
Method of Variation

Example curve of fastest descent

Find a curve along that the mass falls fastest.
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Figure 1: Mass falling along curve

Shape of the curve : y(x)
Time when the mass moves from O to P : T = T [y]
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Figure 2: Functional T [y]
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Figure 3: Neighboring points on curve

1

2
m(ẋ2 + ẏ2)−mgy = 0(
dx

dt

)2

+

(
dy

dt

)2

= 2gy

(dt)2 =
(dx)2 + (dy)2

2gy
=

1 + (dy/dx)2

2gy
(dx)2

dt =

√
1 + (y′)2

2gy
dx

where

y′ =
dy

dx

Consequently,

T [y] =

∫ point P

point O

dt =

∫ x1

0

√
1 + (y′)2

2gy
dx

Find a function y(x) that minimizes (maximizes) a functional

T [y] =

∫ x1

x0

F (x, y, y′) dx
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This problem is referred to as a variational problem.

Recall : minimization of function f(x)
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Figure 4: Minimum point

The following condition must be satisfied for any deviation dx at the mini-
mum point:

f(x+ dx)− f(x) = f ′(x)dx = 0.

This condition is satisfied if, and only if,

f ′(x) = 0.

Thus, solving f ′(x) = 0 yields minimum points.
(exactly speaking, local minimum points)

Let us introduce the deviation of function y(x) into a variational problem:

δy(x) where δy(x0) = 0, δy(x1) = 0
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Figure 5: Deviation of function

Evaluating functional T [y], we have

T [y] =

∫ x1

x0

F (x, y, y′) dx

T [y + δy] =

∫ x1

x0

F (x, y + δy, y′ + δy′) dx

Note that

F (x, y + δy, y′ + δy′) = F (x, y, y′) +
∂F

∂y
δy +

∂F

∂y′
δy′
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T [y + δy]− T [y] =

∫ x1

x0

(
∂F

∂y
δy +

∂F

∂y′
δy′

)
dx,

∫ x1

x0

∂F

∂y′
δy′dx =

[
∂F

∂y′
δy

]x=x1

x=x0

−
∫ x1

x0

d

dx

(
∂F

∂y′

)
δy dx

↑
0

Thus,

T [y + δy]− T [y] =

∫ x1

x0

[
∂F

∂y
− d

dx

(
∂F

∂y′

)]
δy dx

y : optimal ⇔ T [y + δy]− T [y] = 0 for any δy

Consequently,

∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0 (1)

Euler-Lagrange’s equation

The above equation is simply described as

Fy −
d

dx
Fy′ = 0

where

Fy =
∂F

∂y
, Fy′ =

∂F

∂y′
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In the case that F = F (y, y′), say, no explicit x is involved in a functional F ,

d

dx
(y′Fy′ − F ) = y′′Fy′ + y′

d

dx
Fy′ −

d

dx
F

↑ ↑

Fy
∂F

∂y

dy

dx
+

∂F

∂y′
dy′

dx

= Fyy
′ + Fy′y

′′

= 0

Thus, Euler-Lagrange’s equation can be simplified to

y′Fy′ − F = c (const).
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Solving curve of fastest descent problem

F (y, y′) =

√
1 + (y′)2

2gy

T [y] =

∫ x1

0

F (y, y′) dx

∂F

∂y′
=

y′√
(1 + y′2)2gy

Euler-Lagrange’s equation

y′Fy′ − F =
y′2√

(1 + y′2)2gy
−

√
1 + (y′)2

2gy
= c1 (const) (2)

Then,

y′2 − (1 + y′2)√
(1 + y′2)2gy

= c1

−1 = c1
√
(1 + y′2)2gy

1 = c21(1 + y′2)2gy

y′2 =
c2 − y

y
where c2 =

1

2gc21
(const)

Let

y =
c2
2
(1− cosu)

Then,

y′ =
dy

du

du

dx
=

c2
2
u′ sinu(c2

2
u′ sinu

)2

=
c2 − c2/2(1− cosu)

c2/2(1− cosu)
=

1 + cos u

1− cosu
=

sin2 u

(1− cosu)2
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The above differential equation is converted into:

c2
2
u′ =

1

1− cosu
c2
2
(1− cosu) du = dx

x =

∫
c2
2
(1− cosu) du =

c2
2
(u− sinu) + c3

Noting that x = c3 and y = 0 at u = 0, we find that c3 = 0. Finally, we have

x =
c2
2
(u− sinu) (3a)

y =
c2
2
(1− cosu) cycloid (3b)
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Figure 6: Cycloid
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Figure 7: Path of point on rolling circle
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