Sulfur K-Edge X-Ray Absorption Spectra of SF₆, H₂S and SO₂

Junichi Tsuji¹, Kazuo Kojima², Hirohide Nakamatsu³, Takeshi Mukoyama³, Shigero Ikeda⁴ and Kazuo Taniguchi¹

Abstract

Sulfur K-edge x-ray absorption spectra of gaseous compounds SF₆, H₂S and SO₂ were measured using a synchrotron radiation source at Ritsumeikan University. Two kinds of method for x-ray absorption measurements, a transmission mode and a total electron yield mode, were applied to this study, and the spectra obtained experimentally were compared with those calculated non-empirically by means of the DV-Xα molecular orbital method. Orbitals related to the resonant absorption observed at 2484 eV in the SF₆ spectrum were found to be 7t₁u, 8t₁u and 9t₁u, while those observed at 2470 eV in the H₂S spectrum were 3b₁ and 6a₁. The spectrum for SO₂ is quite similar to that for H₂S, except that the absorption band positions for SO₂ shift slightly to the high energies compared to those for H₂S. Spectra obtained by the DV-Xα molecular orbital calculation based on the transition state of the electronic excitation agreed excellently with the experimental results.

1) Division of Electronics and Applied Physics, Osaka Electro-Communication University, 18-8 Hatsucho, Neyagawa, Osaka 572-8530, Japan
2) Department of Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
3) Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
4) Research Organization of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan