respectively, chemist and surveyor) traveled to Athens to meet with ship’s owners and then flew on to Damascus to attend the vessel due in later that week to Syria. Syria was at this time in readiness for further conflict with Israel following an Israeli attack on Syrian forces in the Lebanon in June of that year. (See Russell, 1985:18).

Following interrogation from army personnel in the airport the night was spent in Damascus. This was due to the non-advisability of traveling at night within Syria in general but particularly due to the length of journey and the bad conditions of the roads, made worse by the winter weather through the mountains and extensive military movement. Damascus being in preparation for further conflict with the Israelis had many tanks, trucks and military personal visible everywhere on the streets, making movement particularly hazardous. The onward journey to Lattakia was taken the next day by car arriving too late for contact with the terminal personnel. The road at this time was littered with crashed vehicles and wrecks of trucks.

From Macro-Conflict to Micro-Conflict

The next morning at Banias a preliminary meeting was held comprising terminal senior personnel, the Terminal Superintendent, the Shipping Controller and the chemist and surveyor. Due to stipulations about movement within the terminal, access was denied until the necessary documents and identification cards could be made. A further meeting was decided for the next day, which was attended by the Refinery/Terminal Manager, a representative from the independent on site survey inspection company, a refinery engineer, a laboratory supervisor and the shipping agency company manager.

The meeting’s purpose was at first unclear but it soon became very apparent that there was an atmosphere of hostility and suspicion in the room shown by the on site survey inspector and backed up by the laboratory and engineering personnel, as to why the chemist and surveyor’s presence was required in Syria. It was also made clear later in the meeting that the chemist and surveyor’s presence, furthermore, was not appreciated. The perceived understanding from this meeting was that the laboratory analyses and survey reports issued by the independent on site inspectors should be accepted without question. The meeting
then broke up with counsel given to the chemist and surveyor that ‘difficulties were to be expected’. Following this the surveyor and chemist were then shown the laboratory and control room, both of which were extremely run down with facilities and equipment that could be at best described as ‘barely adequate.’ Requests for pipeline diagram and sightings of terminal facilities were agreed to by the personnel present but proved to be unforthcoming even after repeated requests.

The Initial Survey of the Terminal Farm

The following day the terminal was visited again and the chemist and surveyor were given a tour around the tank farm and viewed the points at which the sea lines connecting the offshore berths to the shore had been arranged. The surveyor observed that the anchorage area for the vessels proceeding to the discharge/loading berths was in the vicinity of the Light Buoy. Berthing only took place between 06.00 hours and 16.00 hours although extenuating circumstances could change if it so suited the terminal. The furthest berth was approximately two miles from the terminal dock area, with two berths being consigned for crude oil use. Flexible hoses connected below sea level to two by twenty four inch pipelines themselves connecting to one line of thirty-two inch diameter. The flexible hoses were reduced from sixteen inches to twelve inches for connection to the ship’s manifold, requiring all vessels to arrive with twelve-inch reducers already fitted. The surveyor found this procedure troubling along with the discharge pressure procedure being very inefficient and that the sea lines having entered the shore area were buried underground. Without the requested line diagram this would make following the system impossible. Seeing that crude oil was pumped from vessels and then on to the refineries at both Banias and Homs simultaneously, the line systems would need to be carefully monitored.

War Damage from the Fourth Arab Israeli War in 1973 at Banias

The fact that the tank farm had been subjected to considerable war damage (see Ashkar, 1974:19) made this monitoring requirement very difficult. The accompanying terminal staff told us that the tank farm had been attacked by Israeli jets in 1973 and had subsequently remained on fire for a week. Several of the shore tanks appeared to be considerably damaged by shelling and by fire, crumpled cans of Coke-Cola could have best described the appearance of some of
the tanks. The upper sections of some tanks were heavily buckled and were required to have extensive use of external stiffeners. The condition of the underground pipe system was of course unknown. The tanks were arranged in four rows and products were designated to these in what the surveyor described as ‘a very haphazard manner.’ All of the shore tanks were of similar design being of a uniform size in diameter, one hundred and sixty four feet by fifty-six feet in height with floating roofs and separate inlet/outlet lines. Most visible gauges appeared not to be working through apparent disrepair and were subsequently ignored. The tank roof drain valves were often open but failed to drain the roof on some tanks, which the surveyor suggested was due to a malfunction or blockage. Free water was drained from the base of each tank and run on to open ground, the net result being that all surrounding areas were covered with large crude oil deposits and made navigating these areas extremely hazardous.

