Adsorption mechanism of C₆₀ on Au/Si(111) surfaces

Takeshi Dobashi¹, Masaru Takizawa², Masashi Yoshimura², Fumihiko Matsui¹, Hiroshi Daimon¹, and Hidetoshi Namba³

- 1) Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- 2) SR Center, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
- 3) Department of Physical Science, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

1. Introduction

Understanding of adsorption mechanism and its electronic character between organic molecule and inorganic substrate is important for organic-inorganic hetero-junction devices. Surface structure of silicon can be controlled in various ways by metal atom adsorption and annealing. In the case of gold adsorption on Si(111) surface, many types of surface superstructures such as Si(111)5×2-Au, Si(111) $\sqrt{3}\times\sqrt{3}$ -Au, and Si(111)6×6-Au have been reported. We have been studying about the adsorption of organic molecules on the various Si(111)-Au surface superstructures. For example, we found that L-tyrosine molecules are adsorbed on the Si(111)5×2-Au surface and tend to align along Au one-dimensional rows via formation of chemical bonds between molecules and Si dangling bonds [1]. On the other hand, we revealed that no benzenethiol exists on the Si(111) $\sqrt{3}\times\sqrt{3}$ -Au surface contrary to the expectation of well-known covalent bond formation between thiol molecules having mercapto-group (-SH) and Au surface. Chemical property of Au monolayer film on the Si surfaces is quite different from bulk Au. Mechanism of molecular adsorption on such surface is nontrivial, indeed. In this study, we focused on C₆₀ which act as a good electron acceptor.

2. Experimental Details

Sample preparation and all measurements were carried out under ultra-high vacuum (UHV) condition. Au/Si(111) surface superstructures were prepared by reacted deposition epitaxy (RDE) method. Clean Si(111) surface with 7×7 structure was kept at 850 K during Au deposition. Dosage of Au was carefully controlled by using RHEED and LEED. Pure Si(111) 5×2 -Au, pure $\sqrt{3}\times\sqrt{3}$ -Au, and their coexisting surfaces were prepared. C₆₀ adsorption sites and dynamics were investigated by STM and *in situ* RHEED. C₆₀ adsorbate electronic structure was investigated by photoelectron spectroscopy using the Display-type analyzer (DIANA) installed at BL-7.

3. Results and Discussion

Figure 1 shows RHEED spot intensity change during C_{60} deposition. As C_{60} is deposited, the intensities of the diffraction spot from two superstructures decreased and diminished at the same time. This indicates that C_{60} are adsorbed on the both surface and the sticking probability is similar. This is different compared to the case of thiol and amino acid molecules which the sticking coefficient is much smaller on the $\sqrt{3} \times \sqrt{3}$ -Au surface.

Figure 2 shows STM images of the 5×2-Au surface before and after C_{60} deposition. At the first layer of the 5×2-Au surface, Si dangling bonds form one-dimensional arrays. Density of bright protrusions corresponding to C_{60} adsorbates are about the same as that of Si dangling bonds on the 5×2-Au surface. This

suggests the strong interaction between C_{60} and Si dangling bonds.

Figure 3 shows photoelectron spectra. Molecular orbital peaks of C₆₀ on the 5×2-Au surface shift to lower binding energy compared to those of C₆₀ multilayer indicating that the adsorption is accompanied by charge transfer from 5×2-Au substrate to C₆₀ adsorbates. On the other hand, the peaks in the C₆₀/ $\sqrt{3} \times \sqrt{3}$ -Au spectra appeared at the same position as those of multilayers. C₆₀ molecules are physisorbed on the $\sqrt{3} \times \sqrt{3}$ -Au surface without charge redistribution by bond formation.

Furthermore, C₆₀ was deposited on the 5×2-Au and $\sqrt{3} \times \sqrt{3}$ -Au coexisting surface and annealed at 550°C subsequently. From the surface structure analysis by RHEED and STM observation, the $\sqrt{3} \times \sqrt{3}$ -Au domains reappeared after annealing. This is another indication supporting that C₆₀ molecules are chemisorb on the 5×2-Au surface, while the are physisorb on the $\sqrt{3} \times \sqrt{3}$ -Au surface.

4. Conclusion

Adsorption of C₆₀ molecules on the 5×2-Au and $\sqrt{3} \times \sqrt{3}$ -Au surfaces was compared using *in situ* RHEED, STM and photoelectron spectroscopy. C₆₀ molecules were found to be physisorbed on the $\sqrt{3} \times \sqrt{3}$ -Au surface while they were chemisorbed and aligned along Au row on the 5×2-Au surface. Monolayer Au atoms on the Si surface passivate Si dangling bonds and prevent formation of chemical bond between substrate and C₆₀ molecules.

References

[1] M. Yoshimura et al., e-J. Surf. Sci. Nanotech. Vol. 8, 303 (2010).

Fig.2 STM image of the clean and C_{60} adsorbed Si(111)5×2-Au surface.

