TRACIALLY QUASIDIAGONAL EXTENSIONS AND TOPOLOGICAL STABLE RANK

HUAXIN LIN AND HIROYUKI OSAKA

Abstract

It is known that a unital simple C^{*}-algebra A with tracial topological rank zero has real rank zero and topological stable rank one. In this note we construct unital C^{*}-algebras with tracial topological rank zero but topological stable rank two.

1. Introduction

The tracial topological rank of a unital C^{*}-algebra A, denoted by $\operatorname{TR}(A)$, was introduced as a noncommutative analog of the covering dimension for a topological space $X([\operatorname{Ln} 2]$ and [Ln3]; see also Definition 4.2 below). It plays an important role in the classification of amenable C^{*}-algebras (see [Ln3], [Ln5] and [Ln6]). As in the case of real rank (see [BP]), a unital commutative C^{*}-algebra $C(X)$ has tracial topological rank k if and only if $\operatorname{dim} X=k$. It was shown in [HLX1] that if $\operatorname{dim} X=k$ and $\operatorname{TR}(A)=m$ then $\operatorname{TR}(C(X) \otimes A) \leq k+m$. (For the case of real rank see [NOP, Corollary 1.10].) At present, the most interesting cases are C^{*}-algebras with tracial topological rank at most one. If A is a unital separable simple C^{*}-algebra with tracial topological rank zero, it was shown in $[\operatorname{Ln} 4]$ that A is quasidiagonal, has real rank zero, topological stable rank one and weakly unperforated $K_{0}(A)$.

We are also interested in C^{*}-algebras that are not simple. Let

$$
\begin{equation*}
0 \rightarrow J \rightarrow E \rightarrow A \rightarrow 0 \tag{*}
\end{equation*}
$$

be a short exact sequence with $\operatorname{TR}(A)=0$ and $\operatorname{TR}(e J e)=0$ for every projection $e \in A$. In [HLX2] it was shown that $\operatorname{TR}(E)=0$ if and only if the extension is tracially quasidiagonal. (For the definition of a tracially quasidiagonal extension see Definition 5.1.) Quasidiagonal extensions are tracially quasidiagonal. A natural question is whether there exist any tracially quasidiagonal extensions which are not quasidiagonal. Very recently, the first author showed that such extensions do indeed exist. The example given also shows that there are C^{*}-algebras with $\operatorname{TR}(E)=0$ such that real rank of E is not

[^0]zero. The specific extension $(*)$ given there has the property that both J and A (are simple and) have topological stable rank one. Moreover, the index $\operatorname{map} \partial_{0}: K_{0}(A) \rightarrow K_{1}(J)$ is not trivial. It is known that, in this case, E has topological stable rank one if the index map $\partial_{1}: K_{1}(A) \rightarrow K_{0}(J)$ is zero (see [Ni, Lemma 3] and [LR, Proposition 4]). A natural question is whether there is a tracially quasidiagonal extension with $\partial_{1} \neq 0$. In this note we construct a tracially quasidiagonal extension $0 \rightarrow J \rightarrow E \rightarrow A \rightarrow 0$ of C^{*}-algebras such that J is a simple AF-algebra, A is a simple AT-algebra with real rank zero and $\partial_{1} \neq 0$. That is, this extension is not a quasidiagonal extension. Moreover, E is a quasidiagonal C^{*}-algebra which has tracial topological rank zero and real rank zero, but topological stable rank two. To construct such an example we use the K_{0}-embedding property (see [BD]) and the generalized inductive limits in the sense of $[\mathrm{BE}]$.

Acknowledgments. This note was written when the second author was visiting University of Oregon at Eugene during a sabbatical leave. He would like to thank the members of the mathematics department there for their warm hospitality.

2. Preliminaries

Definition 2.1. Let A be a separable C^{*}-algebra. Then A is called quasidiagonal (QD) if there exists a faithful representation $\pi: A \rightarrow B(H)$ and an increasing sequence of finite rank of projections, $P_{1} \leq P_{2} \leq P_{3} \leq \cdots$, such that $\left\|P_{n} \pi(a)-\pi(a) P_{n}\right\| \rightarrow 0$ for all $a \in A$ and $P_{n} \rightarrow 1_{H}$ in the strong operator topology as $n \rightarrow \infty$.

If A is a QD C^{*}-algebra, then there is an injective homomorphism which maps A into $\prod_{n} M_{k(n)} / \oplus M_{k(n)}$ for some increasing sequence $\{k(n)\}$.

Recently N. Brown and M. Dadarlat studied extensions of quasidiagonal C^{*}-algebras. Suppose that

$$
0 \longrightarrow J \longrightarrow E \longrightarrow A \longrightarrow 0
$$

is a short exact sequence of separable C^{*}-algebras such that A and J are QD C^{*}-algebras, and A is nuclear and satisfies the Universal Coefficient Theorem. Brown and Dadalart [BD] showed that if the indexes $\partial_{i}: K_{i}(A) \rightarrow K_{i}(J)$ are both zero then E is a QD C^{*}-algebra. Moreover, they proved that for QD C^{*}-algebras J satisfying a certain property (namely, the K_{0}-embedding) the C^{*}-algebra E determined by the extension

$$
0 \longrightarrow J \longrightarrow E \longrightarrow B \longrightarrow 0
$$

with a QD C^{*}-algebra B is again QD if and only if E is stably finite. It follows from a result of J. Spielberg (see [Sp, Lemma 1.14]) that this is the case when $\partial_{1}\left(K_{1}(B)\right) \cap K_{0}(J)_{+}=\{0\}$. Spielberg [Sp, Lemma 1.14] also showed that all AF-algebras satisfy the (K_{0}-embedding) property.

Let J be a stable (non-elementary) simple AF-algebra. Let $\rho: K_{0}(J) \rightarrow$ $\operatorname{Aff}(T(J))$, where $T(J)$ is the compact tracial space $\{\tau: \tau(p)=1\}$ for some nonzero projection $p \in J$, be defined by $\rho([q])=\tau(q)$ for $q \in K_{0}(J)$ and $\tau \in T(J)$. Since we have $K_{1}(M(J) / J) \cong K_{0}(J)$, there exists a unitary u in $M(J) / J$ (or in $\left.M_{k}(M(J) / J)\right)$ such that $[u] \in \operatorname{ker} \rho$. This unitary u together with J give the essential extension

$$
0 \longrightarrow J \longrightarrow E \longrightarrow C(\mathbb{T}) \longrightarrow 0
$$

so that $\partial_{1}\left(K_{1}(C(\mathbb{T}))\right)$ is nonzero but generated by $[u],[u] \in \operatorname{ker} \rho$. The important fact that we are using is that $\partial_{1}\left(K_{1}(C(\mathbb{T}))\right) \cap K_{0}(J)_{+}=\{0\}$. Therefore, by the above remarks, E is QD but the stable rank of A is not one (by $[\mathrm{Ni}$, Lemma 3]).

3. Construction

Definition 3.1. We now define a very special simple AF-algebra. Let I_{0} be a unital separable simple AF C^{*}-algebra with $K_{0}\left(I_{0}\right)=\mathbb{Q} \oplus \mathbb{Z}$ and $K_{0}\left(I_{0}\right)_{+}=\left\{(r, m): r \in \mathbb{Q}_{+} \backslash\{0\}, m \in \mathbb{Z}\right\} \cup\{(0,0)\}$. Let $B=C(\mathbb{T})$. Write $K_{i}(B)=\mathbb{Z}(i=0,1)$. Take $u \in M(A) / A$ such that $[u]=(0,1)$ in $\mathbb{Q} \oplus \mathbb{Z}$. Let \mathbb{K} be the C^{*}-algebra of all compact operators on a separable infinite dimensional Hilbert space. Set $I=I_{0} \otimes \mathbb{K}$. As in Section 2, we obtain an essential extension

$$
0 \longrightarrow I \longrightarrow E_{1} \xrightarrow{\pi} B \longrightarrow 0
$$

such that $\partial_{1}([z])=(0,1)$ (in $\mathbb{Q} \oplus \mathbb{Z}$), where z is the canonical generator for B. As in Section 2, E_{1} is a QD C^{*}-algebra.

Let $\left\{e_{i j}\right\}$ be the matrix unit for \mathbb{K}, and set $e_{n}=\sum_{i=1}^{n} e_{i i}, n=1,2, \ldots$ Here we identify e_{11} with $1_{I_{0}}$.

Definition 3.2. Let A be a C^{*}-algebra, $\mathcal{G} \subset A$ a finite subset of A and $\varepsilon>0$ a positive number. Recall that a positive linear map $L: A \rightarrow B$ (where B is a C^{*}-algebra) is said to be \mathcal{G} - ε-multiplicative if

$$
\|L(a) L(b)-L(a b)\|<\varepsilon
$$

for all $a, b \in \mathcal{G}$.
The following result is certainly known (cf. [Ln7, Proposition 2.3]).
Proposition 3.3. Let $A=M_{n}$. For any $\varepsilon>0$ there is $\delta>0$ such that if $L: A \rightarrow B$, where B is a unital C^{*}-algebra, is a \mathcal{G} - δ-multiplicative contractive completely positive linear map, where \mathcal{G} contains the matrix unit $\left\{e_{i j}\right\}_{i, j=1}^{n}$, then there is a homomorphism $h: A \rightarrow B$ such that

$$
\|L-h\|<\varepsilon
$$

Definition 3.4. We denote by δ_{n} the value of δ corresponding to $\varepsilon=1 / 2^{n}$ in Proposition 3.3. We may assume that $0<\delta_{n+1}<\delta_{n}<1$.

