Soft X-ray core-level absorption study of Ni-based trinuclear complexes $[Ni{Rh(apt)_3}_2](NO_3)_n$ (n = 2, 3, 4)

Kohei Yamagami¹, Masahiro Kouno², Keisuke Yamanaka³, Arata Tanaka⁴, Nobuto Yoshinari², Takumi Konno², and Akira Sekiyama¹

- 1) Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
- 2) Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
- 3) Synchrotron Radiation Center, Ritsumeikan University, Kusatsu, Shiga 525-0058, Japan.
- 4) Department of Quantum Matter, ADSM, Hiroshima University, Higashihiroshima, Hiroshima 739-8530, Japan.

complexes Ni-Rh trinuclear The with 3-aminopropanethiolate (apt) $[Ni{Rh(apt)_3}_2]$ $(NO_3)_n$ (n = 2, 3, 4) have been successfully synthesized as a valence interconversion system [Fig.1(a)] [1]. The nickel ions are in an octahedral coordination with six sulfur ions. The chemical analysis indicates that the Ni ions in $[Ni{Rh(apt)_3}_2](NO_3)_n$ are stable as a HS-Ni²⁺ (d⁸) state for n = 2, a LS-Ni³⁺ (d⁷) state for n = 3, and a LS-Ni⁴⁺ (d⁶) state for n = 4, respectively.

The importance of hybridization effects between the transition-metal (TM) and sulfur ions in inorganic sulfides for their physical properties have conventionally been recognized because of the fact that the radial distribution of S 3*p* orbital is larger than that of O and N 2*p* orbitals. Actually, the hybridization effects in NiS and NiS₂ have been reported on the basis of Ni 2*p* core-level photoemission and Ni $L_{2,3}$ -edge x-ray absorption (XAS) [2,3]. However, the direct verifications of the local Ni 3*d* electronic states in [Ni{Rh(apt)₃}₂] (NO₃)_n are still lacking. We have thus examined the 3*d* electronic states of [Ni{Rh(apt)₃}₂](NO₃)_n probed by the Ni $L_{2,3}$ -edge XAS.

The Ni $L_{2,3}$ -edge XAS measurements were carried out at BL-11 of Synchrotron Radiation Center in Ritsumeikan University, Japan. The Ni $L_{2,3}$ -edge XAS spectra were taken in the partial electron yield (PEY) with a photon energy resolution of about 600 meV. In the PEY mode, we applied the voltage of 550 V to the Au mesh, installed in the front of microchannel plate (MCP), for the Ni $L_{2,3}$ -edge measurements in order to suppress a strong background caused by the C, N and O K-edge absorptions in the spectra [4].

We have also performed spectral simulations of a $[NiS_6]^{12-n}$ configuration-interaction cluster model under the O_h symmetry by using the XTLS 9.0 program [5]. We have reproduced the Ni $L_{2,3}$ -edge XAS spectra by optimizing the charge transfer energy from S 3p to Ni 3d orbitals: Δ and the hybridization strength described as a Slater-Coster parameter: $(pd\sigma)$.

Figure 1(b) shows the Ni $L_{2,3}$ -edge XAS spectra

of $[Ni \{Rh(apt)_3\}_2](NO_3)_n$. The satellite structure, which reflects the explicit hybridization effects between the Ni 3*d* and S 3*p* orbitals, has been observed at higher photon energy side of ~ 6 eV in all complexes. Simulated XAS spectra by the cluster model are also shown in Fig. 1(b), by which the hybridization parameters in Table 1 have been optimized. We have found that a so-called negative charge-transfer-energy ($\Delta < 0$) state is realized for n = 4, in which the total energy of the d^7L state is lower than that of the d⁶ state (L stands for a hole in the sulfur sites).

Fig. 1 (a) Molecular structure of $[Ni{Rh(apt)_3}_2]$ (NO₃)_{*n*}. (b) Ni $L_{2,3}$ -edge XAS spectra and spectral simulations of $[Ni{Rh(apt)_3}_2](NO_3)_n$.

Table 1 Hybridization parameters obtained by the cluster-model calculations.

	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4
4	3.5 eV	1.0 eV	-4.0 eV
$(pd\sigma)$	1.2 eV	1.8 eV	0.9 eV

References

[1] M. Kouno *et al.*, Angew. Chem. Int. Ed. **56**, 13762 (2017).

[2] A. E. Bocqet *et al.*, Phys. Rev. B **46**, 3771 (1992).

[3] M. Nakamura *et al.*, Phys. Rev. B **48**, 16942 (1993).

[4] K. Yamagami *et al.*, J. Phys. Soc. Jpn. **86**, 074801 (2017).

[5] A. Tanaka, T. Jo, J. Phys. Soc. Jpn. 63, 2788 (1994).