Motivation of this Research

Snakes perform many kinds of movement that are adaptable to a given environment by changing locomotion modes

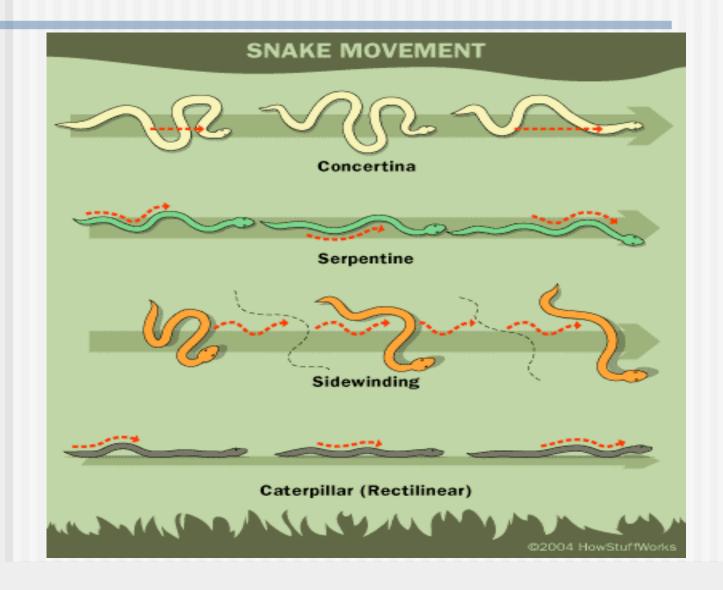
Move on soft ground

Move across branches

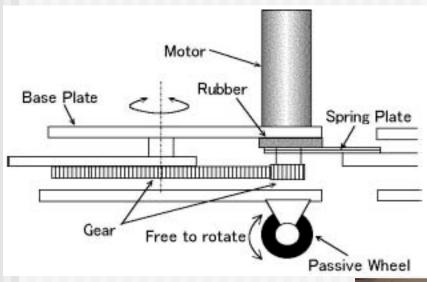
Snake robots are potentially superior for operations in highly constrained and unusual environments encountered in applications:

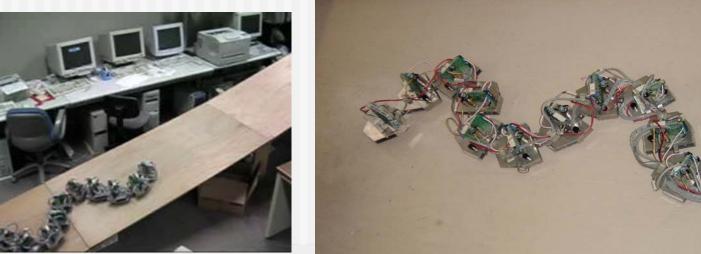
- Inspection of nuclear reactor cores and chemical sampling of buried toxic waste
- Space applications such as exploration of planetary surfaces and planet sample return mission
- Rescue task like searching of victims in the debris after a disaster
- Underwater applications such as ocean exploration and oil field service

