gravitational mq force **Analytical Mechanics** Newton mechanics Shinichi Hirai linear momentum p = mvDept. Robotics, Ritsumeikan Univ. $\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}\boldsymbol{t}} = -\boldsymbol{m}\boldsymbol{g}$ Newton's eq. of motion $\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}\boldsymbol{t}} = \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{t}}(\boldsymbol{m}\boldsymbol{v}) = \boldsymbol{m}\dot{\boldsymbol{v}}$ differential equation $m\dot{v} = -mg$ 1 / 22 Free fall of a mass (Lagrange mechanics) Agenda Schedule gravitational Introduction to Analytical Mechanics

Open link mechanism

7 / 22

Open link mechanism

Newton mechanics

Identify all forces applied to each link (inc. internal forces)

apply Newton's eqs. of motion (and Euler's eqs. of rotation)

$$m_1 \dot{\mathbf{v}}_1 = m_1 \mathbf{g} + \mathbf{R}^{1,0} + \mathbf{R}^{1,2}, \quad m_2 \dot{\mathbf{v}}_2 = m_2 \mathbf{g} + \mathbf{R}^{2,1}, \quad \cdots$$

(a) eliminate internal forces $R^{1,0}$, $R^{1,2}$, $R^{2,1}$

Lagrange mechanics

formulate kinetic and potential energies

$$T=T_1+T_2, \quad U=U_1+U_2$$

② apply Lagrange's eqs. of motion to Lagrangian $\mathcal{L}=\mathcal{T}-U$

mg force

Lagrange mechanics

kinetic energy	$T = \frac{1}{2}mv^2$
potential energy	U = mgx
Lagrangian	$\mathcal{L} = T - U = rac{1}{2}mv^2 - mgx$
Lagrange eq. of motion	$\frac{\partial \mathcal{L}}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial v} \right) = -mg - m\dot{v} = 0$

Free fall of a mass (Newton mechanics)

Schedule (tentative)

Illustrative Examples

• Free fall of a mass

• Watt's governor Beam deformation MATLAB environment

Open/Closed link mechanisms

Introduction	1 week
Variational Principles	2 weeks
MATLAB	2 weeks
Link Mechanisms	2 weeks
Rigid Body Rotation	2 weeks
Elastic Deformation	4 weeks
Inelastic Deformation	2 weeks

web page

5 Summary

http://www.ritsumei.ac.jp/~hirai/ $\mathsf{English} \longrightarrow \mathsf{Classes} \longrightarrow 2023 \ \mathsf{Analytical} \ \mathsf{Mechanics}$

or directly

http://www.ritsumei.ac.jp/~hirai/edu/2023/analyticalmechanics/ analyticalmechanics-e.html

Newton mechanics vs Lagrange mechanics

Newton mechanics

vectors

linear momentum, force, angular momentum, moment, · · · vectors depend on coordinate systems

internal forces have to be identified and eliminated constraints should be solved explicitly

Lagrange mechanics

scalars

kinetic energy, potential energy, work done by external forces, \cdots scalars are independent of coordinate systems

internal forces do not appear in Lagrangian constraints can be incorporated into Lagrangian

Closed link mechanism

9 / 22

11 / 22

12 / 22

Closed link mechanism

 $\begin{array}{ll} \mbox{left arm} & \mbox{link } 1 - \mbox{link } 2 \Rightarrow \mbox{open link mech.} \Rightarrow \mbox{Lagrangian } \mathcal{L}_{\rm left} \\ \mbox{right arm} & \mbox{link } 3 - \mbox{link } 4 \Rightarrow \mbox{open link mech.} \Rightarrow \mbox{Lagrangian } \mathcal{L}_{\rm right} \end{array}$

geometric constraints

tip position of left arm = tip position of right arm $X \stackrel{\triangle}{=} l_1 C_1 + l_2 C_{1+2} - l_3 C_3 - l_4 C_{3+4} + x_1 - x_3 = 0$ $Y \stackrel{\triangle}{=} l_1 S_1 + l_2 S_{1+2} - l_3 S_3 - l_4 S_{3+4} + y_1 - y_3 = 0$

Lagrangian

 $\mathcal{L} = \mathcal{L}_{ ext{left}} + \mathcal{L}_{ ext{right}} + \lambda_x X + \lambda_y Y$

Watt's governor (Newton mechanics)

rotation around driving axis

$$\begin{split} &I_1 = m(I\cos\theta_2)^2 = mI^2\cos^2\theta_2\\ &\tau = \frac{\mathrm{d}}{\mathrm{d}t}(I_1\dot{\theta}_1) = \dot{I}_1\dot{\theta}_1 + I_1\ddot{\theta}_1\\ &\tau = \left\{mI^2 \cdot 2\cos\theta_2(-\sin\theta_2)\dot{\theta}_2\right\}\dot{\theta}_1 + \left\{mI^2\cos^2\theta_2\right\}\ddot{\theta}_1 \end{split}$$

