マイクロオプトメカトロニクス特論

11. 光圧回転体の応用

11.1 マイクロ化学分析システム (μ-TAS)

- ・背景:高齢化社会,環境問題
- →検査機器の小型・低価格,高速化
- ・方法:フローインジェクション分析システム

→集積化

(a) 検出法の高感度化

・電気化学

イオン選択性 FET (ISFET)

質量分析

・光学法

蛍光:青色励起→レンズによる集光・捕捉

プラズモン共鳴法:屈折率変化測定→超高感度

- (b) 混合速度の向上
 - · 従来法: 乱流発生

多数ノズル,

壁面溝加工

外部振動

 \downarrow

```
・光ミキサーによる混合
```

以下では、まず化学分析チップ用の図1の光ミキサ ー応用⁽¹⁾について,次に正逆回転体によるの伸長・巻 取り機構(2)の可能性について述べる.

図1化学分析チップ混合部での光ミキサー応用モデル

11.2 光ミキサーの実験評価方法

実験装置

試液と試薬の混合を促進するための光ミキサーの 性能評価のため,流れの観測に図2の装置を用いた. まず,YAG レーザー(波長 1064nm)を光学ボックス 浮田 宏生

に導き, NA=1.4 の油浸対物レンズで集光し, 下から 光ミキサーに照射する. これにより光ミキサーをト ラップし回転させる. 次に, サンプルを上から照明 し, 光圧回転, 周辺媒質の流れを同一の対物レンズ を通して高速度カメラで観測する.

図2 マイクロ流動観測装置外略図

光ミキサー(直径 20μm,厚さ 10μm)はフォトリソ グラフィ法によりレジスト SU-8を用いて作製,スライ ドガラスとカバーガラスの間(50μm)の水中に分散さ れている.YAG レーザーにより光ミキサーを光トラッ プし,上部スライドガラス付近で反時計回りに回転さ せる.そして,光ミキサー下面を基準とし,各観測面 の流動を 120 fps で観測する.画面の観測範囲は 54μm ×40μm である.

攪拌可視化

流動の可視化には、水中に乳脂肪コロイドを分散 し、その濃度を観測する光学法を用いた.乳脂肪コ ロイドはレーザーや熱運動の影響を受けにくい. 記録された連続動画を,流体解析ソフト 「Flow-vec32」により解析する.解析手順としては, 画像内に縦横 0.5µm 間隔で計測点を配置し,各フレ ーム画像間で計測点を中心とした一辺 3.5µm の正方 形内に存在する濃淡パターンの類似性を追跡し,移 動距離と時間から速度ベクトルを算出する(図 3). 得られた速度ベクトルから誤ベクトルを削除した 後,全フレームにおいて平均する.また,濃淡むら の類似度が信頼度(%)として算出される.

図3 濃淡パターン追跡による速度ベクトルの解析

最適追跡サイズ

流動解析では、計測点の探索範囲を「追跡サイズ」 で指定する. 探索範囲が画像領域を少しでも越えた 場合は、計測点自体がキャンセルされ、速度ベクト ルは出力されない.

光ミキサー円形部以外の全計測点の速度ベクトル の絶対値を合計することにより、「総流量」を定義す る.追跡サイズが濃淡むらの移動速度に対し小さす ぎると、探索範囲内に移動した濃淡むらが存在しな いために正確に流動を追跡しきれず、大きすぎると 探索範囲が画像領域を越える計測点の増加により、 いずれの場合も総流量は減少する.そこで、総流量 が最大で、高信頼度が得られる追跡サイズを選ぶ.

図4 最適追跡サイズと総流量,信頼度の関係

図4に各回転速度での最適追跡サイズの検討結果を 示す.80 rpmの場合は、1フレーム時間内での羽根先 端部の移動距離が約0.7 µmであるのに対し、最適追跡 サイズは約1.0 µmと、約1.4 倍になる.170、260rpm の場合も同様であった.これらより、各回転速度での 最適追跡サイズは1フレーム時間内での羽根先端部の 移動距離の1.4 倍になることがわかった.