Motion Examples of Snakes

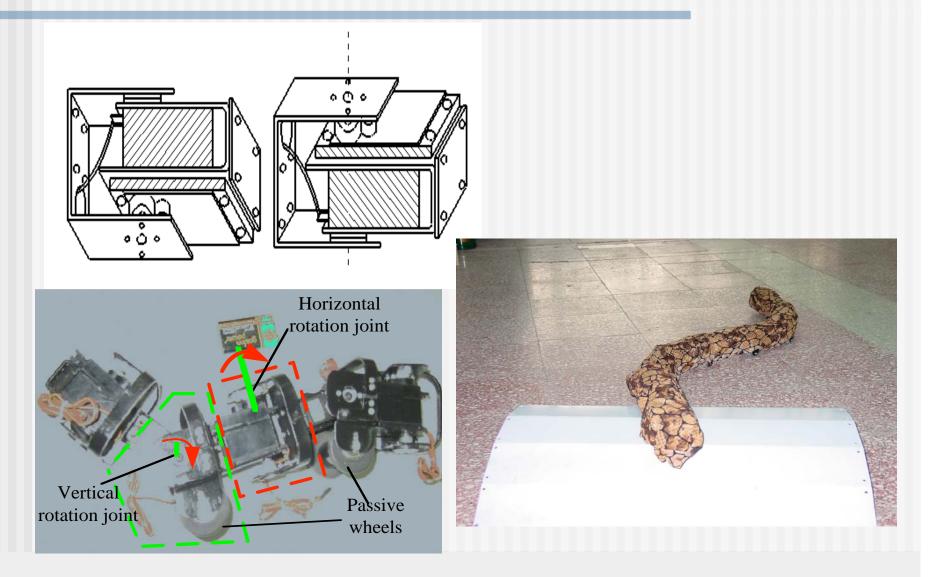


Design of 2D Snake Robot (1 DOF Joint)

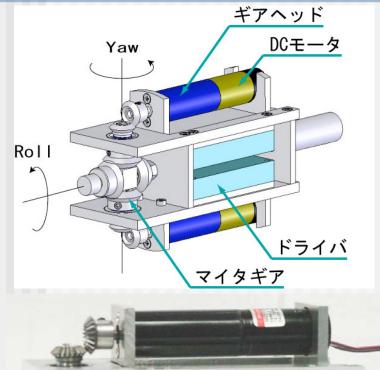


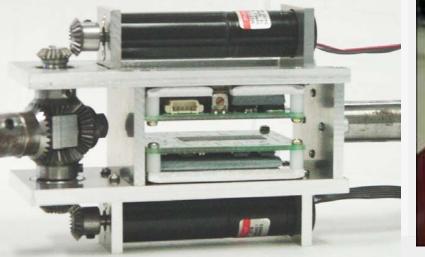


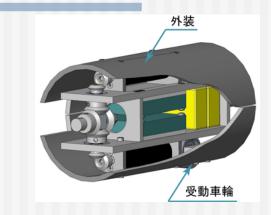
Design of 3D Snake Robot (1 DOF Joint)



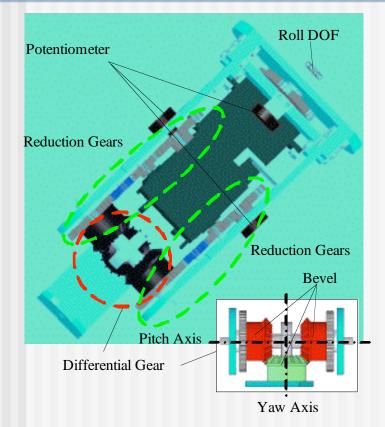
Design of 3D Snake Robot (2 DOF Joint)





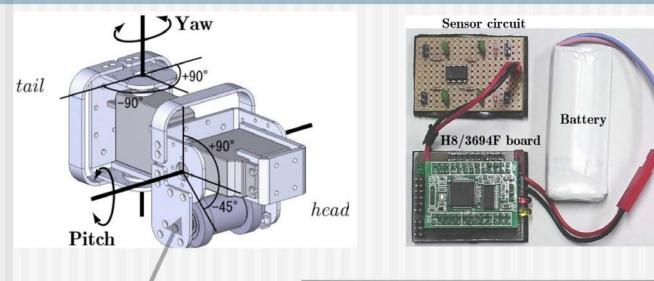


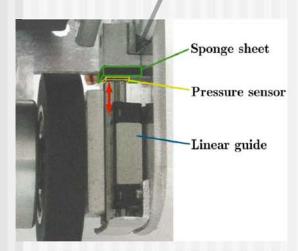
Design of 3D Snake Robot (3 DOF Joint)