Definition 3.5. For any $k \in \mathbb{N}$ we let $\pi_{k}: M_{k}\left(E_{1}\right) \rightarrow M_{k}(B)$ denote the quotient map induced by π.

Let $\left\{\xi_{1}, \xi_{2}, \ldots\right\}$ be a dense sequence of \mathbb{T}, where each point is repeated infinitely many times. Let $\left\{a_{1}, a_{2}, \ldots\right\}$ be a dense sequence in the unit ball of E_{1}. Let $\mathcal{G}_{n}=\left\{0, a_{1}, \ldots, a_{n}\right\}, n=1,2, \ldots$, and let $\mathcal{F}_{1}=\mathcal{G}_{1}$. Write $I=$ $\overline{\bigcup_{n=1}^{\infty} S_{n}}$, where the S_{n} are finite dimensional C^{*}-algebras and $S_{n} \subset S_{n+1}$. Let \mathcal{S}_{1} be a finite subset of S_{1} and let $\eta_{1}>0$ be chosen according to Proposition 3.3 such that the following holds:

For any unital C^{*}-algebra B^{\prime} there is a homomorphism $\bar{h}_{1}: S_{1} \rightarrow B^{\prime}$ such that

$$
\left\|\left.L^{\prime}\right|_{S_{1}}-\bar{h}_{1}\right\|<1 / 2
$$

for any $\mathcal{S}_{1}-\eta_{1}$-multiplicative contractive completely positive linear map L^{\prime} : $E \rightarrow B^{\prime}$.

Let $\mathcal{F}_{1}=\mathcal{G}_{1} \cup \mathcal{S}_{1}$. Since E_{1} is quasidiagonal, there is a (unital) contractive completely positive linear map $\psi_{1}: E_{1} \rightarrow M_{k(1)}$, which is $\mathcal{F}_{1-1} / 2 \cdot 1 / 2 \cdot \eta_{1} / 2^{2}$ multiplicative with $\left\|\psi_{1}(a)\right\| \geq(1 / 2)\|a\|$ for all $a \in \mathcal{F}_{1}$. Let $p_{1}=1_{I_{0}} \otimes e_{k(1)}$, where $e_{k(1)}$ is a rank $k(1)$ projection in \mathbb{K}. So $p_{1} \in I$ and ψ_{1} may be viewed as a map from E_{1} to $p_{1}\left(\mathbb{C} \cdot 1_{I_{0}} \otimes \mathbb{K}\right) p_{1} \cong M_{k(1)}$. Put $\phi_{1}(a)=\pi(a)\left(\xi_{1}\right) \cdot\left(1_{E_{1}}-p_{1}\right)$ for $a \in E_{1}$. Let $C_{1}=\phi_{1}(E) \oplus p_{1}\left(\mathbb{C} \cdot 1_{I_{0}} \otimes \mathbb{K}\right) p_{1}$ and $C_{1}^{\prime}=p_{1}\left(\mathbb{C} \cdot 1_{I_{0}} \otimes \mathbb{K}\right) p_{1}$. Define $L_{1}: E_{1} \rightarrow E_{2}=M_{2}\left(E_{1}\right)$ by

$$
L_{1}(a)=\operatorname{diag}\left(a, \phi_{1}(a), \psi_{1}(a)\right)
$$

for $a \in E_{1}$. Note that $L_{1}\left(S_{1}\right)$ is contained in $S_{1} \oplus C_{1}^{\prime}$. Moreover, $S_{2} \otimes M_{2}+C_{1}^{\prime}$ is contained in a finite dimensional C^{*}-subalgebra of $M_{2}(I)$. Let $C_{1}^{\prime \prime}$ be the finite dimensional C^{*}-subalgebra generated by $S_{2} \otimes M_{2}+C_{1}^{\prime}$. Since $S_{1} \subset S_{2}$, we have $L_{1}\left(S_{1}\right) \subset C_{1}^{\prime \prime}$. Let \mathcal{S}_{2} be a finite subset of $C_{1}^{\prime \prime}$ and let $1>\eta_{2}>0$ be chosen according to Proposition 3.3 such that the following holds:

For any unital C^{*}-algebra B^{\prime} there exists a homomorphism $\bar{h}_{2}: C_{1}^{\prime \prime} \rightarrow B^{\prime}$ such that

$$
\left\|\left.L^{\prime}\right|_{C_{1}^{\prime \prime}}-\bar{h}_{2}\right\|<1 / 2^{2}
$$

for any $\mathcal{S}_{2}-\eta_{2}$-multiplicative contractive completely positive linear map L^{\prime} : $E_{2} \rightarrow B^{\prime}$.

Set $I_{2}=M_{2}(I)$. Let \mathcal{F}_{2} be a finite subset of E_{2} containing $L_{1}\left(\mathcal{F}_{1}\right)$, $\left\{\left(a_{i j}\right)_{i, j=1}^{3}: a_{i j}=0, a_{1}\right.$ or $\left.a_{2}\right\}, I_{C_{2}}$, the standard generators of C_{1}, \mathcal{S}_{2}, and another matrix unit $\left\{u_{i j}\right\}_{i, j=1}^{2}$, where u_{11} and u_{22} are identified with $\operatorname{diag}\left(1_{E_{1}}, 0\right)$, $\operatorname{diag}\left(0,1_{E_{1}}\right)$. Since E_{1} (unital) is quasidiagonal, there is a $\mathcal{F}_{2}-1 / 3 \cdot 1 / 2^{2} \cdot \eta_{2}$. $\delta_{k(1)} / 2^{2}$-multiplicative contractive completely positive linear map $\psi_{2}: E_{2} \rightarrow$ $M_{k(2)}$ such that $\left.\left(\psi_{2}\right)\right|_{M_{2}\left(\mathbb{C} \cdot 1_{E}\right)}$ is a homomorphism and $\left\|\psi_{2}(a)\right\| \geq(1-1 / 4)\|a\|$ for all $a \in \mathcal{F}_{2}$, and such that there is homomorphism $h_{2}: C_{1} \rightarrow M_{k(2)}$ such that

$$
\left\|\left.\left(\psi_{2}\right)\right|_{C_{1}}-h_{2}\right\|<1 / 4
$$

Note that such a map h_{2} exists by Proposition 3.3. We may assume that $k(2)>k(1)>2$.

Let $E_{3}=M_{2+1}\left(E_{2}\right)=M_{3!}\left(E_{1}\right)$ and $I_{3}=M_{2+1}\left(I_{2}\right)$. Let $p_{2}^{\prime}=1_{I_{0}} \otimes e_{k(2)}$ and $p_{2}=\operatorname{diag}\left(p_{2}^{\prime}, p_{2}^{\prime}\right) \in I_{2}$. Define $\phi_{1}^{(2)}(a)=\pi_{2}(a)\left(\xi_{1}\right) \cdot 1_{E_{2}}$ for $a \in E_{2}$, where the image of $\phi_{1}^{(2)}$ is identified with $M_{2}\left(\mathbb{C} \cdot 1_{E_{2}}\right)$. Define $\phi_{2}(a)=\pi_{2}(a)\left(\xi_{2}\right) \cdot\left(1_{E_{1}}-p_{2}^{\prime}\right)$ for $a \in E_{2}$, where the image of ϕ_{2} is identified with $M_{2}\left(\mathbb{C} \cdot\left(1_{E_{1}}-p_{2}^{\prime}\right)\right)$. Let $\Psi_{2}(a)=\operatorname{diag}\left(\psi_{2}(a), \psi_{2}(a)\right)$ for $a \in E_{2}$. We now view Ψ_{2} as a map $\Psi_{2}: E_{2} \rightarrow p_{2}\left(\mathbb{C} \cdot 1_{I_{0}} \otimes \mathbb{K}\right) p_{2} \subset p_{2} I_{2} p_{2}$. In particular, $\Psi_{2}\left(1_{E_{2}}\right)=p_{2}$. Define $L_{2}: E_{2} \rightarrow E_{3}$ by

$$
L_{2}(a)=\operatorname{diag}\left(a, \phi_{1}^{(2)}(a), \phi_{2}(a), \Psi_{2}(a)\right)
$$

It should be noted that the part $\operatorname{diag}\left(\phi_{2}(a), \Psi_{2}(a)\right)$ is in E_{2} and L_{2} is unital. Let

$$
C_{2}=\phi_{1}^{(2)}\left(E_{1}\right) \oplus \phi_{2}\left(E_{2}\right) \oplus p_{2} M_{2}\left(\mathbb{C} \cdot 1_{I_{0}} \otimes \mathbb{K}\right) p_{2}
$$

and $C_{2}^{\prime}=p_{2}\left(\mathbb{C} \cdot 1_{I_{0}} \otimes \mathbb{K}\right) p_{2}$. Note that $L_{2}\left(C_{1}^{\prime \prime}\right)$ is contained in $C_{1}^{\prime \prime} \oplus C_{2}^{\prime}$ and $S_{3} \otimes M_{3!}+C_{2}^{\prime}$ is contained in a finite dimensional C^{*}-subalgebra of I_{3}. Let $C_{2}^{\prime \prime}$ be the finite dimensional C^{*}-subalgebra generated by $S_{3} \otimes M_{3!}+C_{2}^{\prime}$. Then, since $S_{2} \subset S_{3}$ and $C_{1}^{\prime} \subset C_{2}^{\prime}$, we have $L_{2}\left(C_{1}^{\prime \prime}\right) \subset C_{2}^{\prime \prime}$.

