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Abstract 

 

  The relaxed Cu(001) surface was analyzed by high-resolution medium energy ion 

scattering (MEIS) using 120 keV He
+
 ions in a layer-by-layer fashion. We found the 

top-layer contraction of 1.6 % and the 2nd-layer expansion of 0.9 %, quite different 

from the close-packed (111) surface. Then enhanced thermal vibration amplitudes 

(TVAs) and the correlations between the 1st and 2nd nearest neighbor atoms in the 

[101]- and [001]-string were also determined simultaneously by MEIS spectrum 

analysis combined with Monte Carlo simulations of ion trajectories considering the 

surface relaxation and enhanced TVAs as well as correlations. We obtained the TVAs 

of the top-layer atoms strongly enhanced by 1.67±0.06 and 1.55±0.04 times that of the 

bulk (0.085 Å) in the lateral and surface normal direction, respectively and the 

correlation coefficients of +0.33±0.04 and +0.28±0.04, respectively for Cu atoms in 

the [101]- and [001]-axis oscillating perpendicular to each string. The correlation 

between the 2nd nearest neighbor atoms in the [101]-string is small probably less than 

+0.2. The results obtained here are compared with the other experimental reports and 

the Debye approximation as well as molecular dynamics simulations using the 

embedded atom method.  

 

 

 

 

 

E-mail: ykido@se.ritsumei.ac.jp, Tel: +81-77-561-2710, Fax: +81-77-561-2657 

mailto:ykido@se.ritsumei.ac.jp


2 

 

I. INTRODUCTION 

  The (111) surface of a crystal taking a face-centered cubic lattice (fcc) is close 

packed and thereby most energetically stable. Therefore, another one such as (001) 

surface generally tends to be relaxed significantly and sometimes reconstructed to 

lower the surface energy. The Cu(001) has a typical relaxed surface without 

reconstruction. According to the previous investigations based on spectroscopic 

techniques[1-5] and theoretical calculations[6], the top inter-layer is contracted, while 

the 2nd inter-layer expanded. In addition, strong enhancements of the 

root-mean-square (rms) thermal vibration amplitudes (TVAs) take place in both lateral 

( //u ) and surface normal ( u ) directions compared with the bulk thermal vibration 

amplitude ( bulku ). So far, there are many reports on the enhanced thermal lattice 

vibrations of the Cu(001) surface[3-6]. For precise analysis, however, correlated 

thermal vibrations should be taken into account in any techniques. In many cases, 

however, the correlation effect has not been considered. Only the previous MEIS 

analysis[4] employed a simple reduction factor which takes account of the correlation 

effect to some extent. It is emphasized that the enhanced TVAs and correlations should 

be determined self-consistently. 

  Previously, we determined the top interlayer distance as well as enhanced and 

correlated thermal vibrations of the close-packed Cu(111) surface by high-resolution 

medium energy ion scattering (MEIS)[7]. It was revealed that the top interlayer 

distance is slightly contracted by 0.5 % and the thermal vibration amplitude in surface 

normal direction ( u ) is considerably enhanced by 70 %, while only slightly enhanced 

by 10 % in the lateral direction. The results presented above are in agreement with the 

molecular dynamics (MD) simulations using the embedded-atom method (EAM)[7]. 

However, the correlation coefficient determined by MEIS to be +0.24 is considerably 

smaller than that (+0.40) estimated from the MD simulations for the motion 

perpendicular to the [101]-string. 

  In this study, we determine precisely the top and 2nd inter-layer distances for 

Cu(001) by the shadowing effect resulting from a particle nature of medium energy He 

ions, which indeed makes shadow cones behind surface atoms. Monte Caro (MC) 

simulations of ion trajectories along some major crystal axes allow for calculating the 

close encounter (hitting) probability for each layer atoms taking account of the 

enhanced and correlated thermal vibrations. The enhanced TVAs of the top-layer atoms 

as well as the correlation coefficients between the 1st and 2nd nearest neighbor atoms 
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in the [101]- and [001]-string are determined in such a way that the MC simulation 

continues until the close encounter probabilities calculated from the simulation 

coincides with those derived from the observed MEIS spectrum. Therefore, it is 

essential to analyze the observed MEIS spectrum in a layer-by-layer manner and to 

