Full-length Papers (*: Invited)

[1] *     T. Numai, “Progress in semiconductor tunable wavelength filters,” (Invited Paper, in Japanese) Trans. IEICE, vol.J73-C-I, No.5, pp.347-353 (1990).

[2]        S. Suzuki, M. Nishio, T. Numai, M. Fujiwara, M. Itoh, S. Murata, and N. Shimosaka, “A photonic wavelength-division switching system using tunable laser diode filters,” IEEE/OSA J. Lightwave Technol., vol.8, No.5, pp.660-666 (1990).

[3] *     T. Numai, “Semiconductor wavelength tunable optical filters,” (Invited Paper) Int. J. Optoelectron., vol.6, No.3, pp.239-252 (1991).

[4]        T. Numai, “1.5 μm semiconductor wavelength tunable optical filter using a λ/4-shifted passive waveguide grating resonator,” Jpn. J. Appl. Phys., Part 1, vol.30, No.10, pp.2519-2525 (1991).

[5]        K. Kasahara, T. Numai, H. Kosaka, I. Ogura, K. Kurihara, and M. Sugimoto, “Vertical to surface transmission electro-photonic device (VSTEP) and its application to optical interconnection and information processing,” IEICE Trans. Electron., vol.E75-C, No.1, pp.70-80 (1992).

[6]        T. Numai, “1.5-μm wavelength tunable phase-shift-controlled distributed feedback laser,” IEEE/OSA J. Lightwave Technol., vol.10, No.2, pp.199-205 (1992).

[7]        M. Sugimoto, T. Numai, I. Ogura, H. Kosaka, K. Kurihara, and K. Kasahara, “Vertical-to-surface transmission electro-photonic device with a pnpn structure and vertical cavity,” Optical and Quantum Electron., vol.24, No.2, pp.S121-S132 (1992).

[8]        T. Numai, “1.5 μm phase-controlled distributed feedback wavelength tunable optical filter, “IEEE J. Quantum Electron., vol.28, No.6, pp.1508-1512 (1992).

[9]       T. Numai, “1.5 μm phase-shift-controlled distributed feedback wavelength tunable optical filter,” IEEE J. Quantum Electron., vol.28, No.6, pp.1513-1519 (1992).

[10]     T. Numai, “1.5 μm two-section Fabry-Perot wavelength tunable optical filter,” IEEE/OSA J. Lightwave Technol., vol.10, No.11, pp.1590-1596 (1992).

[11]      M. Nishio, K. Takagi, S. Suzuki, I. Ogura, T. Numai, K. Kasahara, and K. Kaede, “A photonic ATM switch using vertical to surface transmission electro-photonic devices (VSTEPs),” (in Japanese) Trans. IEICE, vol.J75-C-I, No.5, pp.320-329 (1992).

[12]      Y. Yamanaka, T. Numai, K. Yoshihara, I. Ogura, H. Kosaka, K. Kurihara, M. Sugimoto, K. Kasahara, and K. Kubota, “Vertical to surface transmission electro-photonic device and its application for optical interconnection,” (in Japanese) Trans. IEICE, vol.J75-C-I, No.5, pp.330-339 (1992).

[13]      Y. Yamanaka, K. Yoshihara, I. Ogura, T. Numai, K. Kasahara, and Y. Ono,  “Free-space optical bus using cascaded vertical-to-surface transmission electrophotonic devices,” Appl. Opt., vol.31, No.23, pp.4676-4681 (1992).

[14]      K. Kurihara, T. Numai, I. Ogura, A. Yasuda, M. Sugimoto, and K. Kasahara, “Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasi-graded superlattices at the heterointerfaces,” J. Appl. Phys., vol.73, No.1, pp.21-27 (1993).

[15]      H. Kosaka, I. Ogura, M. Sugimoto, H. Saito, T. Numai, and K. Kasahara, “Pixels consisting of double vertical-cavity detector and single vertical-cavity laser sections for 2-D bidirectional optical interconnections,” Jpn. J. Appl. Phys., vol.32, No.1B, pp.600-603 (1993).

[16]      K. Kurihara, T. Numai, I. Ogura, H. Kosaka, M. Sugimoto, and K. Kasahara, “Double-mesa-structure vertical-to-surface transmission electro-photonic device with a vertical cavity,” Jpn. J. Appl. Phys., vol.32, No.1B, pp.604-608 (1993).

