2019/3/13

Evaluation of current green and blue water requirements based on global food trade balance

EcoBalance 2018 at Tokyo, Japan, on Oct. 9-12th, 2018 Ritsumeikan University

Yohei Yamaguchi, Naoki Yoshikawa, Koji Amano and Seiji Hashimoto

Background

- Food production is necessary to sustain human social activity.
- Agricultural sector accounts for 70 % (2,658 km³) of global water use ^{1).}
- Direct transportation of water resources cannot be implemented.

- Problems
 - In poor-resource countries, they have to depend on food trade to meet their domestic demand, and could increase virtual water consumption unintentionally.
 - Expanding food trade could promote the gap of water consumption between producing and consuming region, and could cause water supply and demand imbalance.

Evaluating water supply-demand balance based on food balance is important.

- Main finding of our previous study ²⁾
- In several countries, food export should enhance water stress.
- Future plans of our previous study ²⁾
- 1) Food supply and demand imbalance by lacking of supply-side analysis.
- 2) Underestimation of water requirement by not considering green water consumption.

• Objective

To evaluate the gap between current supply- and demand-side water requirement based on food balance matrix and trade balance matrix, focusing on green and blue water requirement.

2019/3/13

4

Evaluation Target and Data

• Evaluation Target

Evaluation Target	Detail
Reference year	In 2010
Country	216 countries
Item	78 items
Water consumption pattern	Green and blue water

• Main Data

Parameter	Database	Organization
Import breakdown of trade balance	FAOSTAT ³⁾ , Detailed trade balance	FAO
Various breakdown of food balance	FAOSTAT ³⁾ , Commodity Balances	FAO
Water footprint intensity	WFN Research Report Series 4)	WFN
Total Renewable water resources	AQUASTAT ⁵⁾ , Water resources	FAO
Water withdrawal by sector	AQUASTAT ⁵⁾ , Water use	FAO

Trade and Food Balance

Trade balance matrix

Item j	Importer				
Exporter		<i>i</i> ₁		i _r	Total
	k1	<i>x</i> ₁₁		X _{1r}	$\sum_{r} x_{1r}$
	:	:	:	:	:
	k _p	X _{p1}		X _{pr}	$\sum_{p} x_{pr}$
	Total	$\sum_p x_{p1}$		$\sum_{p} x_{pr}$	$\sum_{p}\sum_{r}x_{pr}$

Food balance matrix

Row Sum = Column Sum

 \rightarrow by RAS Method

SQ: Supply quantity [ton] Prod: Production [ton] Imp: Import quantity [ton] SD: Stock decrease [ton] *DQ*: Demand quantity [ton]

- *DSQ*: Domestic supply quantity [ton]
- *Exp*: Export quantity [ton]
 - *SI*: Stock increase [ton]

2019/3/13

7

- Trade model: Assumption of food trade between two countries.
- \rightarrow Imported or exported items are all produced in their producing countries.

• System boundary: Only direct consumption of growth stage is including.

Water Stress Index

Real water stress index (RWSI)

$$RWSI_{i} = \sum_{j} \{ (WR_{Prod})_{Blue,i,j} + (WR_{SD})_{Blue,i,j} \} / AWR_{i}$$

Substantial water stress index (SWSI)

$$SWSI_{i} = \sum_{i} \left\{ \left(WR_{SQ} \right)_{Blue,i,j} - \left(WR_{EQ} \right)_{Blue,i,j} \right\} / AWR_{i}$$

• Criteria of Water Stress ⁶):

WSI Ranges	Degrees of Water Stress
WSI < 0.1	No water stress
$0.1 \leq WSI < 0.2$	Low water stress
$0.2 \leq WSI < 0.4$	Moderate water stress
$0.4 \leq WSI < 0.8$	High water stress
$0.8 \le WSI$	Very high water stress

 $AWR_i = TRWR_i \times \frac{AWW_i}{TWW_i}$

WR: Water requirement [km³]
AWR: Available water resources [km³]
TRWR: Total renewable water resources [km³/yr]
AWW: Agricultural water withdrawal [km³/yr]
TWW: Total water withdrawal [km³/yr]

2019/3/13

Blue Water Requirement

Supply-Side Blue Water Requirement [km³]

10

2019/3/13

Share of Total Water Requirement

11

Share of Supply-Side Total Water Requirement

Share of Total Water Requirement

Share of Demand-Side Total Water Requirement

2019/3/13

Real Water Stress

2019/3/13

13

Excluded Countries

Created with mapchart.net ©

2019/3/13

14

Substantial Water Stress

Excluded Countries

Created with mapchart.net ©

- Green water requirement is higher than blue water requirement (green: 70%, blue: 30% on global average). Asia is the largest water use region (green: 43%, blue: 75% of world).
- In Asia, Oceania, North and South America, production should be larger than domestic consumption. On the other hand, in Africa, domestic consumption is higher.
- In Oceania, North and South America, export is larger than import. On the other hand, in Africa, import is higher.
- For water stress, real water stress is smaller than or almost the same as substantial water stress.

Future Plans

- 2019/3/13
- Detail analysis of water requirement associated with items or trade partners.
- Verifying the simulation values by comparing them with literature values.
- Specifying real producing countries of each intermediate items.

Thank you for your kind attention.

References

2019/3/13

1) Shen Y., Oki T., Utsumi N., Kanae S. and Hanasaki N. (2008): Hydrological Sciences Journal, 53(1), 11-33.

2) Yamaguchi Y., Tamura K., Yoshikawa N., Amano K., and Hashimoto S. (2017): Journal of Life Cycle Assessment, Japan, 14(1), 21-35.

3) FAO: FAOSTAT, FAOホームページ, <http://www.fao.org/faostat/en/#data>

4) Mekonnen M. M. and Hoekstra Y. A. (2011): National water footprint accounts: The green, blue and grey water footprint of production and consumption – Volume 2: Appendices, Value of Water Research Report Series, No.50, UNESCO-IHE, Delft, NLD, 1-94

5) FAO, AQUASTAT, FAOホームページ, http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en,

6) Smakhtin V., Revenga C. and Doll P. (2004): Taking into account environmental water requirements in global-scale water resources assessments, Comprehensive Assessment Research Report 2, Comprehensive Assessment of Water Management in Agriculture, IWMI, Colombo, Sri Lanka, 1-32.

Share of Green Water Requirement

Share of Supply-Side Green Water Requirement

2019/3/13

Share of Demand-Side Green Water Requirement

2019/3/13

Share of Blue Water Requirement

20

Share of Supply-Side Blue Water Requirement

Share of Blue Water Requirement

Share of Demand-Side Blue Water Requirement

2019/3/13