Let \mathcal{S}_{3} be a finite subset of $C_{2}^{\prime \prime}$ and let $\eta_{3}>0$ be chosen according to Proposition 3.3 such that the following holds:

For any unital C^{*}-algebra B^{\prime} there exists a homomorphism $\bar{h}_{3}: C_{2}^{\prime \prime} \rightarrow B^{\prime}$ such that

$$
\left\|\left.L^{\prime}\right|_{C_{2}^{\prime \prime}}-\bar{h}_{3}\right\|<1 / 2^{3}
$$

for any $\mathcal{S}_{3}-\eta_{3}$-multiplicative contractive completely positive linear map L^{\prime} : $E_{3} \rightarrow B^{\prime}$.

Let $E_{4}=M_{4}\left(E_{3}\right)$ and $I_{4}=M_{4}\left(I_{3}\right)$. Let \mathcal{D}_{2} be a finite subset of C_{2} containing $1_{C_{2}}$ and the standard generators of C_{2}. Let \mathcal{F}_{3} be a finite subset of E_{3} containing $L_{2}\left(\mathcal{F}_{2}\right),\left\{\left(a_{i j}\right)_{i, j=1}^{3 \times 2}: a_{i j}=0, a_{1}, a_{2}\right.$, or $\left.a_{3}\right\}, \mathcal{D}_{2}, \mathcal{S}_{3}$ and another matrix unit $\left\{u_{i j}\right\}_{i, j=1}^{3}$, where $u_{i i}$ is identified with a diagonal element with $1_{E_{2}}$ in the i th position and zero elsewhere.

Since E_{1} is quasidiagonal and $E_{3}=M_{3!}\left(E_{1}\right)$, there is a $\mathcal{F}_{3}-1 / 4 \cdot 1 / 2^{3}$. $\eta_{3} \cdot \delta_{\operatorname{dim} C_{2}} / 2^{3}$ - multiplicative contractive completely positive linear map ψ_{3} : $E_{3} \rightarrow M_{k(3)}$ (where $\left.k(3)>k(1)+k(2)\right)$ such that $\left.\left(\psi_{3}\right)\right|_{M_{3 \cdot 2}\left(\mathbb{C} \cdot 1_{E}\right)}$ is a homomorphism, and there is a homomorphism $h_{3}: C_{2} \rightarrow M_{k(3)}$ such that

$$
\left\|\left.\psi_{3}\right|_{C_{2}}-h_{3}\right\|<1 / 2^{3}
$$

Define $\phi_{i}^{(3)}(a)=\pi_{3!}(a)\left(\xi_{i}\right)$ for $a \in E_{3}$, where the image of $\phi_{i}^{(3)}$ is identified with $M_{3!}\left(\mathbb{C} \cdot 1_{E_{1}}\right), i=1,2$. Let $p_{3}^{\prime}=1_{I_{0}} \otimes e_{k(3)}$ and $p_{3}=\operatorname{diag}\left(p_{3}^{\prime}, \ldots, p_{3}^{\prime}\right)$, where p_{3}^{\prime} is repeated 3 ! times.

Thus, $p_{3} \in I_{3}$. Let $\Psi_{3}(a)=\operatorname{diag}\left(\psi_{3}(a), \ldots, \psi_{3}(a)\right)$ for $a \in E_{3}$, where $\psi_{3}(a)$ is repeated 3 ! times. We view Ψ_{3} as a map $\Psi_{3}: E_{3} \rightarrow p_{3} M_{3!}\left(\mathbb{C} \cdot 1_{I_{0}} \otimes \mathbb{K}\right) p_{3}$.

Define $\phi_{3}(a)=\pi_{3!}(a)\left(\xi_{3}\right)$, where the image of ϕ_{3} is identified with $M_{3!}(\mathbb{C}$. $\left(1_{E_{1}}-p_{3}^{\prime}\right)$). Define $L_{3}: E_{3} \rightarrow E_{4}$ by (for any $a \in E_{3}$)

$$
L_{3}(a)=\operatorname{diag}\left(a, \phi_{1}^{(3)}(a), \phi_{2}^{(3)}(a), \phi_{3}(a), \Psi_{3}(a)\right)
$$

Note that $\operatorname{diag}\left(\phi_{3}(a), \Psi_{3}(a)\right) \in E_{3}$. Put

$$
\begin{aligned}
& C_{3}=\oplus_{i=1}^{2} \phi_{i}^{(3)}\left(E_{3}\right) \oplus \phi_{3}\left(E_{3}\right) \oplus p_{3} M_{3!}\left(\mathbb{C} \cdot 1_{I_{0}} \otimes \mathbb{K}\right) p_{3} \\
& C_{3}^{\prime}=p_{3} M_{3!}\left(\mathbb{C} \cdot 1_{I_{0}} \otimes \mathbb{K}\right) p_{3}
\end{aligned}
$$

Let $C_{3}^{\prime \prime}$ be the finite dimensional C^{*}-algebra generated by $S_{4} \otimes M_{4!}+C_{3}^{\prime}$. Then, since $L_{2}\left(C_{2}^{\prime \prime}\right)$ is contained in $C_{2}^{\prime \prime} \oplus C_{3}^{\prime}, S_{3} \subset S_{4}$ and $C_{2}^{\prime} \subset C_{3}^{\prime}$, we have $L_{2}\left(C_{2}^{\prime \prime}\right) \subset C_{3}^{\prime \prime}$.

We continue the construction in this fashion. With $C_{n}=\oplus_{i=1}^{n-1} \phi_{i}^{(n)}\left(E_{n}\right) \oplus$ $\phi_{n}\left(E_{n}\right) \oplus p_{n} M_{n!}\left(\mathbb{C} \cdot 1_{I_{0}} \otimes \mathbb{K}\right) p_{n}$, let $E_{n+1}=M_{n+1}\left(E_{n}\right), I_{n+1}=M_{n+1}\left(I_{n}\right)$ and $C_{n}^{\prime}=p_{n} M_{n!}\left(\mathbb{C} \cdot 1_{I_{0}} \otimes \mathbb{K}\right) p_{n}$, and let $C_{n}^{\prime \prime}$ be the finite dimensional $C^{*}{ }_{-}$ subalgebra generated by $S_{n+1} \otimes M_{(n+1)!}+C_{n}^{\prime}$. Let \mathcal{S}_{n+1} be a finite set in $C_{n}^{\prime \prime}$ and let $1>\eta_{n+1}>0$ be chosen according to Proposition 3.3 such that the following holds:

For any unital C^{*}-algebra B^{\prime} there exists a homomorphism $\bar{h}_{n+1}: C_{n}^{\prime \prime} \rightarrow B^{\prime}$ such that $\left\|L^{\prime} \mid C_{n}^{\prime \prime}-\bar{h}_{n+1}\right\|<1 / 2^{n+1}$ for any $S_{n+1}-\eta_{n+1}$-multiplicative contractive completely positive map $L^{\prime}: E_{n+1} \rightarrow B^{\prime}$.

Let \mathcal{D}_{n} be a finite subset of C_{n} containing $1_{C_{n}}$ and the standard generators of C_{n}, and let \mathcal{F}_{n+1} be a finite subset of E_{n+1} containing $L_{n}\left(\mathcal{F}_{n}\right)$, $\mathcal{S}_{n+1},\left\{\left(a_{i j}\right)_{i, j=1}^{(n+1)!}: a_{i j}=0, a_{1}, \ldots\right.$, or $\left.a_{n}\right\}, \mathcal{D}_{n}$ and a matrix unit $\left\{u_{i j}\right\}_{i, j=1}^{1+n}$, where $u_{i i}$ is identified with $\operatorname{diag}\left(0, \ldots, 0,1_{E_{n}}, 0, \ldots, 0\right)$ (with $1_{E_{n}}$ in the i th position). Since E_{1} is quasidiagonal and $E_{n+1}=M_{(n+1)!}\left(E_{1}\right)$, there is a $\mathcal{F}_{n+1^{-}}$ $1 /(n+2) \cdot 1 / 2^{n+1} \cdot \eta_{n+1} \cdot \delta_{\operatorname{dim} C_{n}} / 2^{n+1}$-multiplicative contractive completely positive linear map $\psi_{n+1}: E_{n+1} \rightarrow M_{k(n+1)}$ such that $\left.\left(\psi_{n}\right)\right|_{M_{(n+1)!}}\left(\mathbb{C} \cdot 1_{E_{1}}\right)$ is a homomorphism, and there is a homomorphism, $h_{n+1}: C_{n} \rightarrow M_{k(n+1)}$ such that

$$
\left\|\left.\left(\psi_{n+1}\right)\right|_{C_{n}}-h_{n+1}\right\|<1 / 2^{n+1}
$$

