The Cu(001) Fermi Surface and Valence Band studied by Two-Dimensional Photoelectron Spectroscopy Fumihiko Matsui^{1*}, Hiroaki Miyata^{1,2}, Oliver Rader³, Yohji Hamada^{1,4}, Youjiro Nakamura¹, Koji Nakanishi⁵, Teruyo Wada¹, Yuji Nozawa⁵, Hidetoshi Namba⁵, Hiroshi Daimon¹ ## **ABSTRACT** Three-dimensional structure of Cu Fermi surface and cross section of valence bands were measured and visualized by stacking a series of photoelectron angular distribution (PEAD) patterns with different photon and photoelectron energies. PEAD patterns from the Cu(001) surface were measured using a two-dimensional display-type spherical mirror analyzer and a linearly polarized synchrotron radiation. From the analysis of the angular dependence of the dipole transition probability, the atomic orbitals composing the state of Fermi surface were determined to be 4 p atomic orbitals with their angular momentum axes pointing outward. ¹Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara ²Toray Research Center, Otsu, Shiga ³BESSY, Berlin, Germany ⁴SR Center, Ritsumeikan University, Kusatsu, Shiga ⁵Department of Physics, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga ^{*}e-mail address: matui@ms.aist-nara.ac.jp