employ a reliable line shape for each scattering component  in order to decompose 

uniquely the observed MEIS spectra. The previous MEIS spectrum analysis[7] used 

asymmetric Gaussian shapes. It was found out later that the line shape for the 

scattering component from the top layer atoms was well reproduced by an 

exponentially modified Gaussian (EMG) profile[8,9]. This EMG line shape also 

reproduced well the MEIS spectra observed for Au nano-clusters[10,11]. Another 

important factor is the energy loss for ions incident and/or scattered along a major 

crystal axis. In this case, an ion passes close to a target nucleus and thus loses a large 

energy compared with random penetration, so called “skimming effect”[12]. Thus we 

take account of the skimming effect and employ the EMG function as the line shape to 

deconvolute the observed MEIS spectrum in the present analysis. The results obtained 

are compared with the theoretical predictions by the Debye approximation and the MD 

simulations employing the EAM potentials[13]. 

 

II. EXPERIMENTAL  

  Copper is a typical well conductive metal taking a fcc crystalline structure with a 

lattice constant of a = 3.615 Å (Debye temperature: D  = 315 K)[14]. We purchased 

a disk-shaped and mirror-finished Cu(001) substrate with a purity of 4N from Surface 

Preparation Laboratory (SPL). The clean Cu(001) surface was prepared by many 

cycles of sputtering with 0.75-1.5 keV Ar
+
 followed by annealing at 650°C for 10 min 

in ultrahigh vacuum (UHV) and then a (1×1) clear image was observed by reflection 

high energy electron diffraction (RHEED). No surface contaminations of C and O were 

confirmed by Auger electron spectroscopy and high-resolution MEIS. Then the sample 

was transferred to an UHV scattering chamber and mounted on a 6-axis goniometer. A 

120 keV He
+
 beam was incident on the sample surface and scattered He

+
 ions were 

energy-analyzed by a toroidal electrostatic analyzer (ESA) with an energy resolution of 

3101E/E   (full width at half maximum: FWHM)[15,16]. Such an excellent 

energy resolution allowing for layer-by-layer analysis was achieved mainly by making 

a well collimated beam size of 0.18 mm in the horizontal plane and a good spatial 

resolution of 40 μm of the position sensitive detector connected to the toroidal ESA. 
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The detection efficiency and the solid angle subtended by the toroidal ESA detector 

were ε = 0.44 and ΔΩ = 7.64×10
–5

 [str], respectively. It is crucial to measure precisely 

an integrated beam current. For this purpose, the sample was positively biased by +90 

V to suppress secondary electron emission and the beam current was conducted to 

ground via an ammeter. In order to avoid radiation damage to the sample surface, we 

shifted the beam position after accumulating a beam current of 1 μC.  

  Figure 1 shows a typical MEIS spectrum (circles) observed for 120 keV He
+
 ions 

incident along the [ 110 ]-axis and backscattered to the [101]-direction. Two surface 

peaks clearly resolved correspond to the scattering components from two Cu isotopes, 

63
Cu(69 %) and 

65
Cu(31 %). The thick and thin solid curves, respectively are 

best-fitted total spectrum and decomposed scattering components from the top, 2nd- 

and 3rd-layer Cu atoms. Here, the energy differences between the scattering 

components from neighboring layers are ~2.0 times that for random penetration 

(skimming effect). The close encounter probabilities PCL for the 2nd- and 3rd-layer Cu 

atoms are deduced to be 0.23±0.02 and 0.05±0.03, respectively by deconvoluting the 

surface peak. How to decompose the MEIS spectrum will be described later in detail.  

 

 

 

 

 

 

 

 

 

 

 

 

FIG.1. MEIS spectrum (circles) observed for 120 keV He
+
 ions incident along the 

Cu-[ 110 ]-axis and scattered to 90° ([101]-axis). Thick and thin solid curves denote best-fitted 

total and decomposed spectra, respectively.  

 

III. MONTE CARLO SIMULATIONS OF He ION TRAJECORIES 

  The scattering yield from the n-th layer atoms, nY  is expressed by 
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inCLoutn cos/)n(PxN)d/d(Q))n(E(Y   ,                        (1) 

 

where )n(Eout
 is the emerging energy of He

+
 ions scattered from the n-th layer atoms, 

Q number of incident He
+
 ions,  d/d  differential scattering cross section, xN  

number of target atoms [atoms/cm
2
] and   is He

+
 fraction. The close encounter 

probability for the n-th layer atoms is denoted by )n(PCL  and in  is an incident angle 

with respect to surface normal. We employed the scattering cross sections proposed by 

Lee and Hart[17], which gives good approximations for relatively low Z-number 

atoms[18]. Indeed, for the scattering angle above 60° the Lee-Hart scattering cross 

sections agree well with those calculated from the Molière potential and also from the 

potential derived by solving the Poisson equation assuming the Hartree-Fock-Slater 

atomic model[19,20]. As mentioned before, in this MEIS spectrum analysis, we used 

the asymmetric line shape expressed by the EMG function, which was proposed by 

Grande et al.[8]. The EMG function is given by 

 

                                                                    (2) 

 

where 0  is an asymmetric parameter calculated by the coupled channel 

method[21,22] and n  is the energy spread of emerging He
+
 ions backscattered from 

the n-th layer atoms. The square of the energy spread is expressed by 
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experimentally in advance[9,10,24,25]. Thus the exact line shape for each scattering 

component from the n-th layer atoms was given by the asymmetric factor derived from 

the coupled channel calculations and the energy spread calculated from the 

Lindhard-Scharff formula, as described before. 

  The enhanced TVAs of the top-layer atoms as well as correlations between the 1st 

and 2nd nearest neighbor atoms can be derived by calculating the close encounter 

probability, PCL(n) for each layer atoms. We performed the MC simulations of He ion 

trajectories based on the single-row approximation[26] and calculated the close 

encounter probabilities by varying the //u  and u  values and the correlation 

coefficients until the calculated PCL(n) values coincide with the observed ones. Note 

that the close encounter probability is normalized by that for atoms undergoing no 

shadowing effect, for example, top-layer atoms. Figure 2 shows the schematic of a 

trajectory of an ion incident along some major crystalline axis. In the case of medium 

energy He
+
 incidence, the time during passing through a lattice site atom is ~10

−17
 s, 

while the period of the thermal vibrations of Cu at room temperature (RT) is estimated 

to be ~2×10
−14

 s at least from the Debye cut-off frequency ( /k DBD   ; Bk : 

Boltzmann constant,  : Planck constant). Therefore, the lattice site atoms can be 

regarded to be at rest during the passage of He ions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG.2. Ion trajectory along a string. The ion undergoes a series of small -angle collisions from 

thermally displaced lattice site atoms in the string. 

 



7 

 

The ion incident along a crystalline row taken as the z-axis undergoes a sequence of 

discrete small-angle deflections by the screened Coulomb potential of the atoms in the 

string. The incident position in the 1st layer is denoted as )Y,X(R 000 


, which is 

generated by uniform random numbers. The position of the atom in the n-th layer 

 n

//

nn rrr


 (3D) is given taking account of the enhanced thermal vibration 

amplitudes and correlation coefficients assumed appropriately.  A nuclear encounter 

would have taken place if the atom residing in the n-th layer were located exactly at 

)R(Rr n0n

//

n 


 , where )Y,X(:R nnn


 is the ion crossing position in the nth-layer. 

Note that only the coordinates in the (x, y) planes are relevant to the problem. The 

normalized close encounter (hitting) probability for the nth-layer atoms located in a 

crystal string (z-axis) is calculated by 
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Here, A is an incident area, N the number of incident ions, and S is the correlation 

matrix given by  jijiS  , where < > means a time average. The 

),...,,( )1n(221    is the correlated 2(n-1)-variate normal distribution expressed by 

,T 1   where )...,,,( )1n(221    is the normalized position vector generated 

(6) 

(5) 
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by assembling the normal distribution of the 2(n-1)-univariate independent random 

variables and the transformation matrix T is given by 1STT
~  [27]. We assumed here 

no correlations between the x and y positions. We determine the enhanced TVAs of //u  

and u  and the correlation coefficients, Si j in such a way that the assumed values 

reproduce the close encounter probabilities derived from the observed MEIS spectrum 

analysis. 