Define $\phi_{i}^{(n+1)}(a)=\pi_{(n+1)!}(a)\left(\xi_{i}\right)$ for $a \in E_{n+1}$ and identify the image of $\phi_{i}^{(n+1)}$ with $M_{(n+1)!}\left(\mathbb{C} \cdot 1_{E_{1}}\right), i=1,2, \ldots, n$. Let $p_{n+1}^{\prime}=1_{I_{0}} \otimes e_{k(n+1)}$ and $p_{n+1}=\operatorname{diag}\left(p_{n+1}^{\prime}, \ldots, p_{n+1}^{\prime}\right)$, where p_{n+1} is repeated $(n+1)$! times. Put $\Psi_{n+1}(a)=\operatorname{diag}\left(\psi_{n+1}(a), \ldots, \psi_{n+1}(a)\right)$, where $\psi_{n+1}(a)$ is repeated $(n+1)$! times. Thus the image of Ψ_{n+1} can be identified with $p_{n+1} M_{(n+1)!}\left(\mathbb{C} \cdot 1_{I_{0}} \otimes\right.$ $\mathbb{K}) p_{n+1}$. Note that $\Psi_{n+1}\left(1_{E_{n+1}}\right)=p_{n+1}$. Define $\phi_{n+1}(a)=\pi_{(n+1)!}(a)\left(\xi_{i}\right)$, with its image identified with $M_{(n+1)!}\left(\mathbb{C} \cdot\left(1_{E_{1}}-p_{n+1}^{\prime}\right)\right)$. Note that the unit of $M_{(n+1)!}\left(\mathbb{C} \cdot\left(1_{E_{1}}-p_{n+1}^{\prime}\right)\right)$ is $1_{E_{n+1}}-p_{n+1}$. Define

$$
L_{n+1}(a)=\operatorname{diag}\left(a, \phi_{1}^{(n+1)}(a), \phi_{2}^{(n+1)}(a), \ldots, \phi_{n}^{(n+1)}(a), \phi_{n+1}(a), \Psi_{n+1}(a)\right),
$$

where $a \in E_{n+1}$. Let

$$
\begin{aligned}
& C_{(n+1)}=\oplus_{i=1}^{n} \phi_{i}^{(n+1)}\left(E_{n+1}\right) \oplus \phi_{n+1}\left(E_{n+1}\right) \\
& \oplus p_{n+1} M_{(n+1)!}\left(\mathbb{C} \cdot 1_{I_{0}} \otimes \mathbb{K}\right) p_{n+1}
\end{aligned}
$$

and

$$
C_{n+1}^{\prime}=p_{n+1} M_{(n+1)!}\left(\mathbb{C} \cdot 1_{I_{0}} \otimes \mathbb{K}\right) p_{n+1}
$$

Let $C_{n+1}^{\prime \prime}$ be the finite dimensional C^{*}-algebra generated by $S_{n+2} \otimes M_{(n+2)!}+$ C_{n+1}^{\prime}. Then, since $L_{n+1}\left(C_{n}^{\prime \prime}\right)$ is contained in $C_{n}^{\prime \prime} \oplus C_{n+1}^{\prime}, S_{n+1} \subset S_{n+2}$, and $C_{n}^{\prime} \subset C_{n+1}^{\prime}$, we have $L_{n+1}\left(C_{n}^{\prime \prime}\right) \subset C_{n+1}^{\prime \prime}$. Let \mathcal{S}_{n+2} be a finite set in $C_{n+1}^{\prime \prime}$ and let $1>\eta_{n+2}>0$ be chosen according to Proposition 3.3 such that the following holds:

For any unital C^{*}-algebra B^{\prime} there exists a homomorphism $\bar{h}_{n+2}: C_{n+1}^{\prime \prime} \rightarrow$ B^{\prime} such that $\left\|L^{\prime} \mid C_{n+1}^{\prime \prime}-\bar{h}_{n+2}\right\|<1 / 2^{n+2}$ for any $\mathcal{S}_{n+2}-\eta_{n+2}$-multiplicative contractive completely positive map $L^{\prime}: E_{n+2} \rightarrow B^{\prime}$.

It is easy to verify that $\left(E_{n}, L_{n}\right)$ forms a general inductive limit in the sense of $[\mathrm{BE}]$. Denote by E the C^{*}-algebra defined by this inductive limit. We will write $L_{n, n+k}: E_{n} \rightarrow E_{n+k}$ for the decomposition $L_{n+k-1} \circ \cdots \circ L_{n}$ and $L_{n, \infty}: E_{n} \rightarrow E$ for the map induced by the inductive limit. We will also use the fact that $\left\|L_{n}(a)\right\|=\|a\|=\left\|L_{n, \infty}(a)\right\|$ for all $a \in E_{n}, n=1,2, \ldots$

Let $I_{1}=I, I_{n+1}=M_{(1+n)!}(I)$. Then $I_{n} \cong I_{0} \otimes \mathbb{K}$ and I_{n} is an ideal of E_{n}. Set $J_{0}=\bigcup_{n=1}^{\infty} L_{n, \infty}\left(I_{n}\right)$ and $J=\bar{J}_{0}$.

Proposition 3.6. J is an ideal of E.
Proof. Let $a \in E$ and $b \in J$. We want to show that $a b, b a \in J$. For any $\varepsilon>0$, there are $a^{\prime} \in \bigcup_{n=1}^{\infty} L_{n, \infty}\left(E_{n}\right)$ and $b^{\prime} \in J_{0}$ such that $\left\|a-a^{\prime}\right\|<\varepsilon$ and $\left\|b-b^{\prime}\right\|<\varepsilon$. It suffices to show that $a^{\prime} b^{\prime}, b^{\prime} a^{\prime} \in J$. To simplify notation, without loss of generality, we may assume that $a \in \bigcup_{n=1}^{\infty} L_{n, \infty}\left(E_{n}\right)$ and $b \in J_{0}$. Therefore, there is an integer $n>0$ such that $a=L_{n, \infty}\left(a_{1}\right)$ and $b=L_{n, \infty}\left(b_{1}\right)$, where $a_{1} \in E_{n}$ and $b_{1} \in I_{n}$. Moreover, there is an integer $N>n$ such that

$$
\begin{aligned}
& \| L_{N, N+k} \circ L_{n, N}\left(a_{1}\right) L_{N, N+k} \circ L_{n, N}\left(b_{1}\right) \\
& \quad-L_{N, N+k}\left(L_{n, N}\left(a_{1}\right) L_{n, N}\left(b_{1}\right)\right) \|<\varepsilon
\end{aligned}
$$

for all $k>0$. By the definition, $L_{n, N}\left(b_{1}\right) \in I_{N}$. Therefore $L_{N, N+k}\left(L_{n, N}\left(a_{1}\right)\right.$ $\left.L_{n, N}\left(b_{1}\right)\right) \in I_{N}+k$. This implies that

$$
\operatorname{dist}(a b, J)<\varepsilon
$$

for all $\varepsilon>0$. Hence $a b \in J$. Similarly $b a \in J$.
Definition 3.7. Let $B_{1}=C(\mathbb{T})$ and $B_{n+1}=M_{(n+1)!}(C(\mathbb{T})), n=1,2, \ldots$ Define $h_{n}: B_{n} \rightarrow B_{n+1}$ by $h_{n}(b)=\operatorname{diag}\left(b, b\left(\xi_{1}\right), \ldots, b\left(\xi_{n}\right)\right), n=1,2, \ldots$ Let $B_{\infty}=\lim _{n}\left(B_{n}, h_{n}\right)$. Then B_{∞} is a unital simple C^{*}-algebra with $\operatorname{TR}\left(B_{\infty}\right)=0$
(see Definition 4.2), $K_{1}\left(B_{\infty}\right)=\mathbb{Z}$ and $K_{0}\left(B_{\infty}\right)=\mathbb{Z} \oplus \mathbb{Q}$ with $K_{0}\left(B_{\infty}\right)_{+}=$ $\left\{(n, r): n>0, r \in \mathbb{Q}_{+} \backslash\{0\}\right\} \cup\{0\}$.

Proposition 3.8. Let $\pi_{\infty}: E \rightarrow E / J$ be the quotient map. Then $\pi_{\infty}(E)$ $\cong B_{\infty}$.

Proof. We first show that, for each $n, L_{n, \infty}\left(E_{n}\right) \cap J=L_{n, \infty}\left(I_{n}\right)$. Let $a \in E_{n} \backslash I_{n}$. Then, by the construction, for all $m>0$,

$$
\operatorname{dist}\left(L_{n, m}(a), I_{n+m}\right) \geq\left\|\pi_{n!}(a)\right\|
$$

where $\pi_{n!}: E_{n} \rightarrow E_{n} / I_{n}$ is the quotient map. This implies that

$$
\operatorname{dist}\left(L_{n, \infty}(a), J\right) \geq\left\|\pi_{n!}(a)\right\|
$$

Therefore $L_{n, \infty}\left(E_{n}\right) \cap J=L_{n, \infty}\left(I_{n}\right)$.
Now we have

$$
L_{n, \infty}\left(E_{n}\right) / J \cong B_{n}
$$

From the construction there is an isomorphism from $L_{n}\left(E_{n}\right) / I_{n+1}$ to $L_{n, \infty}$ $\left(E_{n}\right) / J$. Denote by $j_{n}: L_{n, \infty}\left(E_{n}\right) / J \rightarrow L_{n+1, \infty}\left(E_{n+1}\right) / J$ the map induced by L_{n} and by γ_{n} the isomorphism from $L_{n, \infty}\left(E_{n}\right) / J$ onto B_{n}. We obtain the following intertwining:

This implies that $B_{\infty} \cong E / J$.

