Method of Variation

Example curve of fastest descent

Find a curve along that the mass falls fastest.
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Figure 1: Mass falling along curve
Shape of the curve : y(x)
Time when the mass moves from O to P : T = T[y]
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Figure 2: Functional T[y]
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Figure 3: Neighboring points on curve
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Find a function y(z) that minimizes (maximizes) a functional
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This problem is referred to as a variational problem.

Recall : minimization of function f(z)
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Figure 4: Minimum point

The following condition must be satisfied for any deviation dx at the mini-

mum point:
flx+dx) — f(z) = f'(x)dz = 0.
This condition is satisfied if, and only if,
f'(z) =0.

Thus, solving f'(x) = 0 yields minimum points.
(exactly speaking, local minimum points)

Let us introduce the deviation of function y(z) into a variational problem:

dy(z) where dy(zo) =0, dy(z1) =0
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Figure 5: Deviation of function

Evaluating functional T'[y], we have

Tly] = /x F(z,y,y) dz
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Euler-Lagrange’s equation

The above equation is simply described as
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In the case that F' = F(y, '), say, no explicit z is involved in a functional F,
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Thus, Euler-Lagrange’s equation can be simplified to

y'F, — F =c (const).



Solving curve of fastest descent problem
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The above differential equation is converted into:
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Noting that z = ¢3 and y = 0 at u = 0, we find that ¢3 = 0. Finally, we have

T = EQ(U — sinu) (3a)

Yy = %(1 — cosu) cycloid (3b)
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Figure 7: Path of point on rolling circle



