空気砲を用いた渦輪連続送出特性に関する研究

1. はじめに

パーソナル空調は室全体としての設定温度緩和、個人 の温冷感に即した気流を送風することができる。そこで、 パーソナル空調の効果を向上させるため、吹出口に空気 砲(図1)を有したパルス気流制御(図2)を用いること を提案する。渦輪の特徴として、直進性と少ない拡散性 を有しており、効率的に空気を送風することができる^{×1)}。 本研究では、渦輪の距離による到達風量や速度の減衰に ついて実験を行うことで、渦輪の有効性を確認する。

2. 実験概要

渦輪送出実験モデル(以下、実験モデル)を製作した。 実験モデルからトレーサーガスを送出させ、到達風量を 確認するトレーサーガス実験と、スモークを送出させ渦 輪を可視化するスモーク可視化実験を行う。

以上の二つの実験方法によって全8パターン^{注1)}の(表 1)実験を行い最適な渦輪条件を確認する。

場所は、立命館大学びわこくさつキャンパス セル 風 環境風洞実験室 プレハブ内にて行った。

2-1. 渦輪送出実験モデル (図 3)

実験モデルは、一軸アクチュエーターを用いたピスト ンによって中の空気を押出して渦輪を送出する。空気を 供給する部分の寸法はφ100、長さ 100 mmの円柱となって いる。また、ステッピングモーターで送出孔回転盤を駆 動させ、孔径変化・シャッターの開閉を行う。送出孔 径・ピストンストローク押出し距離・ピストン押出し速 度・ピストン押出し時間間隔の4項目を可変できる仕様 であり、付随したタッチパネルにより各パラメータを自 動制御可能な装置を製作した。

2-2. トレーサーガス実験(図 4)

実験モデルからトレーサーガス(CO₂ 2%:N₂ 98%)を 送出させ、到達風量を確認する。各測定点(300mm 毎)にサ ンプリングボックスを設置し、渦輪を採取前と採取後の CO₂ 濃度を測定する。到達風量は(1)式から求められる。

$$\frac{(X_{b1} - X_{b0}) \times V_b}{X_a \times V_a} = \alpha \tag{1}$$

α:到達風量[%] Va:送出体積[ppm] V_b:ボックス体積[%] X_a:空気砲内ガス濃度[ppm] *X*_{b0}:送出前サンプリングボックス内ガス濃度[ppm] X_{b1}:送出後サンプリングボックス内ガス濃度[ppm]

建築都市デザイン学科 2280110083-3 小杉 和裕 (指導教員 近本智行)

2-3. スモーク可視化実験(図5)

実験モデルからスモークを送出させ渦輪を可視化して 高速カメラで撮影をし、PIV 解析により渦輪のベクトルを 算出する。

以上から渦輪の形状や進行速度を確認する。また Case6~ 8では渦輪を2連続で送出させ、後方の渦輪を検証する。

図4 トレーサーガス実験図

表1 実験ケース

	孔径(mm)	ピストン		
		押出距離(cm)	速度(mm/s)	押出間隔(s)
Case1	45	3.65	800	
Case2	45	3.65	900	
Case3	45	3.65	1000	
Case4	40	2.56	900	
Case5	50	5.00	900	
Case6	45	3.65	900	1.0
Case7	45	3.65	900	1.5
Case8	45	3.65	900	2.0

Analysis on Continuation Sending Out Characteristic of the Vortex Ring Using the Air Gun

KOSUGI Kazuhiro

3. 実験結果

3-1. トレーサーガス実験結果

図 6 にピストン速度の違いによる到達風量を示す。 300mm 地点では全ての Case でほぼ同等の到達風量である が、Case1 は 600 mm地点から減衰が大きくなっている。

図7は孔径の違いによる到達風量の結果を示す。Case5 は 900 mmから 1200 mm地点にかけて大きな減衰がみられる。

3-2. スモーク可視化実験

図 8 にピストン速度の違いによる渦輪進行速度の結果 を示す。全ての Case でほぼ線形に減衰しているのがみら れるが、ピストン速度が遅いほど減衰が小さく渦輪進行 速度を維持できている。

図 9 に孔径の違いによる渦輪進行速度を示す。全ての Case で概ね同様の減衰傾向がみられる。孔径が小さいほ ど渦輪進行速度を維持できる傾向がみられる。

図 10 に 300 mm地点での渦輪の可視化写真、図 11 に渦 輪の速度ベクトルを示す。送出直後の 300 mm地点では、 進行速度が速く塊状となっていることが確認できた。

図 12 に 1200 mm地点での渦輪の可視化写真、図 13 に渦 輪の速度ベクトルを示す。1200 mm地点では理想的な形状 の渦輪が形成されていることが確認できた。

図 14 に連続送出の送出時間間隔の違いによる渦輪進行 速度を示す。連続送出では 900 mm地点で 1 回目に送出し た渦輪が気流を乱し渦輪進行速度が低下したものの、そ れ以後の速度低下は少なくなっている。

4. まとめ

トレーサーガス実験では、Case2 が 1500mm 地点まで効 率よく渦輪が到達していることが検証された。

スモーク可視化実験では、Case4 が理想的な形状の渦輪 を維持しながら速度を維持した。連続送出実験では、 1500mm 地点で全 Case ほぼ同等の渦輪進行速度であり送出 時間間隔によっての大きな違いはみられなかった。

参考文献・注釈

► case4 孔径4cm

case2 孔径4.5mm

ase5 孔径5cm

1500

- 文1) 久保隆明ほか:渦輪を送出する空調吹出の有効性の確認、 日本建築学会大会学術講演梗概集(東海)、pp.913-914、 2012年9月
- 文2) 福本康秀:渦輪(渦運動の基礎知識)、ながれ 日本流体力学 学会誌、Vol125、No4、pp.443-457
- 注1) 全 case 、L/D =4 としてある L/D 値とは、送出空気を体積は変えないまま送出口の直径と 同じ円柱に変換した場合の L(円柱の高さ)と D(円柱(送 出口)の直径)の比率のことを言う。L/D<4 までは渦輪の 大きさは成長し、L/D=4 にて渦輪は物質の運送効率・推進速 度が最大となる最適渦輪となり、L/D>4 となると L/D=4 と の差分がジェットとなり渦輪の後方に付随する。 文2)

1800

1600

1400

1000

800 速度[600

> 400 200

> > 0

300

600

<u>ज</u>् 1200

900

到達距離[mm]

1200

300

600

図 10 渦輪写真(300 mm地点)

図 12 渦輪写真(1200 mm地点)

900

到達距離[mm]

-case1ピストン速度

800mm/s case2 ピストン速度

900mm/s case3 ピストン速度

1500

1000mm/s

1200

図 11 速度ベクトル(300 mm地点)

図 13 速度ベクトル(1200 mm地点)