4. Tracial topological rank of E

Through the rest of paper, we will write $f_{\delta_{2}}^{\delta_{1}}$ (where $0<\delta_{2}<\delta_{1}<1$) for the following non-negative continuous function on $[0, \infty)$:

$$
f_{\delta_{2}}^{\delta_{1}}(t)= \begin{cases}1, & t \geq \delta_{1} \\ \left(t-\delta_{2}\right) /\left(\delta_{1}-\delta_{2}\right), & \delta_{2}<t<\delta_{1} \\ 0, & t \leq \delta_{2}\end{cases}
$$

Definition 4.1. Let a and b be two positive elements in a C^{*}-algebra A. We write $[a] \leq[b]$ if there exists $x \in A$ such that $a=x^{*} x$ and $x x^{*} \in \overline{b A b}$, and $[a]=[b]$ if $a=x^{*} x$ and $b=x x^{*}$. For more information on this relation, see [Cu1], [Cu2] and [HLX1].

Definition 4.2 ([Ln4] and [HLX1]). Recall that a unital C^{*}-algebra A is said to have tracial topological rank zero if the following holds: For any $\varepsilon>0$, any finite subset $\mathcal{F} \subset A$ containing a nonzero element $a \in A_{+}$, and any real
numbers $0<\sigma_{4}<\sigma_{3}<\sigma_{2}<\sigma_{1}<1$, there is a projection $p \in A$ and a finite dimensional C^{*}-subalgebra B of A with $1_{B}=p$ such that
(1) $\|x p-p x\|<\varepsilon$ for all $x \in \mathcal{F}$,
(2) $p x p \in_{\varepsilon} B$ for all $x \in \mathcal{F}$, and
(3) $\left[f_{\sigma_{2}}^{\sigma_{1}}((1-p) a(1-p))\right] \leq\left[f_{\sigma_{4}}^{\sigma_{3}}(p a p)\right]$.

If A has tracial topological rank zero, we will write $\operatorname{TR}(A)=0$. If A is non-unital, we say that A has tracial topological rank zero if $\operatorname{TR}(\tilde{A})=0$.

We will show that the C^{*}-algebra E constructed in the previous section has tracial topological rank zero. The proof is similar to that in [Ln7]. We will use the following two lemmas:

Lemma 4.3 ([HLX1, Lemm 1.8]). Let $0<\sigma_{4}<\sigma_{3}<1$. There is $\delta=$ $\delta\left(\sigma_{3}, \sigma_{4}\right)>0$ such that for any C^{*}-algebra A, any $a, b \in A_{+}$with $\|a\| \leq 1$, $\|b\| \leq 1$, and any σ_{1}, σ_{2} with $\sigma_{3}<\sigma_{2}<\sigma_{1}<1,\|a-b\|<\delta$ implies

$$
\left[f_{\sigma_{2}}^{\sigma_{1}}(a)\right] \leq\left[f_{\sigma_{4}}^{\sigma_{3}}(b)\right]
$$

Lemma 4.4 ([Ln7, Lemma 3.4]). Let $0<\sigma_{4}<\sigma_{3}<1$. There is $\delta_{1}=$ $\delta\left(\sigma_{3}, \sigma_{4}\right)>0$ such that for any C^{*}-algebra A, any $a, b \in A_{+}$and $x \in A$ with $\|x\| \leq 1,\|a\| \leq 1,\|b\| \leq 1$ and any σ_{1}, σ_{2} with $\sigma_{3}<\sigma_{2}<\sigma_{1}<1$, then $\left\|x^{*} x-a\right\|<\delta_{1}$ and $\left\|x x^{*}-b\right\|<\delta_{1}$ imply

$$
\left[f_{\sigma_{2}}^{\sigma_{1}}(a)\right] \leq\left[f_{\sigma_{4}}^{\sigma_{3}}(b)\right]
$$

Lemma 4.5. $\quad \mathrm{TR}(E)=0$.
Proof. By Definition 1.11 (see also Proposition 1.17) in [HLX1], it suffices to show the following:

For any $\varepsilon>0$, any $0<\sigma_{2}<\sigma_{1}<1$, any finite subset \mathcal{F} of E and a nonzero element $a \in E_{+}$, there is a projection $p \in E$ and a finite dimensional C^{*}-subalgebra $C \subset E$ with $1_{C}=p$ such that
(1) $\|x p-p x\|<\varepsilon$ for all $x \in \mathcal{F}$,
(2) $\operatorname{dist}(x, C)<\varepsilon$ for all $x \in \mathcal{F}$, and
(3) $\left[f_{\sigma_{2}}^{\sigma_{1}}((1-p) a(1-p))\right] \leq\left[f_{\sigma_{4}}^{\sigma_{3}}(p a p)\right]$ for some $0<\sigma_{4}<\sigma_{3}<\sigma_{2}$.

Without loss generality, we may assume that $\|a\|=1$. Fix $0<d_{2}<d_{1}<$ $\min \left\{1 / 8, \sigma_{2}\right\}$. Let $\delta\left(d_{1}, d_{2}\right)>0$ be as in Lemma 4.4. There is an integer n such that $1 / n<\varepsilon / 4$, and a finite subset $S \subset E_{n}$ such that $\mathcal{F} \cup\{a\} \subset L_{n, \infty}(S)$. Suppose that $L_{n, \infty}(b)=a$, where $0 \leq b \leq 1$ is in E_{n} and $\|b\|=1$. We may assume that $L_{n, \infty}\left(S^{\prime}\right) \subset L_{l, \infty}\left(\mathcal{F}_{l}\right)$, where $S^{\prime}=\{c d: c, d \in S\}$ and \mathcal{F}_{l} is as in Definition 3.5.

Choose a large integer $l>(n+1)^{2}$ such that $\max \left\{1 / 2^{l-2}, 1 / l\right\}<\delta\left(d_{1}, d_{2}\right) / 2$ and $\left\|\psi_{l}\left(L_{n, l-1}(b)\right)\right\| \geq(1 / 2)\|b\|$. (Note that $1 / l<\varepsilon / 16$.) For $s \in S$ write (in E_{l})

$$
L_{n, l}(s)=\operatorname{diag}(s, L(s)), \quad \text { with } \quad L_{n, l}\left(1_{E_{n}}\right)=\operatorname{diag}\left(1_{E_{n}}, L\left(1_{E_{n}}\right)\right)
$$

where $L(s) \in C_{l}$. (See the construction of E.) Since $L_{l, \infty}$ is $\mathcal{F}_{l}-1 /(l+1) 2^{l}$. $\delta_{\operatorname{dim} C_{l}} / 2^{l}$-multiplicative, by Proposition 3.3 there is a homomorphism h : $C_{l} \rightarrow E$ such that

$$
\left\|\left.L_{l, \infty}\right|_{C_{l}}-h\right\|<1 / 2^{l-1}
$$

Let $p^{\prime}=\operatorname{diag}\left(0, L\left(1_{E_{n}}\right)\right)$. Then $p^{\prime} \in C_{l}$. Hence there is a projection $p \in h\left(C_{l}\right)$ such that $\left\|L_{l, \infty}\left(p^{\prime}\right)-p\right\|<\min \left\{1 / 2^{l-1}, \varepsilon / 2\right\}$. Since $L_{l, \infty}$ is $\mathcal{F}_{l}-1 /(l+1) 2^{l}$. $\delta_{\operatorname{dim} C_{l}} / 2^{l}$-multiplicative, we have
(1) $\|p x-x p\|<\varepsilon$ for $x \in \mathcal{F}$, and
(2) $p x p \in_{\varepsilon} h\left(C_{l}\right)$ for $x \in \mathcal{F}$.

To show (3) we consider two cases:
Case (i): $b \in\left(I_{n}\right)_{+}$. We may assume that

$$
\left\|e_{l} b-b\right\|<\min \left\{\delta\left(d_{1}, d_{2}\right) / 4, \varepsilon / 4\right\}
$$

Let $b_{1}=e_{l} b e_{l}$ and $b_{1}^{\prime}=L_{n, l-1}\left(b_{1}\right)$. Thus, $\psi\left(b_{1}^{\prime}\right) \neq 0$. We have

$$
L_{n, l}\left(b_{1}\right)=\operatorname{diag}\left(b_{1}, \Phi_{n}\left(b_{1}\right), \psi_{l}\left(b_{1}^{\prime}\right), \ldots, \psi_{l}\left(b_{1}^{\prime}\right)\right)
$$

where $\Phi_{n}: I_{n} \rightarrow I_{l}$ is a contractive completely positive linear map and $\Phi_{n}\left(I_{n}\right)$ is contained in C_{l} and ψ_{l} is repeated l times. Note that $\left\|\psi\left(b_{1}^{\prime}\right)\right\|>1 / 4$. So, $\operatorname{diag}\left(\psi_{l}\left(b_{1}^{\prime}\right), \ldots, \psi_{l}\left(b_{1}^{\prime}\right)\right)$ has an eigenvalue λ with $\lambda \geq 1 / 4$ and its rank in C_{l}^{\prime} (see the construction of E) is at least l. We have

$$
\left[b_{1}\right] \leq\left[e_{l}\right] \quad \text { and } \quad(1 / 4)\left[e_{l}\right] \leq\left[\operatorname{diag}\left(\psi_{l}\left(b_{1}^{\prime}\right), \ldots, \psi_{l}\left(b_{1}^{\prime}\right)\right)\right]
$$

where $\psi_{l}\left(b_{1}^{\prime}\right)$ is repeated l times.
Put $c=\operatorname{diag}\left(0, \Phi_{n}\left(b_{1}\right), \psi_{l}\left(b_{1}^{\prime}\right), \ldots, \psi_{l}\left(b_{1}^{\prime}\right)\right)$ and $b^{\prime}=\operatorname{diag}\left(b_{1}, 0, \ldots, 0\right)$. Since $\left\{u_{i j}\right\}_{i=1}^{l} \subset \mathcal{F}_{l}$, there is $x \in \mathcal{F}_{l}$ such that

$$
x^{*} x=b^{\prime} \quad \text { and } \quad x x^{*} \in C^{\prime}
$$

where $C^{\prime}=e_{l} C_{l}^{\prime} e_{l}$. Moreover, c contains an eigenvalue λ with $\lambda \geq 1 / 4$ and the corresponding spectral projection e larger than a projection in C_{l}^{\prime} with rank l. Therefore, there exists $v \in C_{l}$ such that

$$
v^{*} v=e_{l} \quad \text { and } \quad v v^{*} \leq e
$$

Note that $f_{1 / 8}^{1 / 4}(c) \geq e$. This implies that there is $z \in C_{l}$ such that

$$
z^{*} z=x x^{*} \quad \text { and } \quad z z^{*} f_{1 / 8}^{1 / 4}(c)=z z^{*}
$$

Let $y=L_{l, \infty}(x)$ and $b^{\prime \prime}=p L_{l, \infty}\left(b^{\prime}\right) p$. Since $L_{l, \infty}$ is $\mathcal{F}_{l}-1 /(l+1) \cdot 2^{l} \cdot \delta_{\operatorname{dim} C_{l}} / 2^{l}-$ multiplicative and $\left\|\left.L_{l, \infty}\right|_{C_{l}}-h\right\|<1 / 2^{l-1}$, we have

$$
\left\|y^{*} y-b^{\prime \prime}\right\|<1 / 2^{l-2} \quad \text { and } \quad\left\|y y^{*}-h\left(x x^{*}\right)\right\|<1 / 2^{l-2}
$$

We also have

$$
\left\|b^{\prime \prime}-(1-p) a(1-p)\right\|<1 / 2^{l-2} \quad \text { and } \quad\|h(c)-p a p\|<1 / 2^{l-2}
$$

Moreover,

$$
h\left(z^{*} z\right)=h\left(x x^{*}\right) \quad \text { and } \quad h\left(z z^{*}\right) h\left(f_{1 / 8}^{1 / 4}(c)\right)=h\left(z z^{*}\right)
$$

Therefore, by Lemma 4.4,

$$
\left[f_{\sigma_{2}}^{\sigma_{1}}((1-p) a(1-p))\right] \leq\left[f_{d_{2}}^{d_{1}}\left(h\left(x x^{*}\right)\right)\right]
$$

We also have that $\left[f_{d_{2}}^{d_{1}}\left(h\left(x x^{*}\right)\right)\right]=\left[f_{d_{2}}^{d_{1}}\left(h\left(z z^{*}\right)\right)\right]$. Therefore

$$
\left[f_{d_{2}}^{d_{1}}\left(h\left(z z^{*}\right)\right)\right] \leq\left[h\left(z z^{*}\right)\right] \leq\left[h\left(f_{1 / 8}^{1 / 4}(c)\right)\right] .
$$

It then follows from the proof of Lemma 4.4 that there are $0<\sigma_{4}<\sigma_{3}<d_{2}$ such that

$$
\left[h\left(f_{1 / 8}^{1 / 4}(c)\right)\right] \leq\left[f_{\sigma_{4}}^{\sigma_{3}}(p a p)\right]
$$

because $\|h(c)-p a p\|<1 / 2^{l-2}$. Hence

$$
\left[f_{\sigma_{2}}^{\sigma_{1}}((1-p) a(1-p))\right] \leq\left[f_{\sigma_{4}}^{\sigma_{3}}(p a p)\right]
$$

Case (ii): $b \in\left(E_{n}\right)_{+} \backslash I_{n}$. This part of the proof is just a slight modification of the proof in Case (i). Take $0<\sigma_{10}<\sigma_{9}<\cdots<\sigma_{4}<\sigma_{3}<d_{2}$. We note that $\phi_{i}^{(n+1)} \circ L_{n}(a)$ has the form

$$
\operatorname{diag}\left(\pi_{n!}(a)\left(\xi_{i}\right), \phi_{1}^{(n)}(a), \ldots, \phi_{n-1}^{(n)}(a), \pi_{n!}(a)\left(\xi_{n}\right)\right)
$$

for $0<i<n$ and $a \in E_{n}$. Since $\left\{\xi_{n}\right\}$ is dense in \mathbb{T}, without loss of generality we may assume that $\pi_{n!}(b)\left(\xi_{m}\right) \neq 0$ and $n<m<m!<l$. By the construction we may write

$$
L_{n, l}(b)=\operatorname{diag}\left(b, L^{\prime}(b), \pi_{n!}(b)\left(\xi_{m}\right), \ldots, \pi_{n!}(b)\left(\xi_{m}\right), L^{\prime \prime}(b)\right)
$$

where $\pi_{n!}(b)\left(\xi_{m}\right)$ is repeated $m!$ times and $L^{\prime}(b), L^{\prime \prime}(b) \in C_{l}$. Note that

$$
\begin{aligned}
& \operatorname{diag}\left(0, L^{\prime}(b), \pi_{n!}(b)\left(\xi_{m}\right), \ldots, \pi_{n!}(b)\left(\xi_{m}\right), L^{\prime \prime}(b)\right) \\
& \quad \geq \operatorname{diag}\left(0,0, \ldots, 0, \pi_{n!}(b)\left(\xi_{m}\right), \ldots, \pi_{n!}(b)\left(\xi_{m}\right), 0\right)
\end{aligned}
$$

Since $\left\{u_{i j}\right\} \subset \mathcal{F}_{l}$, there is $z_{k} \in \mathcal{F}_{l}$ such that

$$
z_{k}^{*} z_{k}=\operatorname{diag}(b, 0,0, \ldots, 0) \quad \text { and } \quad z_{k} z_{k}^{*}=\operatorname{diag}(0, \ldots, 0, b, 0)
$$

where b is in the $(k+1)$ st position. We note that there is $c \in M_{l!/ n!}\left(\mathbb{C} \cdot 1_{E_{n}}\right)$ such that

$$
c^{*} c=\operatorname{diag}\left(0,1_{E_{n}}, 0, \ldots, 0\right)
$$

and

$$
c c^{*} \leq \operatorname{diag}\left(0, \ldots, 0, \pi_{n!}(b)\left(\xi_{m}\right), \ldots, \pi_{n!}(b)\left(\xi_{m}\right), 0\right)
$$

Indeed, since $\pi_{n!}(b)\left(\xi_{m}\right) \neq 0, \pi_{n!}(b)\left(\xi_{m}\right)$ is unitarily equivalent to $\operatorname{diag}\left(\alpha_{1}\right.$, $\left.\ldots, \alpha_{n!}\right)$ for some $\alpha_{1}, \ldots, \alpha_{n!} \in \mathbb{C}$ with $\alpha_{1} \neq 0$. Since $\mathrm{t} \pi_{n!}(b)\left(\xi_{m}\right)$ is repeated $m!$ times and $m>n$, we have

$$
\left[\operatorname{diag}\left(0,1_{E_{n}}, 0, \ldots, 0\right)\right] \leq\left[\operatorname{diag}\left(0, \ldots, 0, \pi_{n!}(b)\left(\xi_{m}\right), \ldots, \pi_{n!}(b)\left(\xi_{m}\right), 0\right)\right]
$$

Note also $\operatorname{diag}(0, b, 0, \ldots, 0) \leq \operatorname{diag}\left(0,1_{E_{n}}, 0, \dot{s}, 0\right)$ and $\left.\left(L_{l, \infty}\right)\right|_{\left.M_{l!\left(\mathbb{C} \cdot 1_{E_{1}}\right.}\right)}$ is a homomorphism. Therefore we have

$$
\begin{aligned}
{\left[f_{\sigma_{2}}^{\sigma_{1}}((1-p) a(1-p))\right] } & \leq\left[f_{d_{2}}^{d_{1}}\left(L_{l, \infty}\left(z_{1}^{*} z_{1}\right)\right)\right] \\
& =\left[f_{d_{2}}^{d_{1}}\left(L_{l, \infty}\left(z_{1} z_{1}^{*}\right)\right)\right] \\
& \leq\left[f_{\sigma_{4}}^{\sigma_{3}}\left(L_{l, \infty}\left(c^{*} c\right)\right]\right. \\
& \leq\left[f_{\sigma_{4}}^{\sigma_{3}}\left(L_{l, \infty}\left(c c^{*}\right)\right)\right] \\
& \leq\left[f_{\sigma_{6}}^{\sigma_{5}}\left(L_{l, \infty}\left(\operatorname{diag}\left(0, \pi_{n!}(b)\left(\xi_{m}\right), \ldots, \pi_{n!}(b)\left(\xi_{m}\right), 0\right)\right)\right]\right. \\
& \leq\left[f_{\sigma_{8}}^{\sigma_{7}}\left(\operatorname{diag}\left(0, L^{\prime}(b), \pi_{n!}(b)\left(\xi_{m}\right), \ldots, \pi_{n!}(b)\left(\xi_{m}\right), L^{\prime \prime}(b)\right)\right]\right. \\
& \leq\left[f_{\sigma_{10}}^{\sigma_{9}}(p a p)\right]
\end{aligned}
$$

and hence

$$
\left[f_{\sigma_{2}}^{\sigma_{1}}((1-p) a(1-p))\right] \leq\left[f_{\sigma_{10}}^{\sigma_{9}}(p a p)\right] .
$$