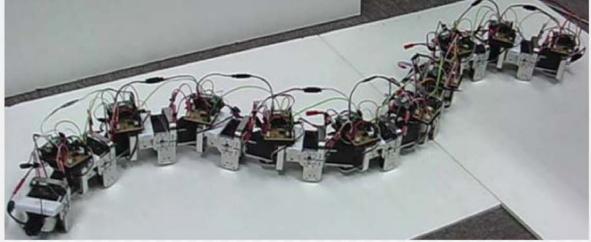


Next Pitch Axis **Roller** Position Pitch Axis

Design of 3D Snake Robot for Environmental Adaptation



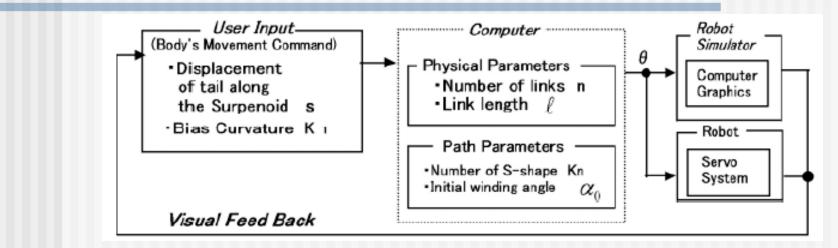




Control of Snake Robots

- Analytical model of body dynamics for known environment
- Rhythmic motion generated by neural oscillator networks

Control System of 2D Motion of Snake Robots



Serpentine :

$$\begin{bmatrix} \theta_i^y(s) \\ \theta_i^p(s) \end{bmatrix} = \begin{bmatrix} -2\alpha_0^y \sin\left(\frac{K_n\pi}{n}\right) \sin\left(\frac{2K_n\pi}{L}s + \frac{2K_n\pi}{n}i\right) \\ 0 \end{bmatrix}$$

Sinusoidal :

$$\begin{bmatrix} \theta_i^y(s) \\ \theta_i^p(s) \end{bmatrix} = \begin{bmatrix} 0 \\ -2\alpha_0^p \sin\left(\frac{K_n\pi}{n}\right) \sin\left(\frac{2K_n\pi}{L}s + \frac{2K_n\pi}{n}i\right) \end{bmatrix}$$

Control System of 3D Motion of Snake Robots

Sinus-lifting :	
Wavelength:	Phase Difference:
Yaw:Pitch=1:2	$-\pi/2$
$\begin{bmatrix} \theta_i^y(s) \\ \theta_i^p(s) \end{bmatrix} = -2 \begin{bmatrix} \alpha_0^y \sin\left(\frac{K_n}{n}\right) \\ \alpha_0^p \sin\left(\frac{2K_n\pi}{n}\right) \end{bmatrix}$	$\frac{n\pi}{n} \sin\left(\frac{2K_n\pi}{L}s + \frac{2K_n\pi}{n}i\right)$ $\sin\left(\frac{4K_n\pi}{L}s + \frac{4K_n\pi}{n}i - \frac{\pi}{2}\right)$

Sidewinding :

Wavelength:	Phase Difference:
Yaw:Pitch=1:1	-π
$\begin{bmatrix} \theta_i^y(s) \\ \theta_i^p(s) \end{bmatrix} = -2\sin\left(\frac{K_n\pi}{n}\right)$	$\begin{bmatrix} \alpha_0^y \sin\left(\frac{2K_n\pi}{L}s + \frac{2K_n\pi}{n}i\right)\\ \alpha_0^p \sin\left(\frac{2K_n\pi}{L}s + \frac{2K_n\pi}{n}i - \pi\right) \end{bmatrix}$

Analysis of Creeping Locomotion

Analysis of snake creeping locomotion

Elucidated the standard creeping movement form of a snake through analyzing physiologically

 Analysis of creeping locomotion of snakelike robot

The number of S-shape does not give large influence on the performance, but the initial winding angle largely does

Analysis of creeping locomotion of snake-like robot on slopes

- The case that, the number of S-shape = 2, is better used for our 12-link snake-like robot
- The unsymmetrical body shape is better used to improve the robot's performance on the slope

Control of Snake Robots

- Analytical model of body dynamics for known environment
- Rhythmic motion generated by neural oscillator networks

Rhythmic motion generated by neural oscillator networks

Biologically:

Rhythmic locomotion of animals: Generated by neural oscillator networks located in spinal cord

