Study on 3-Dimensional Micromachining of PTFE Using Synchrotron Radiation Light

Nobuyoshi Nishi, Takanori Katoh*, Hiroshi Ueno and Susumu Sugiyama**

Abstract

In order to fabricate highly functional microdevices for MEMS, three-dimensional (3D) micromachining that can form certain round or curved structures is required. Recently, a high aspect ratio micromachining process using synchrotron radiation (SR) direct photo-etching of polymers without any process gases, the so called TIEGA (Teflon included etching galvanicforming), has been developed. The etching rate is of the order of 10-100 μ m / min. Moreover, SR etching is free from problems of sticking because it is a completely dry process. By utilizing a high processing speed and smoothness of the etched surfaces, SR etching might have a potential for 3D micromachining by combining a scanning stage with a high degree of freedom. In this paper, we proposed 3D micromachining technology by SR beam direct writing and fabricated a corn shape PTFE microstructure.

Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

^{*}Sumitomo Heavy Industries, Ltd. 2-1-1 Yatocho, Tanashi, Tokyo 188-8585, Japan

^{**}Department of Robotics, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan