1 Jacobian Derivatives

Let \boldsymbol{y} be an m-dimensional vector consisting of y_{1} through y_{m} :

$$
\boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
$$

Its transposed vector is given by

$$
\boldsymbol{y}^{\mathrm{T}}=\left[\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{m}
\end{array}\right] .
$$

Assume that elements y_{1} through y_{m} depend on scalar x. Partial derivatives of \boldsymbol{y} and $\boldsymbol{y}^{\mathrm{T}}$ with respect to x are defined as follows:

$$
\frac{\partial \boldsymbol{y}}{\partial x}=\left[\begin{array}{c}
\frac{\partial y_{1}}{\partial x} \\
\frac{\partial y_{2}}{\partial x} \\
\vdots \\
\frac{\partial y_{m}}{\partial x}
\end{array}\right], \quad \frac{\partial \boldsymbol{y}^{\mathrm{T}}}{\partial x}=\left[\begin{array}{llll}
\frac{\partial y_{1}}{\partial x} & \frac{\partial y_{2}}{\partial x} & \cdots & \frac{\partial y_{m}}{\partial x}
\end{array}\right] .
$$

Let y be a scalar depending on an n-dimensional vector \boldsymbol{x}. Assume that \boldsymbol{x} consists of x_{1} through x_{n} :

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

Its transposed vector is given by

$$
\boldsymbol{x}^{\mathrm{T}}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right] .
$$

Partial derivatives of y with respect to \boldsymbol{x} and $\boldsymbol{x}^{\mathrm{T}}$ are defined as follows:

$$
\frac{\partial y}{\partial \boldsymbol{x}}=\left[\begin{array}{c}
\frac{\partial y}{\partial x_{1}} \\
\frac{\partial y}{\partial x_{2}} \\
\vdots \\
\frac{\partial y}{\partial x_{n}}
\end{array}\right], \quad \frac{\partial y}{\partial \boldsymbol{x}^{\mathrm{T}}}=\left[\begin{array}{llll}
\frac{\partial y}{\partial x_{1}} & \frac{\partial y}{\partial x_{2}} & \cdots & \frac{\partial y}{\partial x_{n}}
\end{array}\right]
$$

Assume that m-dimensional vector \boldsymbol{y} depends on n-dimensional vector \boldsymbol{x}. Partial derivative of \boldsymbol{y} with respect to $\boldsymbol{x}^{\mathrm{T}}$ is defined as

$$
\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}^{\mathrm{T}}}=\left[\begin{array}{llll}
\frac{\partial \boldsymbol{y}}{\partial x_{1}} & \frac{\partial \boldsymbol{y}}{\partial x_{2}} & \cdots & \frac{\partial \boldsymbol{y}}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \tag{1}\\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{2}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial y_{m}}{\partial x_{1}} & \frac{\partial y_{m}}{\partial x_{2}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right]
$$

or equivalently

$$
\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}^{\mathrm{T}}}=\left[\begin{array}{c}
\frac{\partial y_{1}}{\partial \boldsymbol{x}^{\mathrm{T}}} \tag{2}\\
\frac{\partial y_{2}}{\partial \boldsymbol{x}^{\mathrm{T}}} \\
\vdots \\
\frac{\partial y_{m}}{\partial \boldsymbol{x}^{\mathrm{T}}}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{2}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial y_{m}}{\partial x_{1}} & \frac{\partial y_{m}}{\partial x_{2}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right]
$$

Note that the above two equations are equivalent to each other, resulting in an $m \times n$ matrix. Partial derivative of $\boldsymbol{y}^{\mathrm{T}}$ with respect to \boldsymbol{x} is defined as

$$
\frac{\partial \boldsymbol{y}^{\mathrm{T}}}{\partial \boldsymbol{x}}=\left[\begin{array}{c}
\frac{\partial \boldsymbol{y}^{\mathrm{T}}}{\partial x_{1}} \tag{3}\\
\frac{\partial \boldsymbol{y}^{\mathrm{T}}}{\partial x_{2}} \\
\vdots \\
\frac{\partial \boldsymbol{y}^{\mathrm{T}}}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{1}} \\
\frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{m}}{\partial x_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial y_{1}}{\partial x_{n}} & \frac{\partial y_{2}}{\partial x_{n}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right]
$$

or equivalently

$$
\frac{\partial \boldsymbol{y}^{\mathrm{T}}}{\partial \boldsymbol{x}}=\left[\begin{array}{llll}
\frac{\partial y_{1}}{\partial \boldsymbol{x}} & \frac{\partial y_{2}}{\partial \boldsymbol{x}} & \cdots & \frac{\partial y_{m}}{\partial \boldsymbol{x}}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{1}} \tag{4}\\
\frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{m}}{\partial x_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial y_{1}}{\partial x_{n}} & \frac{\partial y_{2}}{\partial x_{n}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right]
$$