This shows that $\operatorname{TR}(E)=0$.
Corollary 4.6. J is an AF algebra.
Proof. Given a finite subset $\mathcal{F} \subset J$, we may assume that there is a finite subset $\mathcal{G} \subset I_{n}$ such that $L_{n, \infty}(\mathcal{G})=\mathcal{F}$. Furthermore, we may assume that $\mathcal{G} \subset S_{k(n)} \otimes M_{n!}$ with $k(n)>n$. Since $C_{l}^{\prime \prime} \oplus C_{l+1}^{\prime} \subset C_{l+1}^{\prime \prime}$ for $1 \leq l$ and

$$
L_{n, k(n)}\left(S_{k(n)} \otimes M_{n!}\right) \subset S_{k(n)} \otimes M_{n!} \oplus C_{n}^{\prime} \oplus C_{n+1}^{\prime} \oplus \cdots \oplus C_{k(n)-1}^{\prime}
$$

it follows that $L_{n, k(n)}\left(S_{k(n)} \otimes M_{n!}\right) \subset C_{k(n)}^{\prime \prime}$. By the choice of $\mathcal{S}_{k(n)}$ and $\eta_{k(n)}$, we see that there is a homomorphism $\bar{h}_{k(n)}: C_{k(n)}^{\prime \prime} \rightarrow E$ such that

$$
\left\|\left.L_{k(n), \infty}\right|_{C_{k(n)}^{\prime \prime}}-\bar{h}_{k(n)}\right\|<1 / 2^{k(n)}
$$

Let $B_{0}=\bar{h}_{k(n)}\left(C_{k(n)}^{\prime \prime}\right)$. Then B_{0} is a finite dimensional C^{*}-algebra and for any $x \in \mathcal{G}$ we have

$$
\begin{aligned}
\| L_{n, \infty}(x)- & \bar{h}_{k(n)}\left(L_{n, k(n)}(x)\right) \| \\
\leq & \left\|L_{n, \infty}(x)-L_{k(n), \infty}\left(L_{n, k(n)}(x)\right)\right\| \\
& \quad+\left\|L_{k(n), \infty}\left(L_{n, k(n)}(x)\right)-\bar{h}_{k(n)}\left(L_{n, k(n)}(x)\right)\right\| \\
< & 1 / 2^{k(n)} .
\end{aligned}
$$

This implies that

$$
\operatorname{dist}\left(\mathcal{F}, B_{0}\right)<1 / 2^{k(n)}
$$

From this one sees that J is an AF-algebra.

5. Tracially quasidiagonal extensions

Definition 5.1. Let

$$
0 \longrightarrow I \longrightarrow E \longrightarrow A \longrightarrow 0
$$

be a short exact sequence of C^{*}-algebras. In [HLX2], we say that (E, I) is tracially quasidiagonal if, for any $\varepsilon>0$, any nonzero $a \in E_{+}$, any finite subset $\mathcal{F} \subset E$ and any $0<\sigma_{4}<\sigma_{3}<\sigma_{2}<\sigma_{1}<1$, there exists a C^{*}-subalgebra $D \subset E$ with $1_{D}=p$ such that
(1) $\|p x-x p\|<\varepsilon$ for all $x \in \mathcal{F}$,
(2) $p x p \in_{\varepsilon} D$ for all $x \in \mathcal{F}$,
(3) $D \cap I=p I p$ and $(D, D \cap I)$ is quasidiagonal, and
(4) $\left[f_{\sigma_{4}}^{\sigma_{3}}((1-p) a(1-p))\right] \leq\left[f_{\sigma_{2}}^{\sigma_{1}}(p a p)\right]$.

In [HLX2] we showed that if $\operatorname{TR}(I)=0=\mathrm{TR}(A)$ then $\operatorname{TR}(E)=0$ if (E, I) is tracially quasidiagonal. Moreover, if $\mathrm{TR}(e I e)=0$ for every projection $e \in$ E, then $\mathrm{TR}(E)=0$ also implies that the extension is tracially quasidiagonal.

It is clear that if (E, I) is quasidiagonal, then (E, I) is tracially quasidiagonal. (Take $p=1$.) On the other hand, Corollary 5.5 below says that there are tracially quasidiagonal extensions that are not quasidiagonal.

Theorem 5.2. The extension

$$
0 \longrightarrow J \longrightarrow E \longrightarrow B_{\infty} \longrightarrow 0
$$

is tracially quasidiagonal.
Proof. Since $\operatorname{TR}\left(B_{\infty}\right)=\operatorname{TR}(E)=\operatorname{TR}(J)=0$, and $\operatorname{TR}(e J e)=0$ for every projection $e \in E$ by Lemma 4.5 and Corollary 4.6, it follows from [HLX2] that the extension is tracially quasidiagonal.

Lemma 5.3. Let A_{n} be a sequence of unital C^{*}-algebras and $A=\lim _{n \rightarrow \infty}$ $\left(A_{n}, \varphi_{n, m}\right)$ be a generalized inductive limit in the sense of [BE]. Suppose that each $\varphi_{n, m}: A_{n} \rightarrow A_{m}$ is unital with $\left\|\varphi_{n}(a)\right\|=\left\|\varphi_{n, m}(a)\right\|$ for $a \in A_{n}$ and $m>n$. Let $u \in A$ be a unitary. Then for any $\varepsilon>0$ there is $n>0$ and a unitary $v \in A_{n}$ such that

$$
\left\|\varphi_{n}(v)-u\right\|<\varepsilon
$$

where φ_{n} is an induced map by the inductive limit from A_{n} into A.
Proof. By definition there is a sequence $\left\{\varphi_{n_{k}}\left(a_{k}\right)\right\}$, where $a_{k} \in A_{n_{k}}$ that converges to u. Therefore, we may assume that

$$
\left\|\varphi_{n_{k}}\left(a_{k}\right)-u\right\|<1 / 2^{k+2} .
$$

and

$$
\left\|\varphi_{n_{k}}\left(a_{k}^{*}\right) \varphi_{n_{k}}\left(a_{k}\right)-1\right\|<1 / 2^{k+2}, \quad\left\|\varphi_{n_{k}}\left(a_{k}\right) \varphi_{n_{k}}\left(a_{k}^{*}\right)-1\right\|<1 / 2^{k+2} .
$$

From the definition of a generalized inductive limit it follows that there is $m_{k}>n_{k}$ such that for any $x, y \in A_{n_{k}}$

$$
\begin{aligned}
& \left\|\varphi_{m_{k}}\left(\varphi_{n_{k}, m_{k}}(x)+\varphi_{n_{k}, m_{k}}(y)\right)-\left(\varphi_{n_{k}}(x)+\varphi_{n_{k}}(y)\right)\right\|<1 / 2^{k+2} \\
& \left\|\varphi_{m_{k}}\left(\varphi_{n_{k}, m_{k}}(x)^{*}\right)-\varphi_{n_{k}}(x)^{*}\right\|<1 / 2^{k+2} \\
& \left\|\varphi_{m_{k}}\left(\varphi_{n_{k}, m_{k}}(x) \varphi_{n_{k}, m_{k}}(y)\right)-\varphi_{n_{k}}(x) \varphi_{n_{k}}(y)\right\|<1 / 2^{k+2}
\end{aligned}
$$

Set $b_{k}=\varphi_{n_{k}, m_{k}}\left(a_{k}\right) \in A_{m_{k}}$. Since

$$
\begin{aligned}
&\left\|\phi_{n_{k}}\left(a_{k}^{*} a_{k}\right)-1\right\|=\| \phi_{n_{k}}\left(a_{k}^{*} a_{k}\right)-\phi_{m_{k}}\left(\phi_{n_{k}, m_{k}}\left(a_{k}^{*}\right) \phi_{n_{k}, m_{k}}\left(a_{k}\right)\right) \\
&+\phi_{m_{k}}\left(\phi_{n_{k}, m_{k}}\left(a_{k}^{*}\right) \phi_{n_{k}, m_{k}}\left(a_{k}\right)\right)-1 \| \\
& \leq\left\|\phi_{n_{k}}\left(a_{k}^{*} a_{k}\right)-\phi_{m_{k}}\left(\phi_{n_{k}, m_{k}}\left(a_{k}^{*}\right) \phi_{n_{k}, m_{k}}\left(a_{k}\right)\right)\right\| \\
& \quad+\left\|\phi_{m_{k}}\left(\phi_{n_{k}, m_{k}}\left(a_{k}^{*}\right) \phi_{n_{k}, m_{k}}\left(a_{k}\right)\right)-1\right\| \\
& \leq 1 / 2^{k+2}+\| \phi_{m_{k}}\left(\phi_{n_{k}, m_{k}}\left(a_{k}^{*}\right) \phi_{n_{k}, m_{k}}\left(a_{k}\right)\right) \\
& \quad-\phi_{n_{k}}\left(a_{k}^{*}\right) \phi_{n_{k}}\left(a_{k}\right)\|+\| \phi_{n_{k}}\left(a_{k}^{*}\right) \phi_{n_{k}}\left(a_{k}\right)-1 \| \\
& \leq 3 / 2^{k+2},
\end{aligned}
$$

we have

$$
\begin{gathered}
\left\|\varphi_{m_{k}}\left(b_{k}^{*} b_{k}-1\right)\right\| \leq\left\|\varphi_{m_{k}}\left(b_{k}^{*} b_{k}-1\right)-\left(\varphi_{n_{k}}\left(a_{k}^{*} a_{k}\right)-1\right)\right\| \\
\quad+\left\|\varphi_{n_{k}}\left(a_{k}^{*} a_{k}\right)-1\right\| \\
<1 / 2^{k+2}+3 / 2^{k+2}=1 / 2^{k} \\
\left\|\varphi_{m_{k}}\left(b_{k} b_{k}^{*}-1\right)\right\|<1 / 2^{k}
\end{gathered}
$$

and

$$
\begin{aligned}
\left\|\varphi_{k}\left(b_{k}\right)-u\right\| & =\left\|\varphi_{m_{k}}\left(\varphi_{n_{k}, m_{k}}\left(a_{k}\right)\right)-u\right\| \\
& \leq\left\|\varphi_{m_{k}}\left(\varphi_{n_{k}, m_{k}}\left(a_{k}\right)\right)-\varphi_{n_{k}}\left(a_{k}\right)\right\|+\left\|\varphi_{n_{k}}\left(a_{k}\right)-u\right\| \\
& <1 / 2^{k+1}
\end{aligned}
$$

