Letters In Organic Chemistry

VOLUME 20, , NUMBER , 2023 Impact Factor: Current: 0.8 5 - Year: 0.7 ISSN: 1875-6255 (Online) - ISSN: 1570-1786 (Print)

α, α -Dibromoketones As Synthetic Equivalents Of α -Bromoketones For The Synthesis Of Thiazolo[3,2-a]benzimidazoles.

Authors:

Ravi Kumar, Reshmi R Nair, Richa Prakash, Taeho BAE, Toshifumi Dohi and Om Prakash

Affiliation:

Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan

Abstract:

Utilization of α, α -dihalocarbonyl compounds as synthetic equivalents to α -halocarbonyl compounds has been explored in the synthesis of a wide range of highly useful heterocycles and α functionalized ketones. The continuously growing demand of α, α -dibromoketones, as highly reactive and mild synthetic precursors/intermediates, to carry out selective organic transformations, prompted us to investigate their potential application for the synthesis of thiazolo[3,2-a]benzimidazoles. In this study, a remarkable application of α, α -dibromoacetophenones 5a-g in the development of a facile protocol for the synthesis of thiazolo[3,2-a]benzimidazoles 4a-g by avoiding the use of lachrymatory α haloketones is described. Although the mechanism for the debromination from the intermediate compound 6 under these conditions is not confirmed, possible pathways have been suggested.

To access the Full-text article at 10% discount, please visit: https://www.eurekaselect.com/219405/article

Quote the Discount Code: BSPHAF2023

For Subscription Contact: subscriptions@benthamscience.net

For Advertising & Free Online Trial Contact: marketing@benthamscience.net www.benthamscience.com