Construction of models

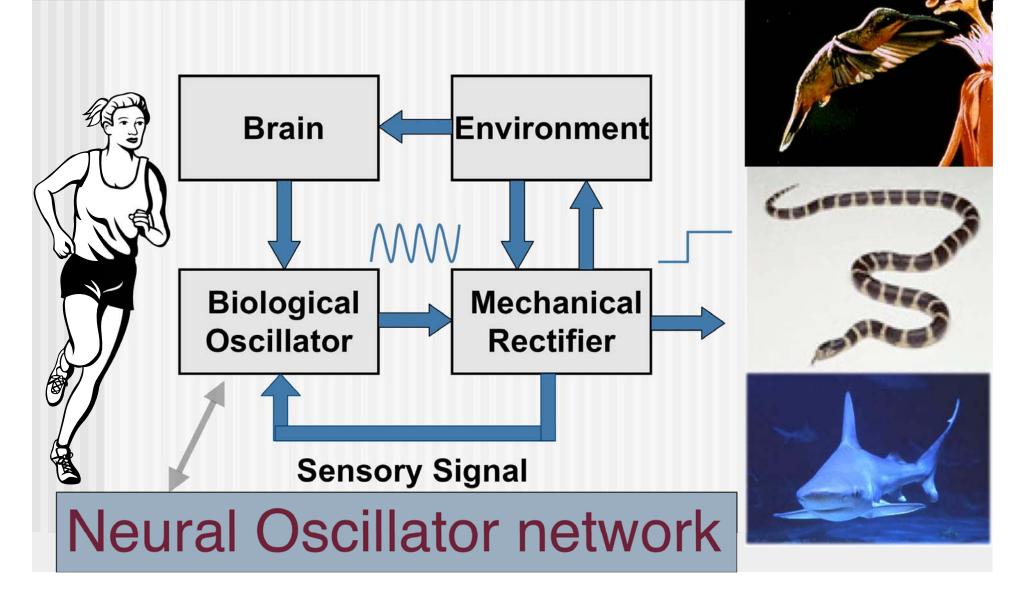
Engineering:

Biologically-inspired Robots:

Needs for Adaptive Controllers for Rhythmic Motion

> Application of neural oscillator network model

Biological Control for Locomotion



Snake-like Robots

Special Features:

- Many units connected in series
- Interact with environments only through friction
- Rhythmic locomotion
- Difficulty in calculating body dynamics (large DOF, complex interaction with environment)
- Difficulty to generate purposive motion in dynamic or unknown environment

Decentralized Control by Neural Oscillator Network

Snake-like Robots

Analytical model of body dynamics for known environment

Computational complexity, lower adaptability

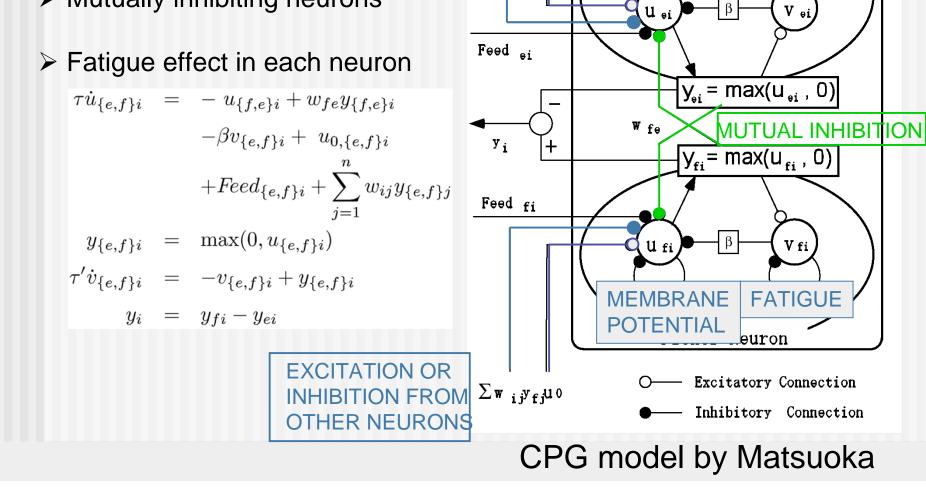
Rhythmic motion generated by neural Oscillator networks

Lower computation, fast adaptation

Matsuoka's Neural Model

Characteristics:

Mutually inhibiting neurons



Σw ij^yej u⁰ FROM UPPER CENTER

Extensor Neuron

Properties of Mutual Inhibitory CPG Model (without FATIGUE)