Hence b_{k} is an invertible element in $A_{m_{k}}$. Set $v=b_{k}\left|b_{k}\right|^{-1}$. Then v is a unitary, and the distance between v and b_{k} is small (depending on k). Hence, taking a sufficient large k, we have a unitary $v \in A_{m_{k}}$ such that

$$
\left\|\varphi_{m_{k}}(v)-u\right\|<\varepsilon
$$

Theorem 5.4. A C^{*}-algebra E has topological stable rank two.
Proof. Take a unitary $u \in B_{\infty}$ such that $0 \neq[u]_{1} \in K_{1}\left(B_{\infty}\right)$. Suppose that u can be lifted to a unitary \tilde{u} in E. We will get a contradiction.

Since a system $\left(E_{n}, L_{n, m}\right)$ is a generalized inductive limit, by Lemma 5.3 there exists $n \in \mathbb{N}$ and a unitary $v \in E_{n}$ such that

$$
\left\|L_{n, \infty}(v)-\tilde{u}\right\|<1
$$

From the commutative diagram

we conclude that $w_{n}=\pi_{n!}(v)$ is a unitary in B_{n} and $h_{n, \infty}\left(w_{n}\right)=\pi_{\infty} \circ$ $L_{n, \infty}(v)$. Set $w=h_{n, \infty}\left(w_{n}\right)$. Then $w \in B_{\infty}$ is a unitary, and

$$
\begin{aligned}
\|w-u\| & =\left\|\pi_{\infty} \circ L_{n, \infty}(v)-\pi_{\infty}(\tilde{u})\right\| \\
& \leq\left\|L_{n, \infty}(v)-\tilde{u}\right\|<1
\end{aligned}
$$

Hence, $[w]_{1}=[u]_{1}$ in $K_{1}\left(B_{\infty}\right)$. Therefore, $\left[w_{n}\right]_{1} \neq 0$ in $K_{1}\left(B_{n}\right)$, because the induced map $\left(h_{n, \infty}\right)_{*}: K_{1}\left(B_{n}\right) \rightarrow K_{1}\left(B_{\infty}\right)$ is an identity (see Definition 3.7).

On the other hand, from the construction we have $0 \neq \partial_{1}\left(\left[w_{n}\right]_{1}\right) \in K_{0}\left(I_{n}\right)$. But this gives a contradiction, for

$$
\partial_{1}\left(\left[w_{n}\right]_{1}\right)=\partial_{1} \circ \pi_{*}\left([v]_{1}\right)=0
$$

So by [Ni, Lemma 3] or [LR, Proposition 4] E has topological stable rank more than one. Hence by [Rf, Corollary 4.2] we conclude that E has topological stable rank two.

Corollary 5.5. The extension

$$
0 \longrightarrow J \longrightarrow E \longrightarrow B_{\infty} \longrightarrow 0
$$

is not quasidiagonal.
Proof. From the previous theorem it follows that the index map ∂_{1} : $K_{1}\left(B_{\infty}\right) \rightarrow K_{0}(J)$ is non-zero. Hence, by [BrD, Theorem 8] the extension is not quasidiagonal.

Remark 5.6. (1) The C^{*}-algebra E is QD in [HLX3, Theorem 4.6].
(2) A C^{*}-algebra E in (1) is not an AH-algebra, that is, it can not be written as the inductive limit of direct sums of homogeneous C^{*}-algebras. Indeed, since J and B_{∞} have real rank zero (see [G, Theorem 9]), if E is an AH-algebra, the extension has to be quasidiagonal by [BrD, Proposition 11]. This is a contradiction to Corollary 5.5.
(3) In $[\operatorname{Ln} 7]$ the first author constructed an example of a unital C^{*}-algebra A which has tracial topological rank zero, but real rank greater than zero. This also gives an extension $0 \rightarrow J \rightarrow A \rightarrow B \rightarrow 0$ with a non-zero index map $\partial_{0}: K_{0}(B) \rightarrow K_{1}(I)$. In the present note we have constructed another tracially quasidiagonal extension in Corollary 5.5 with a non-zero index map $\partial_{1}: K_{1}(B) \rightarrow K_{0}(I)$. This implies that a more complicated index is needed to characterize tracially quasidiagonal extensions.

References

[BE] B. Blackadar and E. Kirchberg, Generalized inductive limits of finite dimensional C^{*}-algebras, Math. Ann. 307 (1997), 343-380.
[Br] L. G. Brown, The universal coefficient theorem for Ext and quasidiagonality, Operator algebras and group representations 17, Pitman, Boston-London-Melbourne, 1983, pp. 60-64.
[BrD] L. G. Brown and M. Dadarlat, Extensions of C^{*}-algebras and quasidiagonality, J. London Math. Soc. (2) 53 (1996), 582-600.
[BP] L. G. Brown and G. K. Pedersen, C^{*}-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131-149.
[BD] N. Brown and M. Dadarlat, Extensions of quasidiagonal C^{*}-algebras and K-theory, preprint.
[Cu1] J. Cuntz, The structure of addition and multiplication in simple C^{*}-algebras, Math. Scand. 40 (1977), 215-233.
[Cu2] , Dimension function on simple C^{*}-algebras, Math. Ann. 233 (1978), 145153.
[G] K. R. Goodearl, Notes on a class of simple C^{*}-algebras with real rank zero, Publ. Mat. 36 (1992), 637-654.
[HLX1] S. Hu, H. Lin, and Y. Xue, The tracial topological rank of C^{*}-algebras (II), preprint.
[HLX2] \qquad , Tracial topological rank of extensions of C^{*}-algebras, preprint.
[HLX3] \qquad , K-theory of C^{*}-algebras with finite tracial topological rank, Internat. J. Math., to appear.
[Ln1] H. Lin, Classification of simple C^{*}-algebras with unique traces, Amer. J. Math. 120 (1998), 1289-1315.
[Ln2] , Tracially AF C^{*}-algebras, Trans. Amer. Math. Soc. 353 (2001), 693-722.
[Ln3] , Classification of simple tracially AF C^{*}-algebras, Canad. J. Math. 53 (2001), 161-194.
[Ln4] , The tracial topological rank of C^{*}-algebras, Proc. London Math. Soc. 83 (2001), 199-234.
[Ln5] , Classification of simple C^{*}-algebras and higher dimensional tori, Ann. of Math. (2) 157 (2003), 521-544.
[Ln6] , Classification of simple C^{*}-algebras of tracial topological rank zero, MSRI preprint, 2000.
[Ln7] , Tracially quasidiagonal extensions, Canad. Math. Bull., to appear.
[LR] H. Lin and M. Rørdam, Extensions of inductive limits of circle algebras, Proc. London Math. Soc. 51 (1995), 603-613.
[NOP] M. Nagisa, H. Osaka, and N. C. Phillips, Ranks of algebras of continuous C^{*} algebra valued functions, Canad. J. Math. 53 (2001), 979-1030.
[Ni] V. Nistor, Stable rank for a certain class of type I C ${ }^{*}$-algebras, J. Operator Theory 17 (1987), 365-373.
[Rf] M. Rieffel, Dimension and stable rank in the K-theory of C^{*}-algebras, Proc. London Math. Soc. 46 (1983), 301-333.
[S] N. Salinas, Relative quasidiagonality and KK-theory, Houston J. Math. 18 (1992), 97-116.
[Sch] C. L. Schochet, The fine structure of the Kasparov groups II: relative quasidiagonality, preprint, Sept. 1996.
[Sp] J. S. Spielberg, Embedding C^{*}-algebra extensions into AF algebras, J. Funct. Anal. 81 (1988), 325-344.
[Zh] S. Zhang, C^{*}-algebras with real rank zero and the internal structure of their corona and multiplier algebras, III, Canad. J. Math. 42 (1990), 159-190.
H. Lin, Department of Mathematics, East China Normal University, Shanghai, China, and Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222, USA

E-mail address: lin@math.uregon.edu
H. Osaka, Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222, USA

Current address: Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan

E-mail address: osaka@se.ritsumei.ac.jp

[^0]: Received September 18, 2002; received in final form January 16, 2003.
 2000 Mathematics Subject Classification. xxx.