[17]      T. Numai, H. Kosaka, I. Ogura, K. Kurihara, M. Sugimoto, and K. Kasahara, “Indistinct threshold laser operation in a pnpn vertical to surface transmission electro-photonic device with a vertical cavity,” IEEE J. Quantum Electron., vol.29, No.2, pp.403-410 (1993).

[18]      M. Sugimoto, I. Ogura, H. Saito, A. Yasuda, K. Kurihara, H. Kosaka, T. Numai, and K. Kasahara, “Surface emitting devices with distributed Bragg reflectors grown by highly precise molecular beam epitaxy,” J. Crystal Growth, vol.127, pp.1-4 (1993).

[19]      T. Numai, K. Kurihara, I. Ogura, H. Kosaka, M. Sugimoto, and K. Kasahara, “Effect of sidewall reflector on current versus light-output in a pnpn vertical to surface transmission electro-photonic device with a vertical cavity,” IEEE J. Quantum Electron., vol.29, No.6, pp.2006-2012 (1993).

[20] *   T. Numai, “Semiconductor wavelength tunable optical filters,” (Invited Paper) Int. J. Nonlinear Opt. Phys., vol.2, No.4, pp.643-659 (1993).

[21]      Y. Yamanaka, T. Numai, K. Kasahara, and K. Kubota, “Optical fiber loop memory using vertical to surface transmission electro-photonic device,” IEEE/OSA J. Lightwave Technol., vol.11, No.12, pp.2140-2144 (1993).

[22]      M. Kajita, T. Numai, K. Kurihara, H. Saito, M. Sugimoto, H. Kosaka, I. Ogura, and K. Kasahara, “Thermal analysis of laser-emission surface-normal optical devices with a vertical cavity,” Jpn. J. Appl. Phys., Part 1, vol.33, No.1B, pp.859-863 (1994).

[23]      K. Kurihara, T. Numai, T. Yoshikawa, H. Kosaka, M. Sugimoto, Y. Sugimoto, and K. Kasahara, “Uniformity improvement of optical and electrical characteristics in integrated vertical-to-surface transmission electro-photonic device with a vertical cavity,” Jpn. J. Appl. Phys., Part 1, vol.33, No.3A, pp.1352-1356 (1994).

[24]*    T. Numai, “Surface-emitting optical devices for 2-D integration,” (Invited Paper) SPIE Proceedings, vol.2145, pp.58-68 (1994).

[25]*    T. Numai and K. Kasahara, “Low-threshold surface-emitting optical devices,” (Invited Paper) SPIE Proceedings, vol.2147, pp.122-130 (1994).

[26]      T. Numai, K. Kurihara, K. Kühn, H. Kosaka, I. Ogura, M. Kajita, H. Saito, and K. Kasahara, “Control of light-output polarization for surface-emitting-laser type device by strained active layer grown on misoriented substrate,” IEEE J. Quantum Electron., vol.31, No.4, pp.636-642 (1995).

[27]      G. Sato, T. Numai, M. Hoshiyama, I. Suemune, H. Machida, and N. Shimoyama, “Metalorganic molecular beam epitaxy growth of ZnSe with new Zn and Se precursors without precracking,” J. Crystal Growth, vol.150, pp.734-737 (1995).  

[28]      G. Sato, T. Numai, M. Hoshiyama, I. Suemune, H. Machida, and N. Shimoyama, “Metalorganic MBE growth of nitrogen-doped ZnSe: TAN doping and nitrogen plasma doping,” Jpn. J. Appl. Phys., Part 1, vol.35, pp.1436-1439 (1996).

[29]      M. Arita, A. Avramescu, K. Uesugi, I. Suemune, T. Numai, H. Machida, and N. Shimoyama, “Self-organized CdSe quantum dots on (100) ZnSe/GaAs surfaces grown by metalorganic molecular beam epitaxy,” Jpn. J. Appl. Phys., Part 1, vol.36, pp.4097-4101 (1997).

[30]      A. Ueta, I. Suemune, K. Uesugi, M. Arita, A. Avramescu, T. Numai, H. Machida, and N. Shimoyama, “Selective growth conditions of ZnSe/ZnS heterostructures on (001) GaAs with metalorganic molecular beam epitaxy,” Jpn. J. Appl. Phys., Part 1, vol.36, pp.5044-5049 (1997).

