B K-Edge and P L-Edge XANES Spectra of Mn²⁺-Doped BPO₄ Prepared by Sol-Gel Method

Shin-ichi Makimura¹⁾, Kazuo Kojima¹⁾, Tomoe Sanada¹⁾, Kazuhiro Yamamoto¹⁾, Iwao Watanabe²⁾, and Shigero Ikeda²⁾

It has recently been reported that Ba^{2+} -doped BPO₄ prepared by the sol-gel process is a stable, efficient, and environmentally friendly luminescent material emitting bluish-white light [1].

We prepared Mn^{2+} -doped BPO₄ by a sol-gel method and investigated its properties by B *K*-Edge and P *L*-Edge XANES Spectra as well as XRD, IR, ¹¹B MAS-NMR, ³¹P MAS-NMR, and fluorescence measurements.

 $(NH_4)_2HPO_4$ and $(CH_3COO)_2Mn$ were dissolved in a 0.01 M aqueous solution of HNO₃. H₃BO₃, citric acid and poly(ethylene glycol) were dissolved in an aqueous solution of ethanol. The two solutions were mixed with stirring and then dried at 100 to obtain dried gels. By heat treatment of the dried gels at 450-1000 were obtained powdered samples of Mn^{2+} -doped BPO₄.

B *K*-edge and P *L*-edge XANES spectra for Mn^{2+} -doped BPO₄ and some reference samples were measured using a beamline BL-2 of the SR Center at Ritsumeikan University. All samples were powdered to collect their XANES spectra in the total electron yield mode. The vacuum level in the sample chamber was higher than 1.0 x 10⁻⁵ Pa during measurements. Figure 1 shows B *K*-edge XANES spectra of Mn^{2+} -doped BPO₄ along with reference samples of B₂O₃ and BPO₄. For B₂O₃, an intense peak at 194.0 eV and a structured absorption band around 202.5 eV are assigned to the transitions from B1s to the unoccupied B2p π^* and σ^* states, respectively, of the trigonal [BO₃] unit. For BPO₄, a significant peak located at 198.4 eV and a broad absorption band around 202.8 eV are assigned to the transitions from B1s to the unoccupied B2p σ^* and unoccupied high energy B2p σ^* states, respectively, of the tetrahedral [BO₄] unit.

¹⁾ Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

²⁾ SR Center, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

From the spectra of the Mn^{2+} -doped BPO₄ samples, it is found that in the samples heat treated at 450 and 600 $, B_2O_3$ exists, the form of which was revealed as both amorphous and crystalline states by XRD measurements. On the other hand, BPO₄ crystals probably containing Mn^{2+} ions is formed even in the sample heat treated at 450 , and the amount increases with increasing the heat-treatment temperatures. In the samples heat treated at 750 and 1000 , we can obtain only the Mn^{2+} -doped BPO₄ because no 194.0-eV peak due to B_2O_3 is observed in these samples.

Figure 2 shows P *L*-edge XANES spectra of Mn^{2+} -doped BPO₄ along with a reference sample of BPO₄. The spectra of the samples heat treated at 600, 750, and 1000 are similar to the spectrum of BPO₄, while the spectrum of the sample heat treated at 450 differs from the others, with a relatively strong peak at 143 eV. Further work will clarify this difference, although the detection of the local structure difference around a phosphorus atom may be difficult because the atom usually locates in a [PO₄] unit in most of the phosphates.

Figure 1. B *K*-edge XANES spectra of Mn²⁺-doped BPO₄ and reference samples. Sample of 5MnO-95BPO₄ heat treated at 450 is, for example, indicated as 5Mn450 .

Figure 2. P *L*-edge XANES spectra of Mn²⁺-doped BPO₄ and a reference sample of BPO₄. Sample of 5MnO-95BPO₄ heat treated at 450 is, for example, indicated as 5Mn450 .

References

[1] C. K. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang and J. Lin, *Chem. Mater.*, 18, 458 (2006).