Although there was a twenty-four hour shift at the farm, little work was done at night with standards of gauging and sampling observed by the surveyor to be from mediocre to extremely poor, though the older personnel appeared the more efficient. There was also considerable friction observed between these personnel and the senior terminal staff and more importantly between them and the local survey inspectors, whose attitude and manners appeared very lacking towards the older staff.

Discharge procedures called for tanks and lines to be delegated with the on site survey inspectors confirming the ‘acceptability’ of these units. This included the draining of free water from the tanks, objected to by the surveyor since the assumption was that following this procedure these tanks were now water free, and this matter was never resolved. The gauging of the tanks prior to discharge from the vessel was carried out and because the terminal had brought the claim of ‘sludging up’ of the tanks on receipt of crude oil cargo from previous vessels, the surveyor desired to evaluate the contents of the tanks and confirm the validity of methods used.

This proposal was refused by the on site survey inspectors, on which they had no grounds of authority, and so the tasks were undertaken by the surveyor, countered by the on site survey inspectors who instructed the terminal staff to refuse access to the equipment necessary, this being the sounding/ullaging tape. The chemist and surveyor also objected to the viability of initial samples taken from the tank, as they were top samples only and not representative of the tank. This was patently a biased procedure against the ship. Sludging had been claimed, caused by the poor quality of the vessel’s cargo. If the tanks were not
declared free of sludge before the vessel arrived then how would it be known that sludge was not already present in the tanks and that the tanks themselves were not co-responsible for causing sludging? These objections were again strongly refuted and the surveyor was refused permission to draw representative samples. Tank temperatures were taken from these samples without testing top middle or bottom variations. Protests were raised by the surveyor as to the validity of these samples but were stonewalled.

Testing Procedures at the Banias Terminal

These samples were then tested in the laboratory for the following tests: Density at Fifteen Degrees C, used to calculate the volume of oil in the land tanks, Base Sediment and Water by Centrifuge Method to determine the level of sludge and water in the land tanks and Salt Content in Crude Oil, salt being abrasive and harmful to refining processes amongst other concerns. The Base Sediment and Water Test (American Society for Testing and Materials, Test Method designation, ASTM D4007) states that the solvent used must be ‘Toluene confirming to Specification D362 or to IP (Institute of Petroleum UK) Specification for Toluole.’ Furthermore Section 6.1.2 states ‘the solvent shall be water saturated at sixty plus or minus three degrees centigrade but shall be free of suspended water.’ The reason given for this in Annex A1 is that ‘water is soluble in Toluene to a significant extent.’ The chemist questioned the laboratory staff as to what chemicals they used for the Base Sediment and Water test. The representative at the Banias refinery disclosed that the chemical used was reformate from the refinery, a crude solvent product from the refining process not conforming to test procedure.

The correct solvent for the Water and Sediment in Crude Oil by the Centrifuge method was at no time used in the chemist’s presence. Moreover, when questioned about the use of reformate as opposed to Toluene, the on site inspector informed the chemist that reformate was an acceptable substitute for Toluene and this was approved by the ASTM method book. At no stage in the test method is this documented.

Testing was then carried out on the land tanks’ samples prior to the vessel’s discharge. The other testing as stated was the ASTM D1298 Density of Crude Petroleum and the ASTM D3230 Salts in Crude Oil (Electrometric Method).

The Density cylinder was flushed out with reformate and the sample was poured into the cylinder. No precaution was taken to dry the cylinder with an air
pipe or other means, from reformate. This meant that a reading was taken from a sample containing reformate and not a ‘straight’ sample. The temperature was read with a non-IP calibrated (Institute of Petroleum UK Standard) thermometer.

