Study on Charge Compensation Mechanisms of Ni-based Positive Electrode Materials for Li-ion Batteries

Naoaki Yabuuchi1, Naohiro Ikeda1, Hirona Yamagishi2, Toshiaki Ohta2

1) 4Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
2) SR Center, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

Recently, Mn-based Li-excess oxides have been studied as high-capacity positive electrode materials for advanced Li-ion batteries. The Mn-based Li-excess oxides deliver large reversible capacities associated with relatively stable oxygen redox reaction without significant oxygen loss.[1] In this study, Ni-based Li-excess oxides are target as potential high-capacity positive electrode materials, and reaction mechanisms have been studied by soft X-ray absorption spectroscopy.

Figure 1a shows changes in Ni L-edge XAS spectra of a Ni-based Li-excess oxide, Li4/3Ni2/9Nb4/9O2 and Ni-based stoichiometric oxide, LiNi2/3Nb1/3O2, on electrochemical charge processes. Clear shift for Ni L-edge spectra is noted for Li4/3–yNi2/9Nb4/9O2, indicating that Ni ions are oxidized upon charge. Note that similar trend is noted for layered Li1–yNi1/2Mn1/2O2 as shown in Figure 1b, and cationic Ni redox (Ni2+/Ni4+) proceeds for both materials. Nevertheless, electrochemical and structural data clearly suggests that oxygen loss is the dominative process for Li4/3–yNi2/9Nb4/9O2, and anionic redox reaction is not stable for the Ni-based Li-excess oxides.[2]

In contrast, for the stoichiometric sample, Li1–yNi2/3Nb1/3O2, an anomalously small contribution of Ni ions on charge is evidenced in Ni L-edge XAS spectra while a relatively large contribution of O ions is noted in O K-edge XAS spectra.[2] Theoretical study reveals that local structures of O for LiNi2/3Nb1/3O2 are clearly different from that of LiNi1/2Mn1/2O2 because of structural disordering triggered by the presence of Nb ions in the structure. Anionic redox is promoted for the disordered and stoichiometric Ni-based compounds coupled with minor contribution of Ni cationic redox. Moreover, high reversibility of anionic redox is evidenced with small polarization on charge/discharge processes.[2] This finding opens new ways to design high-capacity positive electrode materials with highly reversible anionic redox, leading to the development of advanced Li-ion batteries in the future.

References
(2) N. Yabuuchi, N. Ikeda, H. Yamagishi, T. Ohta et al., submitted.

Fig. 1. Variations of electronic structures of Ni on electrochemical charge/discharge processes; (a) Li1–yNi2/3Nb1/3O2 and Li1/3–yNi2/9Nb4/9O2 with the disordered structure, and (b) Li1/3Ni1/2Mn1/2O2 with the layered structure.