エーテル系溶媒を適用した電解液を用いたリチウム硫黄電池の充放電機構解明

Charge-discharge mechanism of lithium-sulfur batteries using ether solvent

<u>奥田 大輔 a, 石川 正司 a, 太田 俊明 b</u> Daisuke Okuda^a, Masashi Ishikawa^a, Toshiaki Ohta^b

^a関西大学,^b立命館大学 SR センター ^aKansai University, ^b The SR Center, Ritsumeikan University

e-mail: d_okuda@kansai-u.ac.jp

エーテル系溶媒を適用したリチウム硫黄電池には、充放電過程において硫黄の反応中間体である 多硫化リチウムが溶出し、可逆な充放電が不可能であるという問題がある。これまでに、フッ素化 エーテルをリチウム硫黄電池に適用することで、多硫化リチウムの溶出を抑制し、リチウム硫黄電 池の可逆性を向上させることが可能であることを明らかにした。しかしながら、フッ素化エーテル を適用したリチウム硫黄電池の比容量(1000 mAh g⁻¹)が、理論容量(1672 mAh g⁻¹)に比べ低いことが明 らかになった。その要因を明らかにするために、フッ素化エーテルを適用したリチウム硫黄電池の 充電状態を変化させ、その正極に対し XAS 測定をおこなった。その結果、フッ素化エーテルを適用 したリチウム硫黄電池においては、正極活物質の表面近傍とバルクの電気化学反応が不均一に進行 し、充電末期、および放電末期において、未反応の活物質が存在することが確認できた。この電気 化学反応の不均一性が低い比容量の要因であると考えられる。

Lithium sulfur batteries using ether-based solvents have the problem that reversible charging and discharging is not possible due to the elution of lithium polysulfide, a reaction intermediate of sulfur, during the charging and discharging processes. It has been shown that the application of a fluorinated ether to lithium sulfur batteries can suppress the elution of lithium polysulfide and improve the reversibility of the lithium sulfur batteries. However, the specific capacity (1000 mAh g⁻¹) of the fluorinated ether-applied lithium sulfur battery was lower than the theoretical capacity (1672 mAh g⁻¹). In order to clarify the factors behind this, XAS measurements were performed on the cathode of a lithium-sulfur battery with the fluorinated ether in different states of charge. As a result, it was confirmed that in the lithium sulfur battery with the fluorinated ether, electrochemical reactions near the surface and in the bulk of the cathode active material proceed unevenly, and unreacted active material was present at the end of the charge and discharge stages. The low specific capacity of lithium sulfur batteries with the fluorinated ether would be due to the inhomogeneous electrochemical reaction of sulfur.

Keywords: Lithium-sulfur batteries, Sulfur, Fluorinated ether

<u>背景と研究目的</u>

近年、ハイブリッド自動車や電気自動車などのバッテリー駆動や、家庭用電源などが普及している。 それらの用途には、蓄電デバイスとして、高いエネルギー密度を有するリチウムイオン電池が使用 されている。しかしながら、電池を使用する機器の性能向上に伴い、蓄電デバイスの更なる高エネ ルギー密度化が必要とされている。従来のリチウムイオン電池に替わる新たな活物質を利用したポ スト・リチウムイオン電池の開発が行われている。そのような電池として、リチウム硫黄電池(LIS) の開発が行われている。当研究室では、電動航空機用のLISを開発している。LISのエネルギー密度 を向上させるために、電解液の軽量化が必要となる。そこで、低比重溶媒であるエーテル系溶媒を 適用した軽量電解液の開発をおこなっている。従来のエーテル系溶媒を適用した電解液を用いたLIS においては、充放電中に、反応生成物の一つである多硫化リチウムが電解液中に溶出し、電池寿命 を減少させる問題がある。そこで、我々は、多硫化リチウム容出を抑制するために、新規エーテル 溶媒の開発を行っている。検討の結果、多硫化リチウムの溶出を抑制可能な新規エーテル系溶媒を 見出した。その溶媒を適用した電解液を用いて電気化学測定を行った結果、新規エーテル溶媒を用いた電解液を適用した充放電曲線には、従来のエーテル系溶媒を適用した電解液を用いた充放電曲線に確認できるような、多硫化リチウムの溶出に伴う、シャトル反応に由来する大きな不可逆反応が確認できなかった。しかしながら、その比容量は、カーボネート系溶媒を用いたものに比べ、低いことが明らかになった。新規エーテル系溶媒を適用したLISの比容量向上のために、その充放電機構を調査することで、低い比容量の要因を明らかにする。

<u>実験</u>

LISの電気化学反応機構解明のために、種々の電解液を適用したLISにおいて、State of Charge (SOC)を変化させた正極をXASによって解析し、それらを比較した。

(1) 平均細孔径5 nmのCnovel®とFUJIFILM Wako Pure Chemical Co., Ltd. (Osaka, Japan)より購入した 硫黄華を35:65 の重量比で混合し、容器に封入した。それを155 ℃で6 時間加熱することで、活性 炭-硫黄複合体(CS)を調製した。

 (2) CS、アセチレンブラック(AB, Denka Co., Ltd. Tokyo, Japan)、carboxymethyl cellulose(CMC, DKS Co., Ltd. Kyoto, Japan)、およびStyrene butadiene rubber (SBR, JSR Co., Ltd. Tokyo, Japan)を90:5:3:2の重 量比で混合した。それを純水中に分散させることで電極合材ペーストを調製した。得られたペース トをドクターブレード法によりアルミニウム箔上に塗工し、正極を作製した。

(3) その正極を作用極、リチウム箔を対極、ポリオレフィン系セパレータ、およびカーボネート系 溶媒として、Fluoroethylene carbonate(FEC)、およびVinylene carbonate (VC)を1:1 (体積比)の割合で 混合した溶媒、およびエーテル系溶媒としてフッ素化エーテルに、濃度が1 mol l⁻¹になるように LiTFSIを溶解させた電解液(FEC:VC、C14)を用いて二極式ハーフセルを構築した。

(4) 上記二極式ハーフセル用いてSOCを調整したセルを解体し、正極を取り出し、洗浄、および乾燥させることで、試料を得た。それらの試料を立命館大学SRセンターBL-10にて、SのK-edge XAS 測定を、BL-11にて、CK-edge XAS測定をおこなった。BL-10においてはGe(111)を、BL-11において は不等間隔回折格子を用い、測定モードはPFY、およびTEYにておこなった。

<u>結果、および、考察</u>:

FEC:VC、およびC14を適用したLISの充放電機構を明らかにする ために、それらの LIS を用いて、初回充放電を行った結果得られた 充放電曲線をそれぞれ、Figure 1 (a)および(b)に示す。また、Figure 1 (a)の図中に▲で示した Depth of Discharge (DOD)、および SOC に調 整した FEC:VC を適用した LIS の硫黄正極に対し XAS 測定を行った 結果、得られた C K-edge XANES スペクトルを Figure 2 (a)、(b)、(c)、 および(d)にそれぞれ示す。TEY によって得られた初回放電過程にお ける正極のスペクトルを Figure 2(a)に示す。図より、30%以上の DOD における正極のスペクトルに、290.5 eV 付近に確認できる C=O 結合 に帰属されるピークが確認できた「1]。また、いずれの DOD にお いても、289.0 eV 付近に C-O 結合に帰属されると考えられるピーク が確認できた [1]。充放電前の電極のスペクトルにおける C-O 結合 に帰属されるピークは CMC に由来すると考えられる。さらに、そ のピークの強度が DOD とともに増加することが確認できた。Figure 2(b)に PFY によって得られた FEC:VC を適用した LIS の初回放電過 程における正極のスペクトルを示す。図より、TEY の結果と同様に 30%以上の DOD におけるスペクトルに、290.5 eV 付近に確認できる C=O 結合に帰属されるピークが確認できる。しかしながら、そのピ ーク強度は、いずれの DOD においても TEY のスペクトルにおいて 確認できたピークの強度に比べ小さいことが確認できた。それらの 結果から、放電過程において、FEC、および VC が分解することで、 ポリカーボネートを含む分解生成物が形成されたことが示唆された。 また、TEY のスペクトルにおける C=O および C-O に帰属されるピ

Figure 1 Charge-discharge curves of LIS using (a) FEC:VC, and (b) C14, each symbol($\blacktriangle, \blacklozenge$) indicating SOC and DOD of each sample used for XAS.