[31]      T. Numai, “Analysis of a high density two-dimensional vertical-cavity surface emitting laser array,” Jpn. J. Appl. Phys., Part 1, vol.36, pp.6393-6397 (1997).

[32]      J. Hirose, K. Uesugi, M. Hoshiyama, T. Numai, I. Suemune, H. Machida, and N. Shimoyama, “p-type conductivity control of ZnSe with insertion of ZnTe:Li submonolayers in metalorganic molecular-beam epitaxy,” J. Appl. Phys., vol.84, pp.6100-6104 (1998).

[33]      T. Numai, “Analysis of polarization switching lasers,” Jpn. J. Appl. Phys., Part 1, vol.38, pp.4746-4755 (1999).

[34]      T. Numai, N. Mizutani, and J. Nitta, “Proposal on temperature-insensitive semiconductor lasers,” Jpn. J. Appl. Phys., Part 1, vol.38, pp.4764-4767 (1999).

[35]      T. Numai, “Theoretical analysis of switching times in polarization switching lasers,” J. Appl. Phys., vol.87, pp.1610-1613  (1999).

[36]      T. Numai and O. Kubota, “Analysis of repeated unequally spaced channels for FDM lightwave systems,” IEEE/OSA J. Lightwave Technol., vol.18, No.5 , pp.656-664  (2000).

[37]      Y. Shimosako and T. Numai, “Semiclassical approach in the analysis of ring laser: I. derivation of rate equations including backscattering and interference,” Jpn. J. Appl. Phys., vol.39, pp.3983-3990  (2000).

[38]      Y. Shimosako and T. Numai, “Semiclassical approach in the analysis of ring laser: II. mode coupling due to backscattering and interference,” Jpn. J. Appl. Phys., vol.39, pp.3901-3996  (2000).

[39]      T. Numai, “Analysis of signal voltage in a semiconductor ring laser gyro,” IEEE J. Quantum Electron., vol.36, pp.1161-1167 (2000).

[40]      T. Numai, “Analysis of photon recycling in semiconductor ring lasers,” Jpn. J. Appl. Phys., Part 1, vol.39, pp.6535-6538 (2000).

[41]      T. Numai, “Beat frequencies in a ring laser gyro with its refractive index over unity,” J. Appl. Phys., vol.89, pp.1537-1543 (2001).

[42]      N. Mizutani and T. Numai, “Analysis of reflectivity for a beveled corner mirror in semiconductor ring lasers,” IEEE/OSA J. Lightwave Technol., vol.19, No.2 , pp.222-229 (2001).

[43]      Y. Shimosako and T. Numai, “Analysis of light intensity characteristics in semiconductor ring lasers,” Jpn. J. Appl. Phys., vol.41, pp.1400-1408  (2002).

[44]      T. Koide, T. Minemoto, H. Takakura, Y. Hamakawa, and T. Numai, “Control of crystalline orientation of germanium by lateral graphoepitaxy on SiO2 microstructures,” J. Appl. Phys., vol.97, pp.113530 1-4 (2005).

[45]      T. Mizuta, T. Ikuta, T. Minemoto, H. Takakura, Y. Hamakawa, and T. Numai, “An optimum design of antireflection coating for spherical silicon solar cells,” Solar Energy Materials and Solar Cells, vol. 90, pp. 46-56 (2006).

[46]      T. Numai, “A design of absorption layers in stacked color sensors,” Sens. Actuators A, vol.125, pp. 156-158 (2006).

[47]        S. Kojima and T. Numai, Theoretical analysis of modified repeated unequally-spaced frequency allocations in FDM lightwave transmission systems, IEEE/OSA J. Lightwave Technol., vol.24, pp.2786-2797 (2006).

[48]     T. Koide, T. Minemoto, H. Takakura, Y. Hamakawa, and T. Numai, “Imprint lithography with pressing at room temperature,” J. Electrochem Soc., vol.153, pp.G203-G206 (2006).

[49]      J. Onishi, S. Kojima, and T. Numai, “Effects of frequency allocations and zero dispersion frequencies on FDM lightwave transmission systems,” IEEE/OSA J. Lightwave Technol., vol.25, pp.1719-1727 (2007).

[50]      S. Kojima, T. Hino, and T. Numai, “Influence of Frequency Allocations and Optical Filters on FDM Lightwave Transmission Systems,” IEEE/OSA J. Lightwave Technol., vol.25, pp.3694-3703 (2007).