  The results obtained from the observed MEIS spectrum analysis combined with the 

MC simulations are compared with theoretical predictions calculated from the Debye 

model and the MD simulations using the EAM potential of the FBD 

(Foiles-Baskes-Daw) type[13]. The bulk TVA ( bulku ) and the correlation coefficients 

are simply expressed by the Debye approximation. The time-varied atomic 

displacement can be regarded as a wave function, which is expressed by superimposing 

the standing lattice waves as follows ( l


: lattice vector): 
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where  , qe


 and ωqσ represent a vibrational mode (longitudinal or transverse, 

acoustic or optical), the unit vector directed to wave vector q


 and the corresponding 

angular frequency of the mode, respectively. The atomic mass and atomic number 

density are denoted by M and N, respectively, and 
qa  and 

qa  are creation and 

annihilation operators satisfying the exchange relation. The derivation of the above 

expression is given in Appendix. The correlated vibration amplitude between the n-th 

nearest neighbor atoms is expressed as the following expectation value. 
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thermal vibration amplitude for a monatomic crystal is given by 

 

 

                                                                  (9) 
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3/1  . If one lets n = 0, the root-mean-square bulk 

thermal vibration amplitude (3D) is obtained. For Cu at RT, the Debye approximation 

gives the bulk thermal vibration amplitude of 0.084 Å. Figure 3 shows the correlation 

coefficients for the motion perpendicular to the [101]-string calculated from the MD 

simulations[7] and Debye model. The bulku  value of 0.085 Å and the correlation 

coefficients for the nearest neighbors derived from the MD simulations coincide well 

with those calculated from the Debye approximation ( 84.0ubulk   Å), although slight 

deviations are seen for the nearest neighbor distance longer than a26 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG.3. Correlation coefficients calculated from MD(open squares) and Debye model (full 

circles) for neighboring Cu atoms in the [101]-string for motion perpendicular to the 

[101]-axis. Triangles present MEIS results.  

 

IV. RESULTS AND DISCUSSION 

  In the present study, we first determine the relaxed inter-layer distances and then 

estimate the enhanced TVAs and the correlation coefficients between the 1st and 2nd 

BZ

3

D

B

q

0
BZ

q
3

4
,dq

nqd

)qndsin(2
}

2

1

1)Tk/qvexp(

1
{

v

q

M

6
)dnl(u)l(u

D










  

  

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0 Correlation Coefficients: Cu(001)

between n-th nearest Neighbors

for motion    [101]-string

C
o

rr
e

la
ti

o
n

 C
o

ef
fi

ci
e

n
ts

n-th nearest Neighbors

 Debye

 MD

 MEIS

 



10 

 

nearest neighbor atoms in the [101]- and [001]-string for the motion perpendicular to 

the [101] and [001]-axis, respectively. To do that, MEIS spectra were measured for 

various scattering geometries, as indicated in Fig. 4. It is crucial to decompose 

precisely the observed MEIS spectrum into each scattering component from the top - 

down to 4th-layer atoms. The best-fit was obtained by the R-factor analysis, which is 

defined by 
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where )E(Y i

EXP

j  and )E(Y i

SIM

j  , respectively are observed and simulated scattering 

yields for He
+
 ions scattered from atomic species j with an energy iE  and Max

jY  is the 

observed maximum yield for He
+
 ions scattered from atoms j in the energy range of 

interest. 

  First we determine the relaxed interlayer distance between the top and 2nd-layer 

12d  and that between the 2nd- and 3rd-layer 23d . This can be made by a simple 

trigonometry for polar-angle scan profiles. We performed polar scans around (i) the 

[ 110 ]-axis at the [100]-azimuth and (ii) around the [ 211 ]-axis at the [110]-azimuth for 

120 keV He
+
 ions scattered mainly from the 2nd-layer atoms in the case of (i) and 

mainly from the 3rd- and 4th-layer atoms in the case of (ii) together with those 

scattered from deeper layer atoms (see Fig. 4 and Figs. 5(a) and (b)). In the case of (i), 

the angle giving a scattering yield minimum shifts by +0.46±0.05° from the [101]-axis 

for the scattering component mainly from the top-4th layers and that for the scattering 

component mainly from the 3rd-4th layers in the case of (ii) shifts by +0.1±0.05° from 

the [112]-axis. As the results, we obtain 005.0779.1d12   and 007.0602.3d13   Å 

and thus find the top-layer contraction of 1.6 % and the 2nd-layer expansion of 0.9 %. 