Note that the above two equations are equivalent to each other, resulting in an $n \times m$ matrix. The above equations directly yield the followings:

$$
\left(\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}^{\mathrm{T}}}\right)^{\mathrm{T}}=\frac{\partial \boldsymbol{y}^{\mathrm{T}}}{\partial \boldsymbol{x}}, \quad \frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}^{\mathrm{T}}}=\left(\frac{\partial \boldsymbol{y}^{\mathrm{T}}}{\partial \boldsymbol{x}}\right)^{\mathrm{T}}
$$

Assume that vectors \boldsymbol{y} and \boldsymbol{z} depend on vector \boldsymbol{x}. Let A be a constant matrix that defines a quadratic form $\boldsymbol{y}^{\mathrm{T}} A \boldsymbol{z}$. Since $\boldsymbol{y}^{\mathrm{T}} A \boldsymbol{z}=\boldsymbol{z}^{\mathrm{T}} A^{\mathrm{T}} \boldsymbol{y}$, the gradient vector of the quadratic form with respect to n-dimensional vector \boldsymbol{x} is described as

$$
\begin{equation*}
\frac{\partial\left(\boldsymbol{y}^{\mathrm{T}} A \boldsymbol{z}\right)}{\partial \boldsymbol{x}}=\frac{\partial \boldsymbol{y}^{\mathrm{T}}}{\partial \boldsymbol{x}} A \boldsymbol{z}+\frac{\partial \boldsymbol{z}^{\mathrm{T}}}{\partial \boldsymbol{x}} A^{\mathrm{T}} \boldsymbol{y} \tag{5}
\end{equation*}
$$

Partial derivatives $\partial \boldsymbol{y}^{\mathrm{T}} / \partial \boldsymbol{x}$ and $\partial \boldsymbol{z}^{\mathrm{T}} / \partial \boldsymbol{x}$ are given in (3) or (4). Note that the above equation provides an n-dimensional gradient vector. Additionally, the above equation yields

$$
\begin{equation*}
\frac{\partial\left(\boldsymbol{y}^{\mathrm{T}} A \boldsymbol{y}\right)}{\partial \boldsymbol{x}}=2 \frac{\partial \boldsymbol{y}^{\mathrm{T}}}{\partial \boldsymbol{x}} A \boldsymbol{y} \tag{6}
\end{equation*}
$$

Recall that matrix A that defines quadratic form $\boldsymbol{y}^{\mathrm{T}} A \boldsymbol{y}$ should be symmetric.

2 Time Derivatives

Let y be a scalar depending on an n-dimensional vector \boldsymbol{x} consisting of x_{1} through x_{n}. Assume that x_{1} through x_{n} depend on time. Time derivative of y is then described as:

$$
\begin{align*}
\dot{y} & =\frac{\partial y}{\partial x_{1}} \frac{\mathrm{~d} x_{1}}{\mathrm{~d} t}+\frac{\partial y}{\partial x_{2}} \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}+\cdots+\frac{\partial y}{\partial x_{n}} \frac{\mathrm{~d} x_{n}}{\mathrm{~d} t} \\
& =\left[\begin{array}{cccc}
\frac{\partial y}{\partial x_{1}} & \frac{\partial y}{\partial x_{2}} & \cdots & \frac{\partial y}{\partial x_{n}}
\end{array}\right]\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\vdots \\
\dot{x}_{n}
\end{array}\right]=\frac{\partial y}{\partial \boldsymbol{x}^{\mathrm{T}}} \dot{\boldsymbol{x}} \tag{7}
\end{align*}
$$

or equivalently

$$
\begin{equation*}
\dot{y}=\left(\frac{\partial y}{\partial \boldsymbol{x}}\right)^{\mathrm{T}} \dot{\boldsymbol{x}}=\left(\frac{\partial}{\partial \boldsymbol{x}} y\right)^{\mathrm{T}} \dot{\boldsymbol{x}} . \tag{8}
\end{equation*}
$$

The first-order partial derivative

$$
\frac{\partial y}{\partial \boldsymbol{x}}=\left[\begin{array}{c}
\frac{\partial y}{\partial x_{1}} \tag{9}\\
\frac{\partial y}{\partial x_{2}} \\
\vdots \\
\frac{\partial y}{\partial x_{n}}
\end{array}\right]
$$

is referred to as gradient vector.
Noting that $\partial y / \partial x_{k}$ depends on \boldsymbol{x}, time derivative of $\partial y / \partial x_{k}$ is described as:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial y}{\partial x_{k}}=\left(\frac{\partial}{\partial \boldsymbol{x}} \frac{\partial y}{\partial x_{k}}\right)^{\mathrm{T}} \dot{\boldsymbol{x}}
$$

