
1 Jacobian Derivatives

Let y be an m-dimensional vector consisting of y1 through ym:

y =


y1
y2
...
ym

 .

Its transposed vector is given by

yT =
[
y1 y2 · · · ym

]
.

Assume that elements y1 through ym depend on scalar x. Partial derivatives
of y and yT with respect to x are defined as follows:

∂y

∂x
=



∂y1
∂x
∂y2
∂x
...

∂ym
∂x


,

∂yT

∂x
=

[
∂y1
∂x

∂y2
∂x

· · · ∂ym
∂x

]
.

Let y be a scalar depending on an n-dimensional vector x. Assume that
x consists of x1 through xn:

x =


x1

x2
...
xn

 .

Its transposed vector is given by

xT =
[
x1 x2 · · · xn

]
.

Partial derivatives of y with respect to x and xT are defined as follows:

∂y

∂x
=



∂y

∂x1
∂y

∂x2
...
∂y

∂xn


,

∂y

∂xT
=

[
∂y

∂x1

∂y

∂x2

· · · ∂y

∂xn

]
.
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Assume that m-dimensional vector y depends on n-dimensional vector x.
Partial derivative of y with respect to xT is defined as

∂y

∂xT
=

[
∂y

∂x1

∂y

∂x2

· · · ∂y

∂xn

]
=



∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn

...
...

. . .
...

∂ym
∂x1

∂ym
∂x2

· · · ∂ym
∂xn


(1)

or equivalently

∂y

∂xT
=



∂y1
∂xT

∂y2
∂xT

...
∂ym
∂xT


=



∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn

...
...

. . .
...

∂ym
∂x1

∂ym
∂x2

· · · ∂ym
∂xn


. (2)

Note that the above two equations are equivalent to each other, resulting in
an m× n matrix. Partial derivative of yT with respect to x is defined as

∂yT

∂x
=



∂yT

∂x1

∂yT

∂x2
...

∂yT

∂xn


=



∂y1
∂x1

∂y2
∂x1

· · · ∂ym
∂x1

∂y1
∂x2

∂y2
∂x2

· · · ∂ym
∂x2

...
...

. . .
...

∂y1
∂xn

∂y2
∂xn

· · · ∂ym
∂xn


(3)

or equivalently

∂yT

∂x
=

[
∂y1
∂x

∂y2
∂x

· · · ∂ym
∂x

]
=



∂y1
∂x1

∂y2
∂x1

· · · ∂ym
∂x1

∂y1
∂x2

∂y2
∂x2

· · · ∂ym
∂x2

...
...

. . .
...

∂y1
∂xn

∂y2
∂xn

· · · ∂ym
∂xn


. (4)

2



Note that the above two equations are equivalent to each other, resulting in
an n×m matrix. The above equations directly yield the followings:(

∂y

∂xT

)T

=
∂yT

∂x
,

∂y

∂xT
=

(
∂yT

∂x

)T

.

Assume that vectors y and z depend on vector x. Let A be a constant
matrix that defines a quadratic form yTAz. Since yTAz = zTATy, the
gradient vector of the quadratic form with respect to n-dimensional vector
x is described as

∂(yTAz)

∂x
=

∂yT

∂x
Az +

∂zT

∂x
ATy. (5)

Partial derivatives ∂yT/∂x and ∂zT/∂x are given in (3) or (4). Note that
the above equation provides an n-dimensional gradient vector. Additionally,
the above equation yields

∂(yTAy)

∂x
= 2

∂yT

∂x
Ay. (6)

Recall that matrix A that defines quadratic form yTAy should be symmet-
ric.

2 Time Derivatives

Let y be a scalar depending on an n-dimensional vector x consisting of x1

through xn. Assume that x1 through xn depend on time. Time derivative of
y is then described as:

ẏ =
∂y

∂x1

dx1

dt
+

∂y

∂x2

dx2

dt
+ · · ·+ ∂y

∂xn

dxn

dt

=

[
∂y

∂x1

∂y

∂x2

· · · ∂y

∂xn

]
ẋ1

ẋ2
...
ẋn

 =
∂y

∂xT
ẋ (7)

or equivalently

ẏ =

(
∂y

∂x

)T

ẋ =

(
∂

∂x
y

)T

ẋ. (8)
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The first-order partial derivative

∂y

∂x
=



∂y

∂x1

∂y

∂x2
...
∂y

∂xn


(9)

is referred to as gradient vector.
Noting that ∂y/∂xk depends on x, time derivative of ∂y/∂xk is described

as:

d

dt

∂y

∂xk

=

(
∂

∂x

∂y

∂xk

)T

ẋ.

Time derivative of vector ∂y/∂x is then described as:

d

dt

∂y

∂x
=



d

dt

∂y

∂x1

d

dt

∂y

∂x2
...

d

dt

∂y

∂xn


=



(
∂

∂x

∂y

∂x1

)T

ẋ(
∂

∂x

∂y

∂x2

)T

ẋ

...(
∂

∂x

∂y

∂xn

)T

ẋ


=



(
∂

∂x

∂y

∂x1

)T

(
∂

∂x

∂y

∂x2

)T

...(
∂

∂x

∂y

∂xn

)T


ẋ

=



∂

∂xT

∂y

∂x1

∂

∂xT

∂y

∂x2
...

∂

∂xT

∂y

∂xn


ẋ =

∂

∂xT

∂y

∂x
ẋ =

∂2y

∂xT∂x
ẋ.
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The second-order partial derivative

∂2y

∂xT∂x
=



∂2y

∂x1∂x1

∂2y

∂x2∂x1

· · · ∂2y

∂xn∂x1

∂2y

∂x1∂x2

∂2y

∂x2∂x2

· · · ∂2y

∂xn∂x2
...

...
. . .

...
∂2y

∂x1∂xn

∂2y

∂x2∂xn

· · · ∂2y

∂xn∂xn



=



∂2y

∂x1∂x1

∂2y

∂x1∂x2

· · · ∂2y

∂x1∂xn

∂2y

∂x2∂x1

∂2y

∂x2∂x2

· · · ∂2y

∂x2∂xn
...

...
. . .

...
∂2y

∂xn∂x1

∂2y

∂xn∂x2

· · · ∂2y

∂xn∂xn


(10)

is referred to as Hessian matrix. Hessian matrix is symmetric.
Differentiating (8) with respect to time t yields the second-order time

derivative:

ÿ =

(
d

dt

∂y

∂x

)T

ẋ+

(
∂y

∂x

)T

ẍ

= ẋT

(
∂2y

∂xT∂x

)
ẋ+

(
∂y

∂x

)T

ẍ.

In summary,

y = y(x),

ẏ =

(
∂y

∂x

)T

ẋ,

ÿ =

(
∂y

∂x

)T

ẍ+ ẋT

(
∂2y

∂xT∂x

)
ẋ.

The first-order time derivative ẏ includes the first-order time derivative ẋ.
The second-order time derivative ÿ includes the second-order time derivative
ẍ as well as a quadratic form with respect to ẋ. Gradient vector given in (9)
and Hessian matrix given in (10) characterize the above time derivatives.
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