Such a surface relaxation found for the Cu(001) surface is quite pronounced compared 

with the slight contraction of 0.5 % for the (111) surface[7]. This result is consistent 

with the data given by the previous MEIS[3,4] and MD simulation[6] (see Table I).  

  Next, we derive the enhanced TVAs of the top-layer atoms in the lateral and surface 

normal directions. Hereafter, the MC simulations are performed considering the 

surface relaxation determined before (see Fig. 6). The root-mean-square bulk thermal 

vibration amplitude bulku  was determined by taking a polar scan around the [001]-axis 

for scattering components from deeper layers. The simulated polar scan profile which  
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FIG.4. Side views of various 

scattering geometries in (010)- and 

( 011 )-plane. Lattice site atoms 

denoted by solid circles and 

dashed circles belong to a 

different scattering plane. 
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FIG.5. (a) Polar scan spectrum around 

[101]-axis observed for scattering 

components mainly from 2nd layer 

(triangles) and from deeper layers 

(circles). (b) Polar scan spectra 

around [ 211 ]-axis observed for 

scattering components mainly from 

3rd and 4th layers (triangles) and 

from deeper layers (circles). Solid 

curves denote polynomial least 

square fitting. 
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FIG.6. Side view of relaxed Cu(001) surface and [001]- and [101]-axis. 

 

was obtained by calculating the close encounter probabilities for the atoms in the 

7th-10th layers was best fitted to the observed one by assuming an appropriate bulku  

value. Figure 7 indicates the observed (squares) and simulated polar scan spectra as a 

function of polar angle around the [100]-axis. Obviously the assumption of 

003.0085.0ubulk   Å gives the best-fit, which coincides with the value of 

0.085±0.002 Å calculated from the MD simulation and agrees well with the value of 

0.084 Å derived from the Debye approximation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG.7. Observed polar scan 

spectrum (triangles) around 

[001]-axis in ( 011 ) plane for 

scattering component from 

deeper layers. Solid curves 

denote simulated polar scan 

profiles assuming 1D-thermal 

vibration amplitude of 0.065, 

0.075, 0.085 and 0.095 Å. 
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 We measured the following four MEIS spectra for 120 keV He
+
 ions (i) (ii) incident  

along the [ 111 ]-axis and scattered to the [111]- and [221]-direction, (iii) the 

[ 100 ]-incidence and scattering to 81° about 3° off from the [100]-azimuth, and (iv) 

the [ 110 ]-incidence and scattering to the [101]-direction. In the case of (i) and (ii), 
)1(

//u  and )1(u  for top-layer atoms are the fitting parameters, which are determined by 

best-fitting both the surface peaks involving the scattering components from the top-, 

2nd-, 3rd- and 4th-layer atoms. Note, here, that the top- and 2nd-layer atoms are not 

shadowed and the shadowing effect for the 3rd-layer atoms is quite the same as that for 

the 4th-layer atoms (see Fig. 4). The close encounter probabilities for the 3rd and 

4th-layer atoms are deduced to be 30.0)4,3(P111

CL   and 17.0)4,3(P221

CL   for the ions 

passing along the [111]- and [221]-axis, respectively (The MEIS spectra are not shown 

here for brevity). Here, we assumed the approximation that the scattering event 

happening in the incident path is independent of that in the exit path and time 

reversibility[27] holds for the emerging path[27]. 