ークの強度が PFY に比べ大きいことから、その分解生成物は活物質表面に形成されており、粒子内 部にはあまり形成されていないことが示唆された。Figure 2 (c)に TEY によって得られた充電過程に おける硫黄正極のスペクトルを示す。図より、いずれの SOC においても、DOD100%のスペクトル において 289 および 290.5 eV に確認できる C-O および C=O に帰属されるピークが確認できる。さ らに、Figure 2(d)に PFY によって得られた充電過程における硫黄正極のスペクトルを示す。図より、 TEY によるスペクトルと同様に、いずれの SOC においても、DOD100%のスペクトルに確認できる C-O および C=O に帰属されるピークが確認できる。それらの結果から、放電過程において形成され た FEC:VC に由来する分解生成物は、充電過程においても安定に存在すると考えられる。また、分 解生成物に由来する C-O および C=O に帰属されるピーク強度の変化が TEY のスペクトルにおいて 顕著に確認できることから、CS 表面において分解生成物が形成すると考えられる。この分解生成物 が FEC:VC を適用した LIS において、Li₂S_xの溶出を抑制すると推測することができる。

C14 を適用した LIS の正極を Figure 1 (b)中の◆で示した SOC に調整した。TEY によって得られた、初回放電過程における、 それぞれの DOD の正極の C K-edge XANES スペクトルを Figure 3 (a)に示す。図より、DOD が増加するほど C-O のピーク強度が 増加することが確認できた。一方、DOD50%までの正極のスペ クトルにおいては、ほとんど C=O に帰属されるピークが確認で きなかった。そして、DOD100%において、C=O に帰属される ピークが急激に増加することが明らかになった。それらの結果 から、C14 を適用した LIS においては、FEC:VC を適用したも のの正極に形成される分解生成物とは異なる組成の分解生成物 が形成されたと推測できる。さらに、PFY により得られた、C14 を適用した LIS の充電過程における正極のスペクトルを Figure 3 (b)に示す。図より、TEY の結果と同様に、C-O 結合に帰属さ れる 289.0 eV のピークの強度が DOD とともに増加し、 DOD100%において、C=O に帰属される 290.5 eV のピークが急

Figure 2 C K-edge XANES spectra of CS in LIS using C14 during discharge process collected by (a) TEY and (b) PFY, and during charge process collected by (c) TEY and (d) PFY.

激に増加することが確認できた。また、Figure 3 (c)に TEY により得られた、C14 を適用した LIS の 充電過程における正極の C K-edge XANES スペクトルを示す。図より、放電過程において形成され た C-O、および C=O 結合が、SOC が増加するとともに減少することが確認できた。さらに、PFY により得られた充電過程の正極のスペクトルを Figure 3 (d)に示す。図より、TEY の結果と同様に、 SOC が増加するほど、C-O および C=O 結合に帰属される 289 および 290.5 eV に確認できるピーク が減少することが確認できた。それらの結果から、C14 を適用した LIS の放電過程において、活物 質表面に形成された物質が、充電過程において分解されたことが示唆される。分解生成物に由来す る C-O、および C=O に帰属されるピークの強度と SOC および DOD の関係が、PFY および TEY に よって得られたスペクトルにおいて、同様の傾向を示したことから、C14 の分解生成物は CS 粒子 内部、および表面両方に形成されることが示唆された。また、充電過程において、分解生成物に由 来すると考えられる C=O、および C-O に帰属されるピークの強度が減少することから、その分解生

成物は電気化学的に不安定であり、FEC:VC を適用した LIS に おいて確認できた電気化学的に安定な分解生成物のような Li₂S_xの溶出を抑制する効果は有していないと考えられる。

Figure 4 (a)、(b)、(c)、および(d)に、Figure 1(a)において▲で示 した SOC における FEC:VC を適用した LIS の正極の S K-edge XANES スペクトルを示す。Figure 3 (a)および(b)に初回放電過程 における FEC:VC を適用した LIS の CS の TEY、および PFY に よるスペクトルを示す。図より、いずれのスペクトルにおいて も、DOD100%において、2473 および 2475.8 eV 付近に Li₂S に 帰属されるピークが確認できた。それは、初回放電過程におい て、CS 表面および内部に含まれる S が Li₂S に変化したことを 示す。さらに、充電過程における CS の TEY および PFY による S K-edge スペクトルを Figure 4 (c)および(d)に示す。図より、い ずれのスペクトルにおいても、放電過程で形成された Li₂S に帰

Figure 3 C K-edge XANES spectra of CS in LIS using FEC:VC during discharge process collected by (a) TEY and (b) PFY, and during charge process collected by (c) TEY and (d) PFY.