攪拌の実験解析と理論解析

各観測面で得られた速度ベクトルを図5に示す.80, 170,260 rpm と回転速度が増加するにつれ,光ミキサ ー周辺の流動が広がり半径方向に大きくなっている. 特に260 rpm では,光ミキサー直径の2倍付近まで広が っている.また,観測面を下降させると,徐々に流動 の広がりが小さくなる.

図6平均流量の実験値と理論値

図6は実験解析と理論解析の比較である.実験,理 論ともに平均流量は回転速度の上昇に比例して増加 し,深さに対して指数関数的に減少した.またこの傾 向は,各回転速度での実験値とかなりよく一致した.

11.3微小回路中での2液混合

最後に、Y字型微小流路の2液混合実験について述 べる.まずマイクロシリンジポンプを用いて試液と試 薬を微小流路に送液する.次に光ミキサーが懸濁され た純水を抽出口に滴下,抽出口付近にある光ミキサー を光トラップして混合部まで移動・回転させる.

可視化と混合実証

一方の液に乳脂肪コロイドを挿入し,流速0.01 µl/s で送液したときの混合部を図7(a)に示す.微小流路で は2液は層流(流速67 µm/s)となり,混合は2液が接 する界面での拡散でしか起こらない.(b)は光ミキサー を混合部において回転させた様子である.光ミキサー は流れの中でも安定に保持され,微小流路の混合部に おいて 500 rpm で高速回転した(ビデオ参照).

(a) Flow velocity: 67 µm/s

(b) Wing top velocity: 530 µm/s

図7 流路中2液混合 (a) 光ミキサー無し, (b) 有り

混合状態を可視化するため、光ミキサーの回転によ る乳脂肪コロイドの攪拌濃度を追跡し、画像内 0.5 µm ごとの計測点で速度ベクトルを算出・表示した.図8(a) は光ミキサーのない場合で、NaOH 溶液と BTB 溶液は混 じり合わない(層流)が、両液が接する部分で光ミキ サーを回転させると(b)、NaOH 溶液中の乳脂肪が BTB 溶液にも導入(混合)されるので、どちらの溶液中でも 速度ベクトルが観測されることがわかる.

理論解析

流路中混合の流体解析
-対流効果
-拡散効果
は類似特性→換算可

・各種の混合増進法

11.4DNA等の伸長・巻取り機構の可能性

遺伝子の解析では、目的のDNAを選別しそれを検 出系まで移動するとともに、からまりあったDNAを 解きほぐして直線上に展開し、塩基配列を読みとる必 要がある.このため、従来は化学修飾で微小球(ビー ズ)に固定したDNAをマイクロピッペットで引っ張 って伸張させていた.しかしDNAのひもは極めて長 いので、伸張したDNAのひもを巻取る必要があった が、適当な方法がなく技術的なネックになっていた.

図9 細紐の伸長・巻取り機構の可能性

この問題を解決するため、図9の細紐の伸長・巻取 り機構を説明する.同図右の部分は羽根型光圧回転体 に巻き取り部を付加したもので、レーザーを羽根型光 圧回転に集光照射し、回転体側面に光トルクを発生さ せ、回転によりDNAを巻き取る.

また,左右に左回転光圧回転体と右回転光圧回転体 を配置すれば,磁気テープのリールのように,細紐の 巻取り巻戻し機構を構成できる可能性がある.

図10 正逆回転可能な光圧回転体

文献

- 浮田宏生,高田康作,赤木太輔,大西貴和,野々 原靖也:3枚羽根光ミキサーの設計・作製とµ-TAS における混合応用,電気学会論文誌 E, 127, 1, pp. 25-30, 2007.
- (2) 浮田宏生,伊部勇作,大西貴和:正逆回転可能な
 ダブル羽根光圧回転体の提案と基本特性,電気学
 会論文誌 E, 129, 5, pp. 161–166, 2009.