Figure 8(a) shows the combination of ( )1(

//u , )1(u ) which reproduces the close 

encounter probabilities for the 3rd- and 4th-layer atoms measured under the conditions 

(i) and (ii). The crossing point for the two curves gives the actual values of 

136.0u )1(

//   and 129.0u )1(   Å (case (A)), respectively. Then we considered the 

correlations between the 1st nearest neighbor atoms in the [111]- and [221]-string 

(Debye: 145.0S 111

12  , 079.0S 221

12  ) and calculated the combination of ( )1(

//u , )1(u ) 

which gives the same PCL values deduced from the MEIS spectrum analysis and found 

147.0u )1(

//   and 135.0u )1(   Å (case (B), see Fig. 8(b)), which are significantly 

larger by 7 % than those derived assuming no correlations. Here, we neglected 

enhancement of the TVAs of the 3rd- and 4th-layer atoms. If we consider the 

enhancement, the )1(

//u  and )1(u  values should be slightly reduced. In any case, the 

TVA for the atoms in the lateral direction is larger than that in the surface normal 

direction, quite different from the close-packed (111) surface[7]. This trend is 

consistent with the MD simulations[6] and previous MEIS analysis[4]  (see Table I). 

 Then we determined the correlation coefficients between the 1st nearest neighbor 

atoms for the motion perpendicular to the [001]- and [101]-string from the close 

encounter probabilities derived by decomposing the MEIS spectra observed under the 

conditions of (iii) (see Fig. 9) and (iv). Assuming the time reversibility, the close 

encounter probability for the 2nd-layer atoms is deduced to be 48.023.0   (double 

alignment: 02.023.0)2(P2

CL  ). Note that the correlation coefficients depend on the 
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TVAs of the atoms of interest. If we neglect the enhancement of the 2nd- and 3rd-layer 

atoms, we obtain 19.0S 001

21   and 25.0S 101

21   for the case (A) and 24.0S 001

21   and 

31.0S 101

21   for the case (B). According to the MD simulations[6,7], the TVAs of the 

2nd- and 3rd-layer atoms are also enhanced. Here, for simplicity we assume the same 

enhancement factors relative to the bulk TVA (0.085 Å) for the 2nd and 3rd-layer 

atoms calculated from the MD simulations ( 102.0)2(u)2(u //   Å, 

094.0)3(u)3(u //    Å). We estimated the correlation coefficients assuming the  

enhanced TVAs, as shown in Table II. If there is no enhancement for the TVAs for the 

2nd- and 3rd-layer atoms, the )3(P2

CL  value takes a much smaller value of 0.08×0.08 

= 0.0064 than the observed one (0.05±0.03) for the case (iv) (see Fig. 1 and Table II).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This fact also suggests that it is reasonable to assume enhanced TVAs for the 2nd- and 

3rd-layer atoms. As mentioned before, we neglected the enhancement of the TVAs for 
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FIG.8 (a) Combination (
)1()1(

// u,u  ) 

satisfying the close encounter 

probabilities, 0.30 and 0.17 for the 

3rd and 4th layer atoms for incident 

along the [111]- and [221]-axis, 

respectively. The crossing point 

( 136.0u )1(

//  , 129.0u )1(   Å) 

gives just the real enhanced thermal 

vibration amplitudes of the top layer 

atoms. Calculations were made 

neglecting correlations. (b) 

Combination (
)1()1(

// u,u  ) 

reproducing the PCL(3,4) values, 

which was calculated assuming the 

correlation coefficients 

145.0S 111

12   for [111]-string and 

079.0S 221

12   for [221]-string. 
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the 3rd- and 4th-layer atoms, when derived the 147.0u )1(

//   and 135.0u )1(   Å. This 

reduces slightly the enhancement of TVAs for the top-layer atoms. So, we average the 

following three values for (i) 136.0u )1(

//  , 129.0u )1(   Å and enhanced TVAs for the 

2nd- and 3rd-layer atoms, (ii) 147.0u )1(

//  , 135.0u )1(   Å and no enhancement for 

the 2nd- and 3rd-layer atoms, and (iii) 147.0u )1(

//  , 135.0u )1(   Å and enhanced 

TVAs for the 2nd- and 3rd-layer atoms. Thus the most probable correlation coefficients 

are estimated to be 04.028.0S 001

12   and 04.033.0S 101

12  . In the previous 

study[7], the correlation coefficient of 05.024.0S 101

12   was deduced for Cu(111) 

surface, considerably smaller than that predicted by the Debye and MD simulation. 