Time derivative of vector $\partial y / \partial \boldsymbol{x}$ is then described as:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial y}{\partial \boldsymbol{x}} & =\left[\begin{array}{c}
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial y}{\partial x_{1}} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \frac{\partial y}{\partial x_{2}} \\
\vdots \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \frac{\partial y}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{\partial}{\partial \boldsymbol{x}} \frac{\partial y}{\partial x_{1}}\right)^{\mathrm{T}} \dot{\boldsymbol{x}} \\
\left(\frac{\partial}{\partial \boldsymbol{x}} \frac{\partial y}{\partial x_{2}}\right)^{\mathrm{T}} \dot{\boldsymbol{x}} \\
\vdots \\
\left(\frac{\partial}{\partial \boldsymbol{x}} \frac{\partial y}{\partial x_{n}}\right)^{\mathrm{T}} \dot{\boldsymbol{x}}
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{\partial}{\partial \boldsymbol{x}} \frac{\partial y}{\partial x_{1}}\right)^{\mathrm{T}} \\
\left(\frac{\partial}{\partial \boldsymbol{x}} \frac{\partial y}{\partial x_{2}}\right)^{\mathrm{T}} \\
\vdots \\
\left(\frac{\partial}{\partial \boldsymbol{x}} \frac{\partial y}{\partial x_{n}}\right)^{\mathrm{T}}
\end{array}\right] \dot{\boldsymbol{x}} \\
& =\left[\begin{array}{c}
\frac{\partial}{\partial \boldsymbol{x}^{\mathrm{T}}} \frac{\partial y}{\partial x_{1}} \\
\frac{\partial}{\partial \boldsymbol{x}^{\mathrm{T}}} \frac{\partial y}{\partial x_{2}} \\
\vdots \\
\frac{\partial}{\partial \boldsymbol{x}^{\mathrm{T}}} \frac{\partial y}{\partial x_{n}}
\end{array}\right] \dot{\boldsymbol{x}}=\frac{\partial}{\partial \boldsymbol{x}^{\mathrm{T}}} \frac{\partial y}{\partial \boldsymbol{x}} \dot{\boldsymbol{x}}=\frac{\partial^{2} y}{\partial \boldsymbol{x}^{\mathrm{T}} \partial \boldsymbol{x}} \dot{\boldsymbol{x}} .
\end{aligned}
$$

The second-order partial derivative

$$
\begin{align*}
\frac{\partial^{2} y}{\partial \boldsymbol{x}^{\mathrm{T}} \partial \boldsymbol{x}} & =\left[\begin{array}{cccc}
\frac{\partial^{2} y}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} y}{\partial x_{2} \partial x_{1}} & \cdots & \frac{\partial^{2} y}{\partial x_{n} \partial x_{1}} \\
\frac{\partial^{2} y}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} y}{\partial x_{2} \partial x_{2}} & \cdots & \frac{\partial^{2} y}{\partial x_{n} \partial x_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} y}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} y}{\partial x_{2} \partial x_{n}} & \cdots & \frac{\partial^{2} y}{\partial x_{n} \partial x_{n}}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\frac{\partial^{2} y}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} y}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} y}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} y}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} y}{\partial x_{2} \partial x_{2}} & \cdots & \frac{\partial^{2} y}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} y}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} y}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} y}{\partial x_{n} \partial x_{n}}
\end{array}\right] \tag{10}
\end{align*}
$$

is referred to as Hessian matrix. Hessian matrix is symmetric.
Differentiating (8) with respect to time t yields the second-order time derivative:

$$
\begin{aligned}
\ddot{y} & =\left(\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial y}{\partial \boldsymbol{x}}\right)^{\mathrm{T}} \dot{\boldsymbol{x}}+\left(\frac{\partial y}{\partial \boldsymbol{x}}\right)^{\mathrm{T}} \ddot{\boldsymbol{x}} \\
& =\dot{\boldsymbol{x}}^{\mathrm{T}}\left(\frac{\partial^{2} y}{\partial \boldsymbol{x}^{\mathrm{T}} \partial \boldsymbol{x}}\right) \dot{\boldsymbol{x}}+\left(\frac{\partial y}{\partial \boldsymbol{x}}\right)^{\mathrm{T}} \ddot{\boldsymbol{x}} .
\end{aligned}
$$

In summary,

$$
\begin{aligned}
y & =y(\boldsymbol{x}) \\
\dot{y} & =\left(\frac{\partial y}{\partial \boldsymbol{x}}\right)^{\mathrm{T}} \dot{\boldsymbol{x}} \\
\ddot{y} & =\left(\frac{\partial y}{\partial \boldsymbol{x}}\right)^{\mathrm{T}} \ddot{\boldsymbol{x}}+\dot{\boldsymbol{x}}^{\mathrm{T}}\left(\frac{\partial^{2} y}{\partial \boldsymbol{x}^{\mathrm{T}} \partial \boldsymbol{x}}\right) \dot{\boldsymbol{x}} .
\end{aligned}
$$

The first-order time derivative \dot{y} includes the first-order time derivative $\dot{\boldsymbol{x}}$. The second-order time derivative \ddot{y} includes the second-order time derivative $\ddot{\boldsymbol{x}}$ as well as a quadratic form with respect to $\dot{\boldsymbol{x}}$. Gradient vector given in (9) and Hessian matrix given in (10) characterize the above time derivatives.