The sample was then poured into a 50ml centrifuge tube, cleaned with reformate, but again not dried, prior to the Base Sediment and Water test. At this point it is necessary to summarize the ASTM D4007 test and then compare this to the procedure used by the Banias Terminal Laboratory. Equal volumes of crude oil and water saturated Toluene are placed into two separate centrifuge tubes. The samples are mixed with the water saturated Toluene until homogenous and then placed in a water bath controlling at one hundred and forty plus or minus five degrees F, or if contractual agreement permits, one hundred and twenty plus or minus degrees F. The tubes are then left for fifteen minutes, shaken again to achieve a homogenous sample and then spun in a centrifuge, heated and controlled thermostatically at the sample temperature. The tubes are removed, inverted, and the Base Sediment and Water is read. They are then returned to the centrifuge without agitation and spun for another ten minutes. This operation is repeated until the combined volume of Water and Sediment remains constant for two consecutive readings. In general not more than two spins are required.

The procedure at Banias that night was as follows. As stated before the sample plus the reformate left in the cylinder after cleaning was poured into one centrifuge tube. Section 9.1 of the procedure states, ‘Fill each of the centrifuge tubes to the 50ml mark with the sample directly from the sample container’. Although 50ml of the sample was introduced to one tube, a duplicate sample was not involved, nor was a representative sample from the original sample can taken. The centrifuge tube and sample was then filled with reformate to the 100ml mark, shaken and immersed in the water at a temperature of 50 degrees C. for ten minutes. It must be said that the tank did not have a controlled thermostatic unit, which meant that the tank did not control uniformly. The tube was then spun in an unheated centrifuge only once and then read. Regarding section 10 of the method headed ‘Calculation’ it states:

10.1- Record the final volume of water and sediment in each tube. If the difference between the two readings is greater than one subdivision on the centrifuge tube (see Table 1) or 0.025ml for readings of 0.10ml and below the readings are inadmissible and the determination shall be repeated. 10.2- Express the sum of the two admissible readings as the percent by volume of water and sediment: report the results as shown in Table 2. As Table 2 shows in the method, Tube 1 should be combined with Tube 2 to give the Total
Percent water and sediment.

Clearly, as the method calls for a recording of results as a percentage and 50% of the sample was used only half the sample was tested. Moreover, the sample should be tested in duplicate so that the result of one centrifuge tube is compared with the other. If the results do not compare, then the test must be repeated. Banias’ testing laboratory doubled the result of the one sample they tested and reported this as the final percentage.

The chemist then requested a Salt Content to be carried out on a land tank sample. Section 9.1 Procedure of the ASTM D3230 method states:

To a dry 100ml graduated glass-stoppered cylinder add 15ml of xylene and, by means of ‘to contain’ pipette, 10ml of crude oil sample. Wash the pipette with xylene until free of oil. Make up to 50ml with xylene. Stopper and shake the cylinder vigorously for at least 1 min. Dilute to 100ml with mixed alcohol solvent and again shake vigorously for 30s. After allowing the solution to stand for 5min. pour it into the dry electrode beaker. The current reading on the Electrometric Salt Determinator for the sample and a blank of the solvent, plus 10ml of neutral oil substituted for the crude oil can then be taken.

The procedure carried out by the laboratory analyst under the supervision of the on site inspector (who should have remained independent) did not utilize a stoppered cylinder, none of the aforementioned chemicals, no blank, no drying agents and was read from a calibration chart, which according to the on site survey inspector, was prepared by Homs Refinery meaning a calibration chart not recognized by any international standard. None of the chemicals conformed to the specifications for the ASTM test, xylene was not present, 1-butanol was not present, and the chemist did not observe the use of Methanol nor distilled water.