This underestimate is attributed to neglecting the enhancement of the TVA for the 

2nd-layer atoms. Finally, we tried to estimate the correlation coefficient for the 2nd 

nearest neighbor atoms in the [101]-string for the motion perpendicular to this axis. As 

 

 

 

 

 

 

 

 

 

 

 

 

FIG.9. MEIS spectrum (circles) observed for 120 keV He
+
 ions incident along the [ 100 ]-axis 

and scattered to 81° about 3° off from the [100]-azimuth (random direction). The thick solid 

curve is the best-fitted total spectrum assuming the close encounter probability of 0.37 for 3rd 

and 4th-layer atoms (equivalent). Thin solid curves correspond to decomposed spectra from 

(top + 2nd)-, (3rd + 4th)-, and deeper layers. 

 

seen from Fig. 1, the )3(P2

CL  for the [ 110 ]-incidence and scattering to the 

[101]-direction takes a very small value and has a large uncertainty. So, we measured 

the MEIS spectrum for He
+
 ions incident 2.6° off from the [ 110 ]-axis at the 

[100]-azimuth (scattering angle was fixed to 90°), which is indicated in Fig. 10. 

Importantly, the MC simulations show that the PCL(2) is almost constant when one tilts 
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the incident beam direction from the [ 110 ]-axis within 3°, whereas the PCL(3) is 

significantly increased. The surface peak observed is decomposed into three scattering 

components from the top-, 2nd-, 3rd-layer atoms and background (from deeper layer 

atoms). Thus we obtained 03.027.0)2(P2

CL   and 03.006.0)3(P2

CL  . The MEIS 

spectrum constructed without the contribution from the 3rd-layer is indicated by the 

thick dashed curve in Fig. 10. Note that the )2(P2

CL (0.27) should be close to that (0.23)  

 

 

 

 

 

 

 

 

 

 

 

 

FIG.10. MEIS spectrum (circles) observed for 120 keV He
+
 ions incident at 2.6° off from 

[ 110 ]-axis. Scattering plane and angle are (010) and 90°, respectively. Thick and thin solid 

curves are bet-fitted total spectrum and decomposed scattering components from 1st + 2nd 

(blue), 3rd + 4th (green), and deeper layers (black). Thick dashed curve is total spectrum 

without the scattering component from the 3rd-layer atoms. 

 

observed for the double alignment geometry ([ 110 ]-incidence and [101]-emergence), 

as mentioned before. Obviously, there is a significant contribution from the 3rd-layer 

to the surface peak and this also suggests the enhanced TVAs for the 2nd- and 

3rd-layer atoms (if not, the contribution is very small less than 0.01) . As seen from 

Table II, it is difficult to determine exactly the correlation coefficient ( 101

13S ) between 

the second nearest neighbor atoms in the [101]-string, because the correlation between 

the 1st nearest neighbor atoms is a primary contribution to the close encounter 

probability. In addition, ambiguity in the enhanced TVAs for the 2nd- and 3rd-layer 

atoms increases the uncertainties in the close encounter probabilities. Considering the 

above uncertainties, the correlation coefficient 101

13S  was estimated to be small 

probably less than +0.2 and larger than 0 (see Table II). Indeed, only acoustic phonons 
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appear for the crystalline lattice with one atom per primitive cell such as Cu and this 

mode leads to positive correlations. The correlation coefficients estimated here are 

basically consistent with the results calculated from the Debye approximation and MD 

simulations (see Fig. 3 and Table I).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSION 

  High-resolution MEIS analysis for the Cu(001) surface revealed the top-layer 

contraction of 1.6 % and the 2nd-layer expansion of 0.9 %. This result is consistent 

with the results of previous MEIS[3,4], LEED[2] and MD simulation[6]. We 

determined the bulk TVA to be 0.085±0.003 Å, which is in good agreement with that 

calculated from the Debye approximation (0.084 Å) and from the MD using the EAM 
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potential (0.085 Å). Then we derived the TVAs for the top-layer atoms in both lateral 

and surface normal directions, strongly enhanced by 67 % and 55 % (averaged for two 

cases), respectively, which are consistent with the results of the previous MEIS[4], 

while significantly larger than those calculated from the MD[6]. Interestingly, the 

enhancement in the lateral direction is larger than that in surface normal direction, 

quite different from the close-packed Cu(111) surface[7]. In addition, significant 

