1 Jacobian Derivatives

Let y be an m-dimensional vector consisting of y; through ,,:

Y1
Y2
Y= .
Ym
Its transposed vector is given by
yvi=[wv v - ym].

Assume that elements y; through y,, depend on scalar x. Partial derivatives
of y and yT with respect to z are defined as follows:

oy
ox

0
% oy* _ | Oy1 Oy Y
xXr 9 =

O dr dxr  dx

oy

or :

%Ym

L Ox 4
Let y be a scalar depending on an n-dimensional vector . Assume that

x consists of x; through x,,:
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T2
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Its transposed vector is given by
wT:[xl Ty - :Un}
Partial derivatives of y with respect to & and ' are defined as follows:
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Assume that m-dimensional vector y depends on n-dimensional vector .
Partial derivative of y with respect to T is defined as
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Note that the above two equations are equivalent to each other, resulting in

an m x n matrix. Partial derivative of y* with respect to « is defined as
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Note that the above two equations are equivalent to each other, resulting in
an n X m matrix. The above equations directly yield the followings:
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Assume that vectors y and z depend on vector . Let A be a constant
matrix that defines a quadratic form yTAz. Since yTAz = zTATy, the

gradient vector of the quadratic form with respect to n-dimensional vector
x is described as

o(yTAz) oy* 0z"
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Partial derivatives dyT/0zx and 92" /0x are given in (3) or (4). Note that

the above equation provides an n-dimensional gradient vector. Additionally,
the above equation yields
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Recall that matrix A that defines quadratic form y* Ay should be symmet-
ric.
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2 Time Derivatives

Let y be a scalar depending on an n-dimensional vector @ consisting of x;
through x,,. Assume that x; through z, depend on time. Time derivative of
y is then described as:
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or equivalently

j= (g_i)m: (2 )m ®



The first-order partial derivative
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is referred to as gradient vector.
Noting that dy/0x; depends on @, time derivative of dy/dzy, is described

as:

doy _ (0 N .
dt 0z,  \ Oz Oz,

Time derivative of vector dy/0x is then described as:
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The second-order partial derivative
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is referred to as Hessian matrix. Hessian matrix is symmetric.
Differentiating (8) with respect to time t yields the second-order time
derivative:
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In summary,
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The first-order time derivative g includes the first-order time derivative a.
The second-order time derivative ¢ includes the second-order time derivative
& as well as a quadratic form with respect to @. Gradient vector given in (9)
and Hessian matrix given in (10) characterize the above time derivatives.