[51]      J. Onishi, S. Kojima, and T. Numai, “Effects of frequency and polarization allocations on FDM lightwave transmission systems,” Opt. Commun., vol.281, pp.2627-2632 (2008).

[52]      N. Kakimoto and T. Numai, “Control of spectral photosensitivity in stacked color sensors: proposal and theoretical Analysis,” Jpn. J. Appl. Phys., vol.47, pp.4540-4546 (2008).

[53]      Y. Nagatani, Y. Ito, J. Onishi, S. Kojima, and T. Numai, “Theoretical analysis of frequency allocations in FDM lightwave transmission systems,” J. Lightwave Technol., vol.26, pp.1993-2001 (2008).

[54]      J. Onishi, S. Kojima, and T. Numai, “Effects of frequency/polarization allocations and the zero dispersion frequency on FDM lightwave transmission systems,” Opt. Commun., vol.281, pp.3882-3891 (2008).

[55]      Y. Ito, J. Onishi, S. Kojima, and T. Numai, “Influence of modulation formats on FWM noises in FDM optical fiber transmission systems,” Opt. Commun., vol.281, pp.4515-4522 (2008).

[56]      N. Shomura, M. Fujimoto, and T. Numai, “Fiber pump semiconductor lasers with optical antiguiding layers for horizontal transverse modes,” J. Quantum Electron., vol.44, pp.819-825 (2008).

[57]      N. Shomura, M. Fujimoto, and T. Numai, “Fiber-pump semiconductor lasers with optical antiguiding layers for horizontal transverse modes: dependence on mesa width,” Jpn. J. Appl. Phys., vol.48, pp.042103-1-8 (2009).

[58]      N. Shomura and T. Numai, “Ridge-type semiconductor lasers with optical antiguiding layers for horizontal transverse modes: dependence on step positions,” Jpn. J. Appl. Phys., vol.48, pp.042104-1-9 (2009).

[59]      H. Takada and T. Numai, “Ridge-type semiconductor lasers with antiguiding cladding layers for horizontal transverse modes,” J. Quantum Electron., vol.45, pp.917-922 (2009).

[60]      Y. Ito and T. Numai, “Reduction of four wave mixing noises in FDM optical fiber transmission systems with quaternary bit-phase arranged return-to-zero,” Opt. Commun., vol.282, pp.3989-3994 (2009).

[61]      H. Yoshida and T. Numai, “Ridge-type semiconductor lasers with antiguiding layers for horizontal transverse modes: dependence on space in the antiguiding layers,” Jpn. J. Appl. Phys., vol.48, pp.082105-1-5 (2009).

[62]      H. Yoshida and T. Numai, “Simulation of ridge-type semiconductor lasers with selectively proton-implanted cladding layers,” Jpn. J. Appl. Phys., vol.49, pp.012101-1-6 (2010).

[63]      T. Nishio and T. Numai, “Dependence of total bandwidth and four-wave-mixing noises in FDM optical fiber transmission systems on the number of base units,” Opt. Commun., vol.286 pp.313-317 (2013).

[64]      T. Nishio and T. Numai, “Reduction of four-wave-mixing noises in FDM optical fiber transmission systems in unequally spaced frequency allocations using base units,” Opt. Commun., vol.294, pp.305-310 (2013).

[65]      H. Kato, H. Yoshida, and T. Numai, “Simulation of a Ridge-Type Semiconductor Laser for Separate Confinement of Horizontal Transverse Modes and Carriers,” Opt. Quantum Electron., vol.45, No.7, pp. 573-579 (2013).

[66]      G. Chai and T. Numai, “Simulation of a Ridge-Type Semiconductor Laser with Horizontal Coupling of Lateral Modes,” Opt. Quantum Electron., vol.46, No.10, pp. 1217-1223 (2014).

[67]      D. Katsuragawa and T. Numai, “Simulation of a Ridge-Type Semiconductor Laser with Selective Double-sided Anti-guiding and Partially Undoped Cladding Layers,” Opt. Quantum Electron., vol.47, No.6, pp.1381-1387 (2015).

[68]      D. Katsuragawa and T. Numai, “Simulation of a Ridge-Type Semiconductor Laser with Partially Formed Anti-guiding Cladding Layers,” Opt. Quantum Electron., vol.47, No.7, pp.2161-2167 (2015).

