単層カーボンナノチューブ作製用 Rh 粒子の触媒活性への アルミナ担持層の影響

Influence of Al₂O₃ buffer layers on activity of Rh catalysts in Single-walled carbon nanotube growth

桐林 星光 ^a, <u>丸山 隆浩 ^b</u> Hoshimitsu Kiribayashi^a, Takahiro Maruyama^b

^a名城大学大学院理工学研究科, b名城大学理工学部

^aDepartment of Materials Science and Engineering, Meijo University, ^bDepartment of Applied Chemistry, Meijo University

e-mail: takamaru@meijo-u.ac.jp

単層カーボンナノチューブ(SWCNT)の結晶成長において、アモルファスのAl₂O₃膜を触媒担持 層に用いることで、触媒が活性化し、生成量が増加することが知られている。本研究ではSWCNT の低温成長に適している Rh 触媒に対して、Al₂O₃ 担持膜がSWCNT 生成量増加に与える影響につい て調べた。特に、Al₂O₃ 担持膜の作製法による生成量の違いを調べ、作製手法が触媒粒子サイズや 触媒粒子の内部拡散、触媒金属の電子状態に影響を与えることを明らかにした。

Amorphous Al_2O_3 layers are widely used to activate catalysts in single-wall carbon nanotube (SWCNT) growth. In this study, we carried out SWCNT growth by chemical vapor deposition (CVD) using Rh catalysts deposited on Al_2O_3 layers. Using Al_2O_3 layers prepared by various methods, we investigated the effects of fabrication methods of Al_2O_3 layers on activity of Rh catalysts and found that not only the particle sizes and the inward diffusion but also the electronic states depend on the fabrication method of Al_2O_3 layers.

Keywords: Single-walled carbon nanotube, Al₂O₃, Rh, UPS

<u>背景と研究目的</u>

単層カーボンナノチューブ(SWCNT)は、高い電子移動度を有することから次世代のエレクトロ ニクス材料としての応用が期待されている。特に、LSIの作製工程においてSWCNT作製を行うた め、作製温度の低温化が望まれている。最近、我々のグループではRhを触媒に用いた化学気相成 長(CVD)法により、300℃以下でのSWCNTの作製に成功した[1]。その際、アモルファスのAl₂O₃ 膜をRh触媒粒子の担持層に用いることで生成量の増加を図った。一般にAl₂O₃ 担持膜は触媒粒子を 活性化させ、生成量増加に効果があることが知られているが、通常は作製温度700℃以上で用いら れる[2]。これに対し、600℃以下の低い温度においてもAl₂O₃ 膜は触媒活性の効果があることが判明 した。本研究では、Al₂O₃ 担持膜によるRh 触媒の活性化のメカニズムについて調べるため、異なる 手法で作製したAl₂O₃ 膜上にRh 触媒を担持させてSWCNT 成長を行い、生成量の比較を行った。ま た、各Al₂O₃ 膜上での、Rh 触媒の粒子サイズや内部拡散、さらには電子状態に与える影響を調べた。

<u>実験</u>

- Al2O3膜は以下の5通りの手法により、作製した。
 - (1) Alをターゲットに用いた電子ビーム(EB)蒸着の後,自然酸化
 - (2) Alをターゲットに用いたEB蒸着後,大気中600℃で1時間酸化
 - (3) Al₂O₃をターゲットに用いたEB蒸着
 - (4) Alをターゲットに用いたマグネトロンスパッタ蒸着の後,自然酸化

(5) Alをターゲットに用いたマグネトロンスパッタ蒸着の後,大気中600℃で1時間酸化 各手法と,本稿で用いる略称を表1に示す。

	蒸着法	原料	酸化法	略称
1	電子ビーム (EB)	Al	自然酸化(NO)	[EB(Al)-NO]
2	電子ビーム (EB)	Al	熱酸化(Thermal Oxidation)	[EB(Al)-TO]
3	電子ビーム (EB)	Al ₂ O ₃		$[EB(Al_2O_3)]$
4	スパッタ	Al	自然酸化(NO)	[SP(Al)-NO]
5	スパッタ	Al	熱酸化(Thermal Oxidation)	[SP(Al)-TO]

表1 アルミナ膜の作製法と略称

上記の手法を用いてAl2O3膜をSiO2/Si基板上に作製し、さらにEB蒸着によりRh触媒粒子を堆積させた基板に対し、エタノールを炭素源に用いたCVD法により600℃でSWCNT作製を行った。作製したSWCNTはラマン分光測定と走査電子顕微鏡(SEM)観察により評価した。また、触媒粒子サイズを透過電子顕微鏡(TEM)観察により、触媒のAl2O3担持膜内部への拡散状態をX線光電子分光(XPS)測定による深さ方向分析を用いて調べた。さらに、各Al2O3膜上でのRh触媒の電子状態の違いを明らかにするため、Rh触媒を蒸着したAl2O3膜に対し、立命館大学SRセンターBL7において真空紫外光電子分光(UPS)測定を行った。

<u>結果、および、考察</u>:

SWCNT 成長を行った各試料に対し, SEM 観察を行ったところ, [EB(Al)-NO]-Al₂O3 膜上に Rh 触 媒を担持させた基板では生成物はみられなかった。また、ラマン分光測定においても、この基板の みGバンドピークが観測されなかったことから、[EB(Al)-NO]-Al₂O3 膜に Rh 触媒を担持させた基板 では SWCNT が生成していないと考えられる。他の Al₂O₃膜を用いた基板では、ラマンスペクトル において,GバンドピークとRBM ピークがみられ,SWCNT が生成していた。Fig.1 に各試料のラ マンスペクトルの,Si基板に由来するフォノンピークに対するGバンドピーク強度の比(G/Si比) を示す。G/Si 比は概ね SWCNT の生成量に対応していると考えられることから,[SP(Al)-NO]- Al₂O₃ 膜を用いた場合に生成量が最大となり、[EB(Al₂O₃)] -Al₂O₃膜の生成量がその次に多い結果となった。 TEM 観察を行ったところ, [SP(Al)-NO]-と[EB(Al₂O₃)]-Al₂O₃ 膜を用いた場合, ほとんどの Rh 粒子の 直径が 2 nm 以下であったのに対し, [EB(Al)-TO]- Al₂O3 膜と[SP(Al)-TO]- Al₂O3 膜を用いた基板では, より大きなサイズの Rh 粒子がみられた。すなわち,[SP(Al)-NO]- Al₂O₃ 膜と[EB(Al₂O₃)]-Al₂O₃ 膜上 では, 触媒金属のマイグレーションが抑制され, SWCNT 生成に適した粒子サイズとなっているこ とがわかった。また,XPS 測定による深さ方向の分析から,どの Al₂O₃ 膜においても,600℃に加熱 すると Rh 触媒が Al₂O₃ 膜内部に拡散している様子がみられたが, [SP(Al)-NO]-Al₂O₃ 膜上の Rh 触媒 粒子の内部拡散が最も少ないことがわかった。以上から,SWCNT 生成に適した直径 1~2 nm の Rh 触媒粒子が表面付近に最も多く存在するため、[SP(Al)-NO] Al₂O₃ 膜上で SWCNT の生成量が最大に なることが明らかとなった。

さらに、触媒の価電子状態を調べるため、各試料に対し UPS 測定を行った。Fig. 2 に hv=60 eV で 測定を行った[EB(Al)-TO] -Al₂O₃ 膜と[EB(Al₂O₃)]-Al₂O₃ 膜の価電子帯スペクトルを示す。各スペクト ルから Al₂O₃ 膜のみの価電子帯スペクトル(図中の黒点線)を引いて差分を取り、Rh の 4d 成分(図 中の矢印の領域)を求め、フェルミ準位に対する Rh 4d 成分の結合エネルギーの決定を行った。全 ての Al₂O₃ 膜について、Rh 4d 準位の結合エネルギーをまとめたものを Fig. 3 に示す。図から、 [SP(Al)-NO]-Al₂O₃ 膜上の Rh 触媒の場合, Rh 4d 準位がフェルミ準位の下、約 4.8eV に存在し、最も フェルミ準位に近く、[EB(Al₂O₃)]-Al₂O₃ 膜上の Rh 触媒の 4d 準位はその次にフェルミ準位に近い結 果となった。以上から、触媒粒子サイズや内部拡散に加え、Al₂O₃ 膜の作製方法により触媒の電子 状態が異なることが明らかとなった。

現在,作製法による Al₂O₃膜の結晶性や稠密度の相違について,X線吸収微細構造(XANES)測 定や分光エリプソメトリー法により分析を行っている。Al₂O₃膜の結晶性や稠密度が触媒粒径や内 部拡散に与える影響について明らかにし,Al₂O₃膜による触媒活性化のメカニズムを明らかにして いく予定である。

Fig. 2. UPS spectra of (a) [EB(Al)+TO]- and (b) $[EB(Al_2O_3)]$ -Al_2O_3 layers. Red lines show the spectra of Rh deposited Al_2O_3 layers and black ones shows only Al_2O_3 layers.

Fig. 1. G/Si ratio of SWCNTs grown on each Al₂O₃ layer.

Fig. 3. Binding energy of Rh 4d on each Al_2O_3 layer.

参考文献

- [1] T. Maruyama, A. Kozawa, T. Saida, S. Naritsuka, S. Iijima, Carbon 116 (2017) 128.
- [2] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 306 (2004) 1362.

研究成果公開方法/産業への応用・展開について

・本研究成果の一部は

[1] Hoshimitsu Kiribayashi, Takayuki Fujii, Takahiro Saida, Shigeya Naritsuka, Takahiro Maruyama: Effects of Al₂O₃ Type on Activity of Al₂O₃-Supported Rh Catalysts in Single-Walled Carbon Nanotubes Growth by CVD, MRS Fall Meeting NM3.7.37, Boston, USA, November 27-December 2 (2016)

[2] Hoshimitsu Kiribayashi, Takayuki Fujii, Takahiro Saida, Shigeya Naritsuka, Takahiro Maruyama: Effects of Al₂O₃ Type on Activity of Al₂O₃-Supported Rh Catalysts in Single-Walled Carbon Nanotubes Growth by CVD, MRS Advances, Published online: 16 January (2017) 1-7. (DOI: https://doi.org/10.1557/adv.2017.25) として成果公開した。また, 2017 年秋季応用物理学会にて成果公開を予定している。