Identification of F Defects in Ba₄Bi_{3-x}Pb_xF_{17-x} ($x \le 0.3$) by EXAFS Measurements

Saya Hirakawa, Keiji Shimoda, Yasuhiro Inada, Chengchao Zhong

Department of Applied Chemistry, Faculty of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan

All-solid-state fluorine ion batteries, which use fluoride ion conductors as solid electrolytes, are expected to achieve high energy density (> 5000 W h L⁻¹) by utilizing multi-electron reactions at the electrodes [1]. However, studies of fluoride ionic conductors have focused mainly on tysonite, fluorite, and perovskite-type structures [2, 3]. Therefore, in order to obtain design guidelines for good fluoride ionic conductors, it is desirable to expand the crystal structure library and elucidate the conduction mechanism.

Ba₄Bi₃F₁₇ is a cation order structure that appears within the $x = 0.45 \sim 0.50$ region of $Ba_{1-x}Bi_xF_{2+x}$ and does not belong to either BaF₂ (space group: Fm-3m) or BiF₃ (space group: *Pnma*) structures [4]. We found this compound has fluoride ionic conductivity 1.63×10^{-6} S cm⁻¹ at 200 °C, and the conduction pathway may be different from that of the previously reported fluorides. Aliovalent substitution of Pb^{2+} into Bi^{3+} site to form Ba₄Bi_{3-x}Pb_xF_{17-x} (0.1 $\leq x \leq 0.4$) can further improve the ionic conductivity, resulting in the 4.95×10^{-5} S cm⁻¹ at 200 °C for x = 0.3 (Fig. 1). The improvement in ionic conductivity is thought to be attributed to the induction of F- vacancies and the local crystal structure, but it is unable to extract such information from the laboratory XRD data.

In this study, we perform Ba L3-edge X-ray absorption spectroscopy (XAS) at the BL-4 of SR Center to analyze the local structural changes in $Ba_4Bi_{3-x}Pb_xF_{17-x}$. Fig. 2 shows the radial structure function of Ba₄Bi_{3-x}Pb_xF_{17-x} (x = 0, 0.2) obtained by from extended X-ray transforming Fourier absorption fine structure (EXAFS) oscillation. The extracted oscillation was weighted by k^2 , and the Fourier transformation was performed from 1 to 7.4 Å. The major peak appears at 2.0 Å represents the Ba-F interatomic distance, while the height of the peak indicates the coordination number around Ba^{2+} . When Pb^{2+} is introduced (red line in Figure 2), the peak height decreases, indicating a decrease in the coordination number of Ba₄Bi_{2.8}Pb_{0.2}F_{16.8}. This can be regarded as the formation of F⁻ vacancies in the neighborhood of Ba²⁺. Thus, the EXAFS analysis confirms that in Ba₄Bi_{2.8}Pb_{0.2}F_{16.8}, the aliovalent substitution of Pb²⁺ into Bi³⁺ site creates F⁻ vacancies, resulting in improved ionic conductivity compared to the pristine Ba₄Bi₃F₁₇.

Fig. 1 Arrhenius plots of the sintered $Ba_4Bi_{3-x}Pb_xF_{17-x}$.

Fig. 2 Radial structure function of Ba L3-edge EXAFS for $Ba_4Bi_{3-x}Pb_xF_{17-x}$.

References

[1] F. Gschwind, G. Rodriguez-Garcia, D. J. S. Sandbeck, A. Gross, M. Weil, M. Fichtner, and N. Hörmann, *J. Fluor. Chem.*, **2016**, *182*, 76-90.

[2] A. Duvel, J. Bednarcik, V. Sepelak, and P. Heitjans, J. Phys. Chem. C, 2014, 118, 7117-7129.

[3] A. V. Chadwick, J. H. Strange, G. A. Ranieri, and

M. Terenzi, Solid State Ion, **1983**, 9, 555-558.

[4] E. N. Dombrovski, T. V. Serov, A. M. Abakumov, E. I. Ardashnikova, V. A. Dolgikh, and G. Van Tendeloo, *J. Solid State Chem.*, **2004**, *177*, 312-318.