In-situ XAFS study of Li₂TiO₃-LiFeO₂ solid solution as a positive electrode material for lithium ion secondary batteries ## Hikari Shigemura*, Mitsuharu Tabuchi, Katsumi Handa**, and Hiroyuki Kageyama ## Abstract Li₂TiO₃-LiFeO₂ solid solution with rock salt structure has a interesting electrochemical behavior; lithium ions could be reversibly extracted and inserted at operating voltage from 4 V to 1.5 V vs. Li/Li+ with capacity about 200 mAhg⁻¹. The charge and discharge mechanism was studied with *in-situ* Ti K- and Fe K- XANES measurements. The spectral changes indicated that the redox reactions of 3+/4+ and 2+/3+ in partial Fe ions concerned with 4 V and 2V capacities, respectively, while Ti remained 4+ in valence through charge and discharge. The change in the local structure around Ti was suggested by Ti K-EXAFS analysis. Special Division of Green Life Technology, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, 563-8577, Japan. ^{*}New Energy and Industrial Technology Development Organization (NEDO), Industrial Technology Fellow. ^{**}Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan