Local Structure around Mn^{2+} in Phosphate Glasses

Noriyuki Wada¹, Misaki Katayama², Tomoe Sanada², Kazuhiko Ozutsumi², Kazuo Kojima²

1) Department of Materials Science and Engineering, Suzuka National College of Technology, Shiroko, Suzuka, Mie, 510-0294, Japan
2) Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan

Abstract
Mn K-edge X-ray absorption fine structure (XAFS) spectra of Mn^{2+}-doped phosphate glasses were measured. Assuming that Mn^{2+} ions were octahedrally coordinated with 6 oxide ions, the Mn-O bond length was obtained by analyzing the XAFS spectra. In 60P₂O₅-35M₂O-5Al₂O₃-10MnO glasses (M: Li, Na, and K), the Mn-O bond length was almost constant, irrespective of M⁺. In 60P₂O₅-35M'₂O-5Al₂O₃-10MnO glasses (M': Ca, Zn, Sr, and Ba), the Mn-O bond length increased with increasing the M'²⁺ ionic radius in the order Zn²⁺, Ca²⁺, Sr²⁺, and Ba²⁺. In (65-x)P₂O₅-35ZnO-xAl₂O₃-10MnO glasses (x = 0-10), the Mn-O bond length for x = 0 (2.13 Å) was much longer than that for x = 1-10 (about 2.07 Å), because Al₂O₃ effects the formation of 3-dimensional phosphate network structure. In (100-y)P₂O₅-yZnO-10MnO (y = 20-60) and 65P₂O₅-35Zn-zMnO (z = 0.5-20) glasses, the Mn-O bond length changed depending on y and z, because the numbers of bridging oxygen (BO) and non-bridging oxygen (NBO) in the PO₄ groups were changed by y and z. The Mn-O bond length was the maximum of 2.13 Å in a 65P₂O₅-35ZnO-10MnO glass (y = 35 and z = 10), which consists of only PO₄ groups with two BOs and two NBOs.
1. Introduction

Recently, high-brightness light-emitting diodes (LEDs) with various colors have been developed and applied in various equipments and fields. However, there has been the problem that persons with red-region color blindness could not see a red-traffic-signal even if the luminescence intensity of a red LED is strong because the red LED with monochromatic output properties was used. In addition, most of the rare earth ions used for phosphors have been imported from China; therefore their long-term stable supply and cost jump are concerned.

Noticing that octahedrally coordinated Mn$^{2+}$ ions show a red and broad fluorescence band due to the 3d-3d ($^{4}T_{1g} \rightarrow ^{6}A_{1g}$) transitions, and that the fluorescence band is broadened by using glass host materials, we have investigated the red fluorescence properties of Mn$^{2+}$ ions in various oxide glasses. As a result, we found that the Mn$^{2+}$ ions only in the phosphate glasses showed the strong; red fluorescence, as has been reported in the metaphosphate glasses [1]. Among $60P_{2}O_{5}-35M_{2}O-5Al_{2}O_{3}-10MnO$ and $60P_{2}O_{5}-35M'O-5Al_{2}O_{3}-10MnO$ glasses (M: Li, Na, and K; M': Ca, Zn, Sr, and Ba), it was found that the Mn$^{2+}$ red fluorescence intensity in the $60P_{2}O_{5}-35ZnO-5Al_{2}O_{3}-10MnO$ glass was strongest. In $(65-x)P_{2}O_{5}-35ZnO-xAl_{2}O_{3}-10MnO$ glasses ($x = 0-10$), it was found that the Mn$^{2+}$ red fluorescence intensity of the glasses without Al$_2$O$_3$ was strong. In $(100-y)P_{2}O_{5-y}ZnO-10MnO$ and $60P_{2}O_{5}-35Zn-zMnO$ glasses ($y = 20-60$, and $z = 0.5-20$), the Mn$^{2+}$ red fluorescence intensity of $65P_{2}O_{5}-35ZnO-10MnO$ glass was strongest.

It is considered that Mn$^{2+}$ red fluorescence properties are directly influenced by the local structure of the Mn$^{2+}$ ions, because the red fluorescence are caused by the transitions of 3d electrons in the outermost shell of Mn$^{2+}$ ions. In addition, it has already been reported that the local structure around Mn$^{2+}$ ions in the borate glasses was investigated by analyzing the XAFS spectra [2]. However, in studying the glass composition dependence of the Mn$^{2+}$ local structure, phosphate glasses have not been investigated.

In this study, to reveal the glass composition dependence of the local structure around Mn$^{2+}$ ions in phosphate glasses, the Mn K-edge X-ray absorption fine structure (XAFS) spectra of various phosphate glasses were measured and the Mn-O bond length was analyzed.

2. Experimental

For measuring the XAFS spectra, $60P_{2}O_{5}-35M_{2}O-5Al_{2}O_{3}-10MnO$ (35M5A110Mn), $60P_{2}O_{5}-35M'O-5Al_{2}O_{3}-10MnO$ (35M'5A110Mn), $(65-x)P_{2}O_{5}-35ZnO-xAl_{2}O_{3}-10MnO$ (35ZnxAl110Mn), $(100-y)P_{2}O_{5-y}ZnO-10MnO$ (yZn10Mn), and $65P_{2}O_{5}-35Zn-zMnO$ (35ZnzMn) glasses (M: Li, Na, and K; M': Ca, Zn, Sr, and Ba, $x = 0-10$; $y = 20-60$; $z = 0.5-20$) were prepared by a melt-quenching method and polished. The Mn K-edge XAFS spectra of 6.0-7.5 keV were measured by the fluorescence mode using a XAFS spectrometer of a beam line BL-3 at the SR center of Ritsumeikan University. In addition, the XAFS
spectra of reference samples, MnO, MnAl₂O₄, and MnFe₂O₄, which were put on an adhesive tape, were measured by the same method. The analysis of Mn K-edge XAFS spectra for the phosphate glasses and the reference samples has been performed by using the software packages, Athena and Artemis of Ifffit, as follows: The XAFS oscillation curve, $\chi(k)$, was obtained after normalization and subtraction of the smooth background, where k is the magnitude of the wave vector of the photoelectron. To obtain the radial structure functions, $|F(R)|s$, the k^3 weighted $\chi(k)$, $k^3\chi(k)$, was Fourier transformed over the range from 2 to 9 Å⁻¹ in k, where R is the distance from the Mn²⁺ ion. To obtain the Mn-O bond length, $R_{\text{Mn-O}}$, the Mn-O interaction in the radial structure functions, $|F(R)|s$ for the phosphate glasses in the R-range of 1-2 Å (in the first shell) was curve-fitted by the nonlinear least square curve-fitting method using the first scattering path of MnO FEFF.

3. Results and discussion

3.1 Analysis of MnO, MnAl₂O₄, and MnF₂O₄

Radial structure functions, $|F(R)|s$, of reference samples, MnO, MnAl₂O₄, and MnFe₂O₄, are shown in Fig. 1. In the MnO (NaCl structure), which consists of octahedrally coordinated Mn²⁺ ions, the Mn-O interaction appeared in the region 1.29-2.15 Å, Mn-Mn interaction appeared in the region 2.15-3.20 Å, Mn-O interaction appeared in the region 3.20-3.62 Å, Mn--Mn and Mn---O interactions appeared overlappingly in the legion 3.62-4.40 Å, Mn---Mn interaction appeared in the region 4.40-5.46 Å. In the MnF₂O₄ (inverse-spinel structure), which consists of octahedrally coordinated Mn²⁺ ions, the Mn-O interaction appeared in the region 0.98-1.96 Å, Mn-Mn (or Fe(2)), Mn-Fe(1), Mn--O and Mn---O interactions appeared overlappingly in the region 2.15-3.70 Å, Mn----O and Mn-----O interactions appeared overlappingly in the region 3.70-4.55 Å, and Mn-Mn (or Fe(2)) interactions appeared overlappingly in the region 4.55-5.50 Å, where Fe(1) and Fe(2) are tetrahedrally and tetrahedrally coordinated Fe³⁺ ions, respectively. In MnAl₂O₄ (normal spinel structure), which consists of tetrahedrally coordinated Mn²⁺ ions, the Mn-O interaction appeared in the region 1.07-2.02 Å, Mn-Al, Mn--O, and Mn-Mn interactions appeared overlappingly in the region 2.30-3.68 Å, Mn---O interaction appeared in the region 3.95-4.66 Å, and Mn----O, Mn--Al, Mn-----O and Mn---Al interactions appeared overlappingly in the region 4.66-5.73 Å. In these reference samples, although the coordination
number of Mn$^{2+}$ ions in MnO and MnFe$_2$O$_4$ differs from that in MnAl$_2$O$_4$, the Mn-O interactions nevertheless appeared at the same distance from the Mn$^{2+}$ ion. Therefore, it is difficult to decide the coordination number of Mn$^{2+}$ by using the Mn-O bond length.

3.2 Mn-O bond length in 35M5Al10Mn and 35M'5Al10Mn glasses

Radial structure functions, $|F(R)|$, of 35M5Al10Mn and 35M'5Al10Mn glasses are shown in Fig. 2. In these samples, only the Mn-O interaction appeared in the region 1.07-2.15 Å. Fluorescence spectra of 35M5Al10Mn and 35M'5Al10Mn glasses are shown in Fig. 3. In these samples, only the red fluorescence band due to the 3d-3d ($^4T_{1g} \rightarrow ^6A_{1g}$) transition of Mn$^{2+}$ ions appeared at about 600 nm, and therefore it is certain that the Mn$^{2+}$ ions are octahedrally coordinated with 6 oxide ions.

Accordingly, assuming that the Mn$^{2+}$ ions are octahedrally coordinated with 6 oxide ions in a phosphate glass, the Mn-O bond length, $R_{\text{Mn-O}}$ is obtained by analyzing the radial structure function using the FEFF of MnO. The values of $R_{\text{Mn-O}}$ for the 35M5Al10Mn and 35M'5Al10Mn glasses are shown in Table 1. The $R_{\text{Mn-O}}$ of MnO is 2.18 Å, which agrees with that of a previous report [3]. In the 35M5Al10Mn glasses, the $R_{\text{Mn-O}}$ is constant to be about 2.12 Å. In the 35M'5Al10Mn glasses, the $R_{\text{Mn-O}}$ increased from 2.06 to 2.11 in the M'2+ order Zn$^{2+}$, Ca$^{2+}$, Sr$^{2+}$, and Ba$^{2+}$. Therefore, in the 35M5Al10Mn glasses, it is thought that the Mn$^{2+}$ ions are easily dissolved into these host glasses by themselves, because the size of MnO$_6^{10-}$ is not changed. On the other hand, in the 35M'5Al10Mn glasses, the Mn$^{2+}$ ions, of which the valence is equal to that of M'$^{2+}$ ions, are dissolved in the M'$^{2+}$ sites, and therefore the size of MnO$_6^{10-}$ increases with increasing the ionic radius of M'$^{2+}$ in the order...
Zn$^{2+}$, Ca$^{2+}$, Sr$^{2+}$, and Ba$^{2+}$ [4].

3.3 Mn-O bond length of $35Zn_xA1_{10}Mn$ glasses

Radial structure functions, $|F(R)|$, of $35Zn_xA1_{10}Mn$ glasses are shown in Fig. 4. For $x = 0$, the Mn-O interaction appeared in the region 1.22-2.12 Å, while for $x = 1-8$, the Mn-O interaction appeared in the region 1.07-2.05 Å. As mentioned above, the values of R_{Mn-O}, which were obtained by curve-fitting the Mn-O interactions, are shown in Table 2. The R_{Mn-O} was 2.13 Å for $x = 0$, whereas the R_{Mn-O} was about 2.07 Å for $x = 1-8$. In aluminophosphate glasses, the amount of the Q^n units of PO$_4$ groups with lower n, where n denotes the number of bridging oxygen, that is, 0, 1, 2, or 3, increases with an increase in Al$_2$O$_3$ content [5, 6]. Therefore, the amount of non-bridging oxygen increases with an increase in Al$_2$O$_3$ content. As mentioned above, the Mn$^{2+}$ ions dissolve in the Zn$^{2+}$ site, and hence the effect of MnO on glass structure is similar to that of ZnO as an intermediate oxide. Therefore, on the basis of the report that the change of Q^n units in $(100-y')$PO$_5$-$y'ZnO$ glasses [7], $35Zn10Mn$ glass consists of only Q^2 units. In the $Zn_xA1_{10}Mn$ glasses, with increasing x, the amount of Q^2 units decreased and the amount of Q^1 units increased. However, it is difficult that the significant change of R_{Mn-O} due to the small addition of Al$_2$O$_3$ is explained by the gradual changes in the amount of Q^2 and Q^1 units. It has been reported that PO$_4$ groups form into the 2-dimensional network structure in a phosphate glass and into the 3-dimensional network structure in an aluminophosphate glass [8]. This is because that Al$_2$O$_3$ effects the formation of 3-dimensional phosphate network structure because of incorporating an AlO$_4$, AlO$_5$, or AlO$_6$ group into a space among the PO$_4$ groups. Consequently, in the $35Zn_xA1_{10}Mn$ glasses, it is thought that the R_{Mn-O} of $35Zn10Mn$ glass ($x = 0$) was much longer than that of $35Zn_xA1_{10}Mn$ glasses ($x = 1-10$) because of the difference in the phosphate network structure.

3.4 Mn-O bond length of $yZn10Mn$ glasses

Radial structure functions, $|F(R)|$, of $yZn10Mn$ glasses are shown in Fig. 5. The Mn-O interaction appeared in the region 1.07-2.18 Å. The glass composition dependence on R_{Mn-O}, which was obtained by curve-fitting as mentioned above, is shown in Fig. 6. The R_{Mn-O} values

![Fig. 4. Radial structure functions, $|F(R)|$, of $35Zn_xA1_{10}Mn$ glasses.](image.png)

Table 2. Mn-O bond length, R_{Mn-O} of $35Zn_xA1_{10}Mn$ glasses.

<table>
<thead>
<tr>
<th>Sample</th>
<th>R_{Mn-O}/Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>35Zn10Mn</td>
<td>2.13</td>
</tr>
<tr>
<td>35Zn1A10Mn</td>
<td>2.08</td>
</tr>
<tr>
<td>35Zn2A10Mn</td>
<td>2.07</td>
</tr>
<tr>
<td>35Zn4A10Mn</td>
<td>2.08</td>
</tr>
<tr>
<td>35Zn5A10Mn</td>
<td>2.08</td>
</tr>
<tr>
<td>35Zn6A10Mn</td>
<td>2.05</td>
</tr>
<tr>
<td>35Zn8A10Mn</td>
<td>2.08</td>
</tr>
<tr>
<td>35Zn10A10Mn</td>
<td>2.06</td>
</tr>
</tbody>
</table>
for \(y = 35 \) and 60 show the maximum of 2.13 and 2.12 Å, respectively, and the \(R_{\text{Mn-O}} \) for \(y = 55 \) has the minimum of 2.06 Å. In \((100-y')P_2O_5-y'ZnO\) glasses, the Q\(^6\) units of the PO\(_4\) groups have already been analyzed using \(^{31}\text{P}\) MAS NMR as follows [7]: For \(35 \leq y' < 40 \), the PO\(_4\) groups are composed of Q\(^2\) and Q\(^3\) units. In addition, with increasing \(y' \), the amount of Q\(^2\) units increases and that of Q\(^3\) units decreases. For \(y' = 40 \), all the PO\(_4\) groups have Q\(^2\) units. For \(40 < y' < 65 \), the PO\(_4\) groups consist of both Q\(^1\) and Q\(^2\) units, and the amount of Q\(^1\) units nearly equals to that of Q\(^2\) units at \(y' \) of 60. All the PO\(_4\) groups have Q\(^1\) units for \(y' = 65 \). For \(65 < y' \leq 70 \), the PO\(_4\) groups consist of Q\(^0\) units. With increasing \(y' \), the amount of Q\(^0\) units increases and that of Q\(^1\) units decreases. As mentioned above, the effect of MnO on glass structure is similar to that of ZnO, because the Mn\(^{2+}\) ions dissolve in the Zn\(^{2+}\) site in the \(yZn10Mn \) glasses. Therefore, it is supposed that the structures of the \(yZn10Mn \) glasses for \(y = 35, 55, \) and 60 are similar to those of the \((100-y')P_2O_5-y'ZnO\) glasses for \(y' = 41, 59, \) and 64, respectively. Consequently, it is found that the \(R_{\text{Mn-O}} \) is the maximum in the phosphate glass consisting of either Q\(^1\) or Q\(^2\) units, and that the \(R_{\text{Mn-O}} \) is the minimum in the phosphate glass consisting of the same amount of Q\(^1\) and Q\(^2\) units.

3.5 Mn-O bond length of 35Zn\(_z\)Mn glasses

Radial structure functions, \(|F(R)|s \), of 35Zn\(_z\)Mn glasses are shown in Fig. 7. The Mn-O interaction appeared in the region 0.98-2.18 Å. The MnO addition dependence on \(R_{\text{Mn-O}} \), which was obtained by curve-fitting as mentioned above, is shown in Fig. 8. The \(R_{\text{Mn-O}} \) increases with increasing \(z \) from 0.1 to 10, and has the maximum at \(z = 10 \), and the decreases with the increasing \(z \) from 10 to 20. As mentioned above, the effect of MnO on glass structure is similar to that of ZnO, and therefore the structures of the 35Zn\(_z\)Mn glasses (0.1 \(\leq z < 10 \)) are corresponding to those of the \((100-y')P_2O_5-y'\)ZnO glasses (35 \(\leq y' < 41 \)) [7]. The PO\(_4\)
groups form Q^2 and Q^3 units, and with increasing z, the amount of Q^2 units increases and that of Q^3 units decreases. The structure of 35Zn10Mn glass is similar to that of 59P$_2$O$_5$-41ZnO glass, and hence the PO$_4$ groups consist of Q^2 units. The structures of the 35ZnzMn glasses ($10 < z \leq 20$) are corresponding to those of the $(100-\gamma')P_2O_5\gamma'ZnO$ glasses ($35 \leq \gamma' < 41$), and the PO$_4$ groups consist of Q^1 and Q^2 units, and with increasing z, the amount of Q^1 units increases and that of Q^2 units decreases. Consequently, the R_{Mn-O} has the maximum in 35Zn10Mn, where the PO$_4$ groups form only Q^2 units.

4. Conclusion
In the 60P$_2$O$_5$-35M$_2$O-5Al$_2$O$_3$ glasses, where the Mn$^{2+}$ ions are easily dissolved by themselves, and therefore, the Mn-O bond length of the MnO$_{6}^{10-}$ groups was constant to be about 2.12 Å. On the other hand, in the 60P$_2$O$_5$-35M$'$_O-5Al$_2$O$_3$-10MnO glasses, the Mn-O bond length of MnO$_{6}^{10-}$ increased with increasing the ionic radius of M$^{2+}$ in the order Zn$^{2+}$, Ca$^{2+}$, Sr$^{2+}$, and Ba$^{2+}$, since the Mn$^{2+}$ ions, of which the valence was equal to that of M$^{2+}$ ions, were dissolved in the M$^{2+}$ sites. In the 60P$_2$O$_5$-35ZnO-xAl$_2$O$_3$-10MnO glasses, Al$_2$O$_3$ effects the formation of 3-dimensional phosphate network structure; the Mn-O bond lengths of MnO$_{6}^{10-}$ groups were 2.13 and 2.07 Å without and with addition of Al$_2$O$_3$, respectively. In the $(100-\gamma)P_2O_5\gammaZnO$-10MnO and 65P$_2O_5$-35ZnO-zMnO glasses, the effect of MnO on glass structure is similar to that of ZnO, because the Mn$^{2+}$ ions dissolve in the Zn$^{2+}$ site in the $yZn10Mn$ glasses as mentioned above, and therefore it was found that the Mn-O bond length was changed, because the Q^n unit ratio of the PO$_4$ groups was changed by mole fractions of y and z. That is to say, for $y = 35$ and $z = 10$, the Q^n units of the PO$_4$ groups were only Q^2 units, and the Mn-O bond length of the MnO$_{6}^{10-}$ groups was the maximum of 2.13 Å. For $y = 60$, the PO$_4$ groups consisted of only Q^1 units, and the Mn-O bond length was the maximum of 2.12 Å. For $y = 55$, the amount of Q^1 units was nearly equal to that of Q^2, and the Mn-O bond
length was the minimum of 2.06 Å.

References