

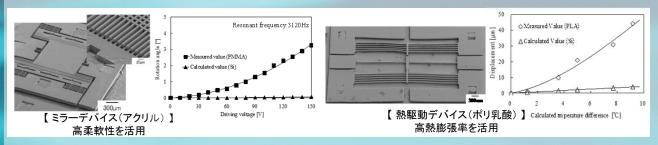
可動部を有する ポリマーMEMSの開発

ポリマーを活用した低コスト・高機能MEMS

● 研究の内容

近年、素材にアクリルやポリ乳酸等のポリマーを適用し、材料特性を活用することで、従来のシリコン製MEMSより高機能な「ポリマーMEMS」が注目されている。

本研究では、高アスペクト比かつ 可動部を有するポリマーMEMSの 低環境負荷な製造技術を開発し、 その応用展開を提案する。


ポリマーMEMS製造プロセス

	シリコン	アクリル	ポリ乳酸
密度 [g/cm³]	2.3	1.2	1.3
ヤング率 [GPa]	168	3.2	1.3
可視光透過率 [%]	1	93	88
線膨張係数 [/K]×10-6	2.6	70	90
生分解性	×	Δ	0

各種材料特性

● 応用·試作事例

ポリマーの特徴	応用デバイス例
高柔軟性	高感度センサ、低消費電力大変位デバイス、エレクトレット発電器
可視光透過性	マイクロ光学部品(マイクロレンズ・光導波路)
高熱膨張率	温度センサ、熱駆動スイッチ、メカニカルメモリ回路
生体適合性	医療器具・医療用センサ、バイオ分離・計測チップ
生分解性	環境循環型デバイス、ディスポーザブルデバイス

ポリマーMEMSデバイス試作事例