属されるピークが SOC の増加とともに減少し、SOC100%において、充放電前と同様に 2471.5 eV 付 近に S に帰属されるピークが確認できた。以上の結果から、FEC:VC を適用した LIS において、初 回充放電過程において、S の充放電反応が高い可逆性を示すことが確認できた。C14 を適用した LIS

の放電過程における CS の TEY、および PFY による S K-edge スペクトルを Figure 5 (a)および(b)に示す。図より、TEY および PFY によるスペクトルのいずれにおいても、DOD50%までのス ペクトルにおいては、DOD が増加するほど 2482 eV 付近の-SO4 に帰属されるピークの強度が増加することが確認できた。そし て DOD100%のスペクトルにおいては、-SO4 に帰属されるピー クが確認できず、Li₂S に帰属されるピークのみが確認できた。 DOD50%までのスペクトルにおいて確認できた-SO4 は、エーテ ル系溶媒を適用した電解液を用いた LIS の電気化学反応におけ る反応中間体に由来すると考えられる。一方で、C14 を適用し た LIS の正極のスペクトルにおいては、ジメトキシエタン (DME)を適用した電解液を用いた LIS のものに確認できる Li₂Sx に帰属される 2470 eV 付近のプレエッジが確認できない [2]。

Figure 4 S K-edge XANES spectra of CS in LIS using FEC:VC during discharge process collected by (a) TEY and (b), and during charge process collected by (c) TEY and (d) PFY.

その結果は、C14 を適用した LIS の反応中間体は、DME を適用した LIS の反応中間体と異なる電子 構造を有することを示唆する。また、CS 表面とバルクの反応性の差異を明らかにするために、 DOD100%の CS と充放電前の CS の PFY および TEY の S K-edge XANES スペクトルから、差スペ クトルを作成しFigure 5(c)に示した。図より、2471.5 eV 付近に S の減少に帰属されるピークが、2475.8

eV 付近に Li₂S の増加に帰属されるピークが確認 できた。さらに、PFY のスペクトルにおいては、 S の減少、および Li₂S の増加に帰属されるピーク の強度が TEY のものに比べ小さいことが確認で きた。その結果は、放電後の CS において、表面 近傍に比べ、バルク領域の電気化学反応が遅く、 未反応の S が存在することを示唆する。さらに、 C14 を適用した LIS の充電過程における正極の TEY および PFY による S K-edge XANES スペクト ルを Figure 5 (d)および(e)に示す。図より、TEY お よび PFY によって得られたいずれのスペクトル においても、放電過程において形成された Li₂S に 帰属されるピークの強度が、充電に伴い減少する ことが確認できた。また、放電過程と同様に、 SOC50%のスペクトルにおいては、-SO4 に帰属さ

Figure 5 S K-edge XANES spectra of CS in LIS using C14 during discharge process collected by (a) TEY and (b), and during charge process collected by (d) TEY and (e) PFY, and difference spectra of (c) discharged-pristine and (f) charged-pristine collected by TEY and PFY.

れるピークが確認できた。これと共に、2478 eV 付近に、-SO₃に帰属されるピークが確認できた。 さらに、CS 表面近傍とバルクの反応性の差異を明らかにするために、TEY および PFY による SOC100%における CS のスペクトルと、充放電前の CS のスペクトルから、差スペクトルを作成し、 Figure 5(f)に示した。図より、2471.5 eV 付近に S の減少に帰属されるピークが、2478 および 2482 eV 付近に-SO₃、および-SO₄の構造の増加に帰属されるピークが確認できた。さらに、TEY によるスペ クトルにおいて、S の減少、および-SO₃、および-SO₄の構造の増加に帰属されるピークが PFY によ るスペクトルのものに比べ大きいことが確認できた。その結果は、充電過程においては、CS 表面近 傍の電気化学反応がバルク領域に比べて遅く、未反応の中間体が存在することを示唆する。

以上の結果から、FEC:VCを適用した LIS においては、充放電過程において、電気化学的に安定な 被膜が形成され、可逆な充放電反応を示すことが明らかになった。一方、C14を適用した LIS にお いては、充放電過程において、電気化学的に不安定な被膜が形成されることが確認できた。また、 C14を適用した LIS において、CS の電気化学反応は CS 粒子内で不均一に進行することが示唆され た。この不均一な電気化学反応により、CS の一部が電荷補償に寄与しないことが、C14を適用した LIS の理論容量に比べ低い比容量の要因であると考えられる。

参考文献

[1] G. Feng, F. Li, W. Zou, M. Karamad, J. Jeon, S. Kim, S. Kim, Y. Bu, Z. Fu, Y. Lu, S. Siahrostami, and J. Baek, *Nat. Commun.*, 11, 2209 (2020).

[2] Y. Gorlin, A. Siebel, M. Piana, T. Huthwelker, H. Jha, G. Monsch, F. Kraus, H. A. Gasteiger, and M. Tromp, *J. Electrochem. Soc.*, 162, A1146 (2015).

研究成果公開方法/産業への応用・展開について

・本研究成果は論文(投稿先未定)として投稿予定である。