So,er

 $u_{\rm c}$

(a) Structure

5

Time t/s

(b) Output of the neurons

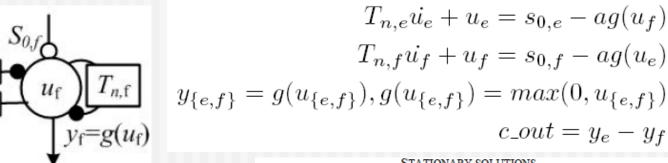
10

In,e

Output n/V

0.5

 $y_{\rm e} = g(u_{\rm e})$

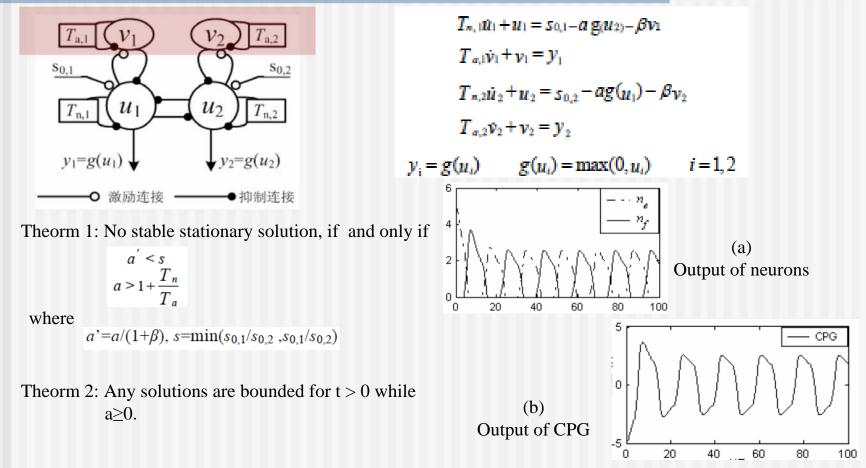


STATIONARY SOLUTIONS Conditions Stability Stationary states (u_1, u_2) s0,1<0, s0,2>0 Stable (s0.1-as0.2, s0.2) s0.1>0, s0.2<0 Stable (s_{0.1}, s_{0.2}-as_{0.1}) s0.1<0, s0.2<0 (s_{0.1}, s_{0.2}) Stable STATIONARY SOLUTIONS Conditions Stability Stationary states (u_1, u_2) $\left(\frac{S_{0,1}-a_{S_{0,2}}}{1-a^2}, \frac{S_{0,2}-a_{S_{0,1}}}{1-a^2}\right)$ Stable a<s $(s_1, s_2 - as_1)$ Stable s<a<S, s1>s2 Stable (s1-as 2,s2) s<a<S, s1<s2 $\frac{S_{0,1}-a_{S_{0,2}}}{1-a^2}, \frac{S_{0,2}-a_{S_{0,1}}}{1-a^2})$ Unstable a>S (s1,s2-as1) Stable (s1-as 2,s2) Stable

 $S=\max\{s_e, 1/s_f, s_f/s_e\}$

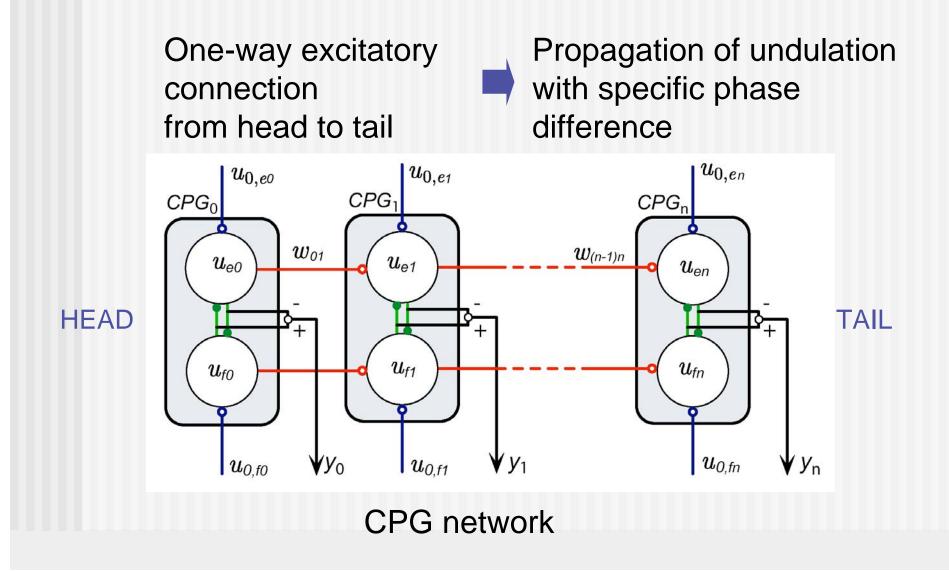
The Mutual Inhibitory CPG Model without "Fatigue" never yield any oscillatory behavior