On the following occasions the chemist was present in the laboratory the same procedures for testing were carried out. The two on site inspectors was clearly supervising the laboratory technician in a very derogatory and patronizing way (the young technician was female). Indeed the two inspectors at times undertook the testing themselves. This meant that instead of witnessing the testing at the Banias Terminal Laboratory they were, in fact, carrying out the testing to their own requirements and interpretations. When questioned about the chemicals needed for the ASTM tests, the inspectors stated that chemicals were difficult to obtain in Syria due to the ongoing conflicts in the Middle East. This was however refuted at a later date by an associate of the ship’s agent who said that there was no such problem with the purchasing of chemicals in Syria.
It was the opinion of the chemist that the testing observed was neither precise in its methodology nor accurate enough in its execution and that there was limited attention to detail regarding the ASTM test requirements. At the conclusion of the analyses the chemist and the surveyor were asked to countersign the laboratory report. This request was refused due to the aforementioned inaccuracy of the testing. It was the chemist’s further opinion that if the procedures witnessed were the general standard of testing, then all results were in serious breach of internationally recognized standards and could be discounted as correct and accurate analyses of any cargo received into Banias.

At this point it can be stated that serious differences of opinion had arisen between the inspectors present at the testing and the chemist and surveyor. Numerous verbal insults to the chemist and surveyor’s country of residence were used during the testing of the land tank sample (though these insults were ignored), the chemist and surveyor’s particular field of expertise was disparaged and they continued to be subjected to the previously stated hostile attitude from the on site inspectors. Indeed during the chemist and surveyor’s time in Syria there was always a perceived threat to their presence there from the Syrian authorities, frequently referred to by the terminal staff (with laughable John Le Carré implications) as the so-called ‘secret police.’ Intimidation was however nothing new to the surveyor in his line of business who remained extremely professional and calm at all times and enjoyed a good rapport with the older terminal staff, whom he recognized as people doing a good job under very difficult and trying conditions. Differences with the independent survey inspectors were never resolved however, but worsened considerably as proceedings developed.

Tanker Discharge of Crude Oil in Banias

The tanker began discharging its cargo at 15:00 hours on the request of the terminal, a time objected to by the surveyor, as darkness fell shortly after 16:00 hours and there was only one hour remaining of adequate visibility. The terminal was mostly unlit and as was stated before had numerous hazards which made nighttime operation extremely difficult and potentially hazardous. These objections were overruled. The on site inspectors contrary to normal proceedings had not gauged or sampled other tanks themselves but merely witnessed proceedings taken by terminal staff, furthermore the calibration of the tank’s were not current but seven years out of date. This introduced doubts as to the alleged readiness of the tanks for receivership of cargo and the recording of the
volume of cargo delivered. This also meant that any contamination of the cargo by
sludge remaining in the tanks before discharge could not be detected.

The surveyor raised these objections to the discharge procedure but having
all his requests denied was then obliged, along with the chemist to attend the
vessel offshore. Once on board the ship the chemist accompanied one of the on site
survey inspectors for a Bunker Survey, (an inspection and sampling of the ship’s
fuel oil cargo). The survey was hurried and considerable spillage of oil samples
occurred. This launched a protest from the ship, all ship’s crews being
understandably particular about hazardous spillage of cargo on board. The
request to clean up the spillage was ignored by the on site inspectors. At this
point a heated argument took place, coming nearly to blows, which did not further
good relationships. On completion of the discharge on ship at 01.25 hours the
ship’s tanks were surveyed, and after all parties left the vessel arriving on shore
at 03.40. Here dealings with the on site inspectors worsened considerably. They
refused to transport the chemist and the surveyor back to the terminal, ignoring
professional codes of terminal procedures, even though it was raining heavily but
finally conceded under strong protest.

The surveyor and chemist being unable to return to their hotel slept on chairs
in the office at the terminal that night and witnessed the draining of the tanks for
free water the next morning; all tanks revealing negligible amounts of free water.
On request for the sounding of a tank for the next vessel arriving, due in later
that week, the on site survey inspector again refused all requests and when
pressed by the ship’s agent another heated argument ensued. Eventually as it
began to get dark the chemist and surveyor along with the on site inspector and
members of the terminal staff arrived at the tank.