[69]      K. Ichikawa and T. Numai, “Resonance-shifted DFB-LD for asymmetric light output from front/rear facets,” Optik, vol.127, pp. 6253–6257 (2016).

[70]      T. Numai, “Enhancement of resonance frequency in a DFB-LD with internally incident modulated light,” Optik, vol.127, pp. 9578–9581 (2016).

[71]      K. Ichikawa, S. Ito, and T. Numai, “Enhancement of asymmetry in light output from front/rear facets in resonance-shifted DFB-LDs,” Optik, vol.127, pp. 12078–12084 (2016).

[72]     T. Numai, “High resonance frequency in a coupled cavity DFB-LD with phase-shifted/uniform gratings by photon-photon resonance,” Optik, vol.202, 163614 (2020).

https://doi.org/10.1016/j.ijleo.2019.163614

[73]      T. Numai, “High resonance frequency in a coupled cavity DFB-LD with two phase-shifts,” Opt. Quantum Electron., vol.52, No.3 , 150, pp.1-11  (2020).  https://doi.org/10.1007/s11082-020-02276-x

[74]      T. Numai, “Over 100 GHz 3-dB down Bandwidth by Direct Modulation of a Coupled Cavity DFB-LD due to Photon-Photon Resonance,” Opt. Quantum Electron., vol.53, No.92,  pp.1-12  (2021).  https://doi.org/10.1007/s11082-020-02713-x

[75]   T. Hirose and T. Numai, “Simulation of a Ridge-Type Semiconductor Laser with Transversal Diffraction Gratings,” Opt. Quantum Electron., vol.54, No.153,  pp.1-9  (2022).  https://doi.org/10.1007/s11082-022-03521-1

 

 

Letters

[1]        T. Numai, M. Yamaguchi, I. Mito, and K. Kobayashi, “A new grating fabrication method for phase-shifted DFB LDs,” Jpn. J. Appl. Phys., Part 2, vol.26, No.11, pp.L1910-L1911 (1987).

[2]        H. Yamada, T. Sasaki, S. Takano, T. Numai, M. Kitamura, and I. Mito, “Low threshold operation of 1.55 μm GaInAsP/InP DFB LDs entirely grown by MOVPE on InP grating,” Electron. Lett., vol.24, No.3, pp.147-149 (1988).

[3]       T. Numai, M. Fujiwara, N. Shimosaka, K. Kaede, M. Nishio, S. Suzuki, and I. Mito, “1.5 μm λ/4-shifted DFB LD filter and 100 Mbit/s two-channel wavelength signal switching,” Electron. Lett., vol.24, No.4, pp.236-237 (1988).

[4]        T. Numai, S. Murata, and I. Mito, “Tunable wavelength filters using λ/4-shifted waveguide grating resonators,” Appl. Phys. Lett., vol.53, No.2, pp.83-85 (1988).

[5]        M. Fujiwara, S. Murata, T. Numai, and H. Honmou, “1.55μm laser diode optical modulator,” Trans. IEICE, vol.E71, No.10, pp.972-974 (1988).

[6]        T. Numai, S. Murata, and I. Mito, “1.5 μm tunable wavelength filter with wide tuning range and high constant gain using a phase-controlled distributed feedback laser diode,” Appl. Phys. Lett., vol.53, No.13, pp.1168-1169 (1988).

[7]        T. Numai, S. Murata, and I. Mito, “1.5 μm wavelength tunable phase-shift controlled distributed feedback laser diode with constant spectral linewidth in tuning operation,” Electron. Lett., vol.24, No.24, pp.1526-1528 (1988).

[8]        T. Numai, S. Murata, and I. Mito, “1.5 μm tunable wavelength filter using a phase-shift-controlled distributed feedback laser diode with wide tuning range and high constant gain,” Appl. Phys. Lett., vol.54, No.19, pp.1859-1860 (1989).

[9]        T. Numai, “1.5 μm optical filter using a two-section Fabry-Perot laser diode with wide tuning range and high constant gain,” IEEE Photonics Technol. Lett., vol.2, No.6, pp.401-403 (1990).

[10]      T. Numai, I. Ogura, H. Kosaka, M. Sugimoto, Y. Tashiro, and K. Kasahara, “Optical self-routing switch using vertical to surface transmission electrophotonic devices with transmission light amplification function,” Electron. Lett., vol.27, No.7, pp.605-606 (1991).