Properties of Mutual Inhibitory CPG Model (with FATIGUE)

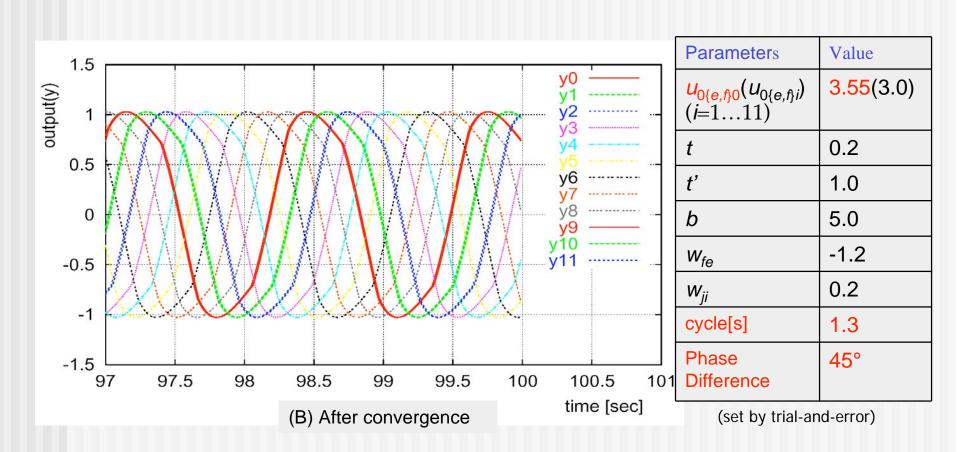


The Mutual Inhibitory CPG Model with "Fatigue" yield oscillatory behavior

Network Structure

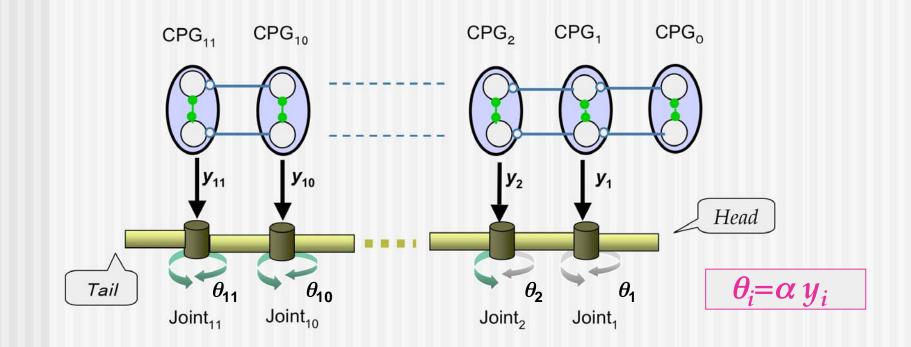


Neural Oscillator Simulation



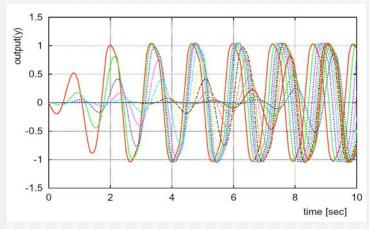
After 35 seconds, all CPGs oscillate with 1.3[s] cycle with 45[deg] phase difference

Implementation to Snake Robot

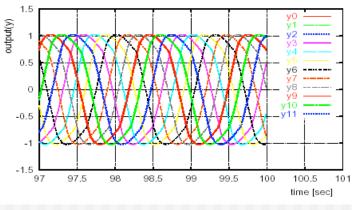


- Output of CPGs are input to joint as angle
- > CPG₀ is used as a driving input to the network