Watt's governor (Newton mechanics)

rotation around free-joint axis

hi Hirai (Dept. R

$$\begin{split} &l_2 = ml^2 \\ &\frac{\mathrm{d}}{\mathrm{d}t}(l_2\dot{\theta}_2) = mg \times l\cos\theta_2 - ml\cos\theta_2\dot{\theta}_1^2 \times l\sin\theta_2 \\ &ml^2\ddot{\theta}_2 = mgl\cos\theta_2 - ml^2\cos\theta_2\sin\theta_2\dot{\theta}_1^{\ 2} \end{split}$$

need to identify centrifugal force

Watt's governor (Lagrange mechanics)

Watt's governor (Lagrange mechanics)

velocity of mass

$$\mathbf{v} = \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \frac{\partial \mathbf{x}}{\partial \theta_1} \frac{\mathrm{d}\theta_1}{\mathrm{d}t} + \frac{\partial \mathbf{x}}{\partial \theta_2} \frac{\mathrm{d}\theta_2}{\mathrm{d}t}$$

$$= l\dot{\theta}_1 \begin{bmatrix} -\sin\theta_1\cos\theta_2\\\cos\theta_1\cos\theta_2\\0 \end{bmatrix} + l\dot{\theta}_2 \begin{bmatrix} -\cos\theta_1\sin\theta_2\\-\sin\theta_1\sin\theta_2\\-\cos\theta_2 \end{bmatrix}$$

$$\mathbf{v}^2 = (l\dot{\theta}_1)^2 \cdot \cos^2\theta_2 + (l\dot{\theta}_2)^2 \cdot 1 + 2(l\dot{\theta}_1)(l\theta_2) \cdot 0$$

$$= l^2(\cos^2\theta_2\dot{\theta}_1^2 + \dot{\theta}_2^2)$$

kinetic/potential energies, work done by external torque

$$T = \frac{1}{2}ml^{2}(\cos\theta_{2}^{2}\dot{\theta}_{1}^{2} + \dot{\theta}_{2}^{2}), \quad U = -mgl\sin\theta_{2}, \quad W = \tau\theta_{1}$$

Watt's governor (Lagrange mechanics)

Lagrangian

$$\mathcal{L} \stackrel{ riangle}{=} T - U + W$$

Lagrange eqs. of motion

$$rac{\partial \mathcal{L}}{\partial heta_k} - rac{\mathrm{d}}{\mathrm{d}t} \left(rac{\partial \mathcal{L}}{\partial \dot{ heta}_k}
ight) = 0, \quad (k = 1, 2)$$

$$\tau - \left\{ ml^2 \cdot 2\cos\theta_2(-\sin\theta_2)\dot{\theta}_2 \right\} \dot{\theta}_1 - \left\{ ml^2\cos^2\theta_2 \right\} \ddot{\theta}_1 = 0 \\ -ml^2\cos\theta_2\sin\theta_2 \dot{\theta}_1^2 + mgl\cos\theta_2 - ml^2\ddot{\theta}_2 = 0$$

centrifugal or Coriolis terms yield naturally

Beam deformation

Shinichi Hirai (Dent. Robotics, Ritsumeikan l

Deformation is described by function u(x) ($0 \le x \le L$)

15 / 22

Beam deformation

elastic potential energy

$$U = \int_0^L \frac{1}{2} E A \left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)^2 \mathrm{d}x$$

piecewise linear approximation dividing interval [0, L] into 6 regions: $\int_{0}^{L} du = \int_{0}^{x_{1}} du + \int_{0}^{x_{2}} du + \dots + \int_{0}^{x_{6}} du$

$$\int_0 dx = \int_{x_0} dx + \int_{x_1} dx + \dots + \int_{x_5} dx$$

linear approximation:

$$\int_{x_i}^{x_j} \frac{1}{2} EA\left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)^2 \mathrm{d}x \approx \frac{1}{2} \begin{bmatrix} u_i & u_j \end{bmatrix} \frac{EA}{h} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix}$$

Beam deformation

Deformation is described by a finite number of variables u_0 through u_6

finite element method (FEM)

What is MATLAB?

- Software for numerical calculation
- ② can handle vectors or matrices directly
- In Functions such as ODE solvers and optimization
- Toolboxes for various applications
- both programming and interactive calculation

19 / 22

What is MATLAB?

MATLAB environment

MATLAB Total Academic Headcount (TAH) MATLAB with all toolboxes is available

Information

ninichi Hirai (Dept. Robotics. Ritsur

https://it.support.ritsumei.ac.jp/hc/ja

What is MATLAB?

- Install MATLAB into your own PC or mobile
- Sample programs are on the web of the class
- You can use your own PC or mobile in class

Summary: pros & cons of Lagrange mechanics

21 / 22

22 / 22

Pros

17 / 22

18 / 22

- scalar description
- once energies and works are formulated, derivative calculation yields equations of motion directly
- do not have to introduce internal forces
- effective for complex systems, such as link mechanisms, rotating or deforming objects

Cons

- difficult to understand the derived equation intuitively
- all non-potential forces, such as friction and viscous forces, are treated as external forces