[11]      T. Numai, M. Sugimoto, I. Ogura, H. Kosaka, and K. Kasahara, “Surface emitting laser operation in vertical to surface transmission electro-photonic devices with a vertical cavity,” Appl. Phys. Lett., vol.58, No.12, pp.1250-1252 (1991).

[12]      T. Numai, M. Sugimoto, I. Ogura, H. Kosaka, and K. Kasahara, “Current versus Light-output characteristics with no definite threshold in pnpn vertical to surface transmission electro-photonic devices with a vertical cavity,” Jpn. J. Appl. Phys. vol.30, No.4A, pp.L602-L604 (1991).

[13]      M. Sugimoto, H. Kosaka, K. Kurihara, I. Ogura, T. Numai, and K. Kasahara, “Very low threshold current density in vertical-cavity surface-emitting laser diodes with periodically doped distributed Bragg reflectors,” Electron. Lett., vol.28, No.4, pp.385-387 (1992).

[14]      I. Ogura, H. Kosaka, T. Numai, M. Sugimoto, and K. Kasahara, “Cascadable optical switching characteristics in vertical-to-surface transmission electrophotonic devices operated as vertical cavity lasers,” Appl. Phys. Lett., vol.60, No.7, pp.799-801 (1992).

[15]      H. Kosaka, I. Ogura, T. Numai, M. Sugimoto, and K. Kasahara, “Dependence of laser characteristics on distributed Bragg reflector pairs in vertical-to-surface transmission electrophotonic devices,” Electron. Lett., vol.28, No.16, pp.1524-1525 (1992).

[16]      T. Numai, K. Kurihara, I. Ogura, H. Kosaka, M. Sugimoto, and K. Kasahara, “High electronic-optical conversion efficiency in a vertical-to-surface transmission electro-photonic device with a vertical cavity,” IEEE Photon. Technol. Lett., vol.5, No.2, pp.136-139 (1993).

[17]      K. Kurihara, T. Numai, H. Kosaka, I. Ogura, M. Sugimoto, and K. Kasahara, “Determination of power reflectivity of quasi-graded distributed Bragg reflectors using stopband width,” IEEE Photon. Technol. Lett., vol.5, No.3, pp.333-336 (1993).

[18]      Y. Yamanaka, T. Numai, K. Kasahara, and K. Kubota, “Light detection sensitivity of a vertical cavity structure used in a optical switch device,” Appl. Phys. Lett., vol.63, No.8, pp.1020-1022 (1993).

[19]      T. Numai, T. Kawakami, T. Yoshikawa, M. Sugimoto, Y. Sugimoto, H. Yokoyama, K. Kasahara, and K. Asakawa, “Record low threshold current microcavity surface-emitting laser,” Jpn. J. Appl. Phys., vol.32, No.10B, pp.L1533-L1534 (1993).

[20]      H. Kosaka, I. Ogura, H. Saito, M. Sugimoto, K. Kurihara, T. Numai, and K. Kasahara, “Pixels consisting of a single vertical-cavity laser thyristor and a double vertical cavity phototransistor,” IEEE Photon. Technol. Lett., vol.5, No.12, pp.1409-1411 (1993).

[21]      K. Beyzavi, R. A. Linke, G. E. Devlin, I. Ogura, T. Numai, and K. Kasahara, “Observation of switching energy dependence on illuminating beam area in the VSTEP optoelectronic switch,” IEEE Photon. Technol. Lett., vol.6, No.2, pp.227-230 (1994).

[22]      H. Kosaka, K. Kurihara, A. Uemura, T. Yoshikawa, I. Ogura, T. Numai, M. Sugimoto, and K. Kasahara, “Uniform characteristics with low threshold and high efficiency for a single-transverse-mode vertical-cavity surface-emitting laser-type device array,” IEEE Photon. Technol. Lett., vol.6, No.3, pp.323-325 (1994).

[23]      T. Koide, T. Minemoto, H. Takakura, Y. Hamakawa, and T. Numai, “Lateral graphoepitaxy of germanium controlled by microstructures on SiO2 surface,” Jpn. J. Appl. Phys., vol.43, pp.L738-L739 (2004).

[24]      T. Numai, T. Koide, T. Minemoto, H. Takakura, and Y. Hamakawa, “Nanoimprint lithography using Novolak-type photoresist and soft mold at room temperature,” Jpn. J. Appl. Phys., vol.43, pp.L794-L796 (2004).