enhancement also occurs for the 2nd- and 3rd-layer atoms, which should be taken into 

account to determine correlation coefficients. Considering the surface relaxation and 

enhanced thermal vibrations for the subsurface atoms, we estimated the correlation 

coefficients between the 1st nearest neighbor atoms to be +0.28±0.04 and +0.33±0.04 

for the motion perpendicular to the [001]- and [101]-string, respectively. The 

correlation coefficient between the 2nd-nearest neighbor atoms in the [101]-string was 

estimated to be small probably less than +0.2. The results of correlation coefficients 

obtained here are basically consistent with the MD simulations and Debye 

approximation. 
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Appendix 

 

For simplicity, first we consider one dimensional and periodic atomic (mass: M) chain 

with a length of L = Na where a and N are an inter-atomic distance and number of 

atoms, respectively. The equation of motion for the n-th atom is given by 

)}(){(
dt

d
M 1nnn1n2

n

2

  


,                                      (1) 

where )t(n  is a displacement of the atom and κ is a spring constant. Of course, 

)t(n  satisfies the periodic condition, )t()t( nNn   . Then the )t(n  can be 

expanded by lattice Fourier series. 

)nax,()xqiexp()t(
N

1
)t( n

*

qqn

q

kn                              (2) 

The inverse Fourier transform is written by 

 
n

nnq )qxiexp()t(
N

1
)t(  .                                          (3) 

Here, we note that  
q

nmN)}nm(qaiexp{  . The equation of motion for )t(q is 

expressed by 

0)}qacos(1{
Mdt

d
q2

q

2

 


.                                            (4) 
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Then we obtain the solution of )tiexp()t( qqq    and the dispersion relation 

)}qacos(1{
M

2
q 


  for acoustic phonon. Next, we introduce a canonical 

momentum for q  defined as 
dt

d
M

q

q





  and expand )t(n  by Fourier series. 

)qxiexp(
N

M
)qxiexp(

dt

d

N

M
)qxiexp(

dt

d

N

M

dt

d
M)t( n

q

qn

q

q

n

q

qn
n  





  

                                                                    (5) 

Thus the Hamiltonian is written by 

qq

q q

2

qqq

n

2

n1n

n

2

n
2

M

M2

1
)(

2M2

1
H     


                  (6) 

In order to quantize the lattice wave, we must introduce a continuum variable x instead 

of nx . This can be done by taking a limitation that 0a  . 

  The quantization of the lattice wave is made by introducing the following 

commutation relation,  

nmmnnmnm i],[                                             (7) 

Then the Fourier components satisfy the following commutation relation,  

  q

mm n

nmnmq i}am)q(iexp{
N

i
)xiexp()qxiexp(],[

N

1
],[    

                                                                    (8) 

Now we introduce creation ( â ) and annihilation ( â ) operators defined by 

)iM(
M2

1
a),iM(

M2

1
a qqq

q

qqqq

q

q







  



 

.                (9) 

This leads to  qq ]a,a[                                             (10) 

Here, we note that qq 

   and qq 

  . 

Thus the Hamiltonian is represented by )
2

1
aa(H qq

q

q                   (11) 

From eq. (9), we have )aa(
2

M
i),aa(

M2
qq

q

qqq

q

q






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 



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Finally, the following expression is obtained: 

)}iqxexp(a)iqxexp(a{
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This one dimensional form is easily generalized to three dimensional expression,  

)}lqiexp(a)lqiexp(a{e
NM2

)l(u qq

q

q

q




  






,                    (14) 

where N and   corresponds to atomic number density and three acoustic modes of 

longitudinal (one) and transverse (two) lattice waves, respectively and qe


 denotes 

the unit vector. The practical physical value of the displacement of a lattice site atom is 

given as an expectation value given by  ))dnl(u)l(u(


 ,                 (15) 

where   corresponds to a quantized crystalline phonon field.  Substituting eq.(15) 

into eq.(14) leads to 
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Here, 
 qqqqq nnaan   and  1nnaan qqqqq 


 are used (

 qn ). If 

one assumes a thermal equilibrium at a temperature of T K, the time averaged number 

of the phonon (q, σ) is given by Bose-Einstein statistics. 
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