The Cu(001) Fermi Surface and Valence Band
studied by Two-Dimensional Photoelectron Spectroscopy

Fumihiko Matsui1*, Hiroaki Miyata1,2, Oliver Rader3, Yohji Hamada1,4,
Youjiro Nakamura1, Koji Nakanishi5, Teruyo Wada1, Yuji Nozawa5,
Hidetoshi Namba5, Hiroshi Daimon1

ABSTRACT

Three-dimensional structure of Cu Fermi surface and cross section of valence bands were measured and visualized by stacking a series of photoelectron angular distribution (PEAD) patterns with different photon and photoelectron energies. PEAD patterns from the Cu(001) surface were measured using a two-dimensional display-type spherical mirror analyzer and a linearly polarized synchrotron radiation. From the analysis of the angular dependence of the dipole transition probability, the atomic orbitals composing the state of Fermi surface were determined to be $4p$ atomic orbitals with their angular momentum axes pointing outward.

1Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara
2Toray Research Center, Otsu, Shiga
3BESSY, Berlin, Germany
4SR Center, Ritsumeikan University, Kusatsu, Shiga
5Department of Physics, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga
* e-mail address: matui@ms.aiist-nara.ac.jp