Free water was not observed in the tank but again the inspector refused to
check the tank to confirm this. Finally the inspector produced his torch and we
climbed the tank to sound the tank and take samples. After the sounding the
inspector refused to allow samples to be taken and instructed the terminal staff
member present not to draw a sample. The terminal staff member ignored him
and drew samples in our presence. The inspector declared that he had forgotten
to bring his thermometer to take the temperature of the sample, thus making the
sample void, but unknown to him the chemist had brought his own thermometer
and took the temperature. Sampling then continued under strong verbal protest
from the on site survey inspector.

The inspector then demanded the return of his torch, which the surveyor
handed to him. In the words of the surveyors report:
It must again be borne in mind that the fury of the inspector was such that I considered the lives of myself and/or my colleague at risk due to being 60 feet up on the edge of a tank which was wet, slippery with water, oil and mud present and with only very limited guard rails. On returning the torch the inspector left, leaving all parties present on the tank top in the dark. The tank temperature was obtained with the assistance of the sampler and the use of the hired car’s headlamps. The (previous) descent from the tank was extremely hazardous for all personnel concerned due to the darkness, slipperiness of the tank ladder and the general lack of footpath away from the tank caused by the evacuation on site. On eventually returning to the terminal buildings an official complaint was lodged to the terminal manager and the inspector because of his disgraceful behavior.

The surveyor on arriving back at the terminal began a statement of what had just occurred on top of the land tank admonishing the on site surveyor present for his arrogance, incompetence and professional misconduct and asked that the survey company be withdrawn from its services at Banias due to its lack of independence and lack of professional competence. The inspector began screaming at the top of his voice that the surveyor himself should learn some manners and declared all sampling undertaken unacceptable to his company and left the building. Tank soundings and survey was completed the next day and the chemist and surveyor left Syria the day after. The on-site survey inspectors it was later revealed were removed from their positions at Banias due to ‘unprofessional conduct.’

Conclusion

Oil movement and oil testing as can be seen from this case study is an often extremely dangerous and demanding business. Due to the large sums of money involved in oil production, the cost of chartering vessels and crew, and the importance of this resource to all parties concerned, many disputes arise, often leading to very heated and tense situations. Most of the world’s oil resources are found in the Middle East, itself an area of deep enduring geopolitical conflict. This paper outlined some of the many difficulties involved with oil observed while the writer was working in this field. With oil becoming an increasingly scarce resource the situation will worsen. Conflicts arise from resource needs. Even without conflict these disputes often have to be settled by law in courts of arbitration, which are held in many major cities and capitals around the world.
These disputes last for many years and are extremely costly in terms of hours billed and personnel involved. Indeed the alleged cargo contamination discussed here, the sludging of land tanks at Banias due to high deposits of sediment and water occurring either from ship or terminal has yet to be settled although perhaps it could be said that the rudimentary technology and methodology witnessed on site did not help matters.

Syria partially reopened the pipeline with Iraq in the 1990s and was controversially cited as breaking sanctions with Iraq imposed by the international community (Prados & Sharp, 2005:14). Previously with the ending of hostilities between Iran and Iraq in 1988 military attacks on oil tankers ceased in the Gulf. Events of course soon deteriorated in the Middle East again with the invasion of Kuwait by Iraq and the subsequent Gulf War in 1991. Following the 9/11 attack in the US in 2001 came the ‘war on terror’ signaled by the invasion of Afghanistan in 2001 and the ‘pre-emptive’ strike on Iraq in 2003 (a contentious aspect of the war on terror as Iraq was a sovereign state and not implicated in 9/11). At the time of writing the US and the UK administrations still have not been able to formulate an ‘exit strategy’ from Iraq, Syria has been accused of harboring Iraqi weapons of mass destruction, training Iraqi insurgent forces and being involved in the killing of Lebanon’s former Prime Minister, Rafik Hariri, and Iran has returned to its nuclear program.

References

Resource Wars

Energy Information Administration ‘Country Analysis Brief: Iraq’

Globalsecurity.org ‘Iran-Iraq War (1980-1988)’

The Iran Chamber Society ‘History of Iran: The Iran Iraq War 1980-1988’

Jewish Virtual Library, ‘The Iran Iraq War 1979-1988’

Organization, Vol. 49, No. 1: 73-103