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Figure 1. Example MR images of HCC over four-phases
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Figure 3. Deep learning models with Phase Attention Module

NC ART PV DL
[
JC ental Re ¢ O01NC
ENIES Findings
Table 2. Main experimental results % B — | This research trip
e A A ey speariay ey v [ R focused on communicating

BV . ¢'e &Va _ with overseas doctors and
DL 0.746 0.747 0.652 0.797 0.536 0.864 | Ad. o EaEE . AABCS S researchers. The time

G ¢

W expected to do experiment
s Was more than originally
planned. However, In
general, | think this Is a

0.722 0.759 0.489 0.859 0.550 0.821 successful collaborative project: | have gained a lot of
knowledge and theoretical methods through discussions
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(1) Our proposed DL (PAM) model is superior than the with professors and researchers at Zhejiang University.
conventional radiomics model and clinical model. Thanks for the KOKUSAITEK| Research Fund to
(2) Phase Attention Module effectively improves the support my research.

prediction performance.
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