Simulation Result



Initial stage

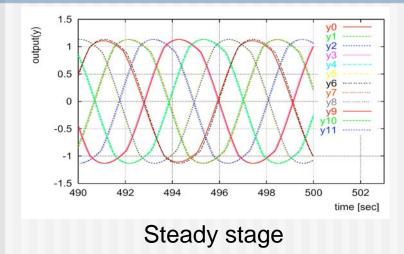


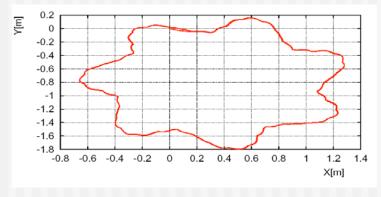
After convergence

Parameters	Value
$u_{0\{e,f\}0}(u_{0\{e,f\}i})$ (<i>i</i> =112)	<mark>3.55</mark> (3.0)
t	0.2
ť	1.0
b	5.0
W _{fe}	-1.2
w _{ji}	0.2
Cycle [s]	1.3
Phase difference [deg]	45°

(set by trial-and-error)

Simulation Result





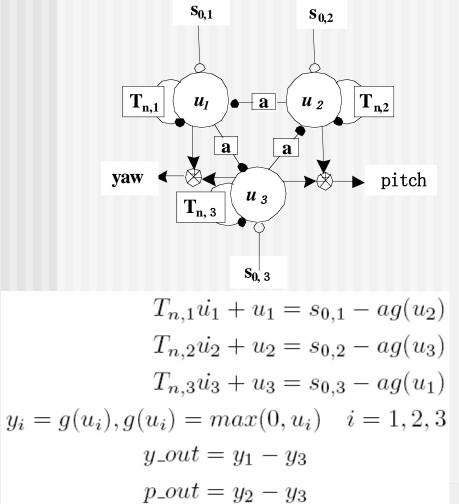
Curvature

Parameters	Value
$(u_{0\{e,f\}0}(u_{0\{e,f\}i}))$ (i=112)	11.7(9.7)
t	2.0
ť	10.0
b	20.0
W _{fe}	-1.2
w _{ji}	0.2
Cycle [s]	7.0
Phase difference [deg]	60°

(set by trial-and-error)

A New Neural Model (1) (Cyclic Inhibitory CPG Model)

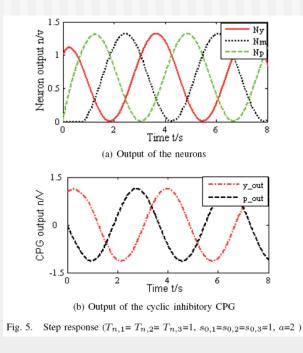
Unilateral Cyclic Inhibitory CPG Model



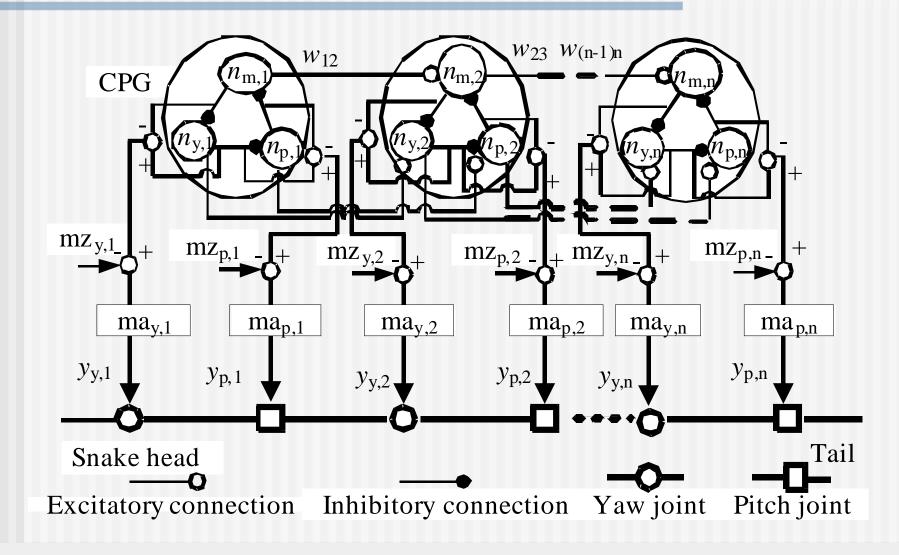
<u>*Theorem 1*</u>: Under the condition $T_{n,1}=T_{n,2}=T_{n,3}=\tau$ and $s_{0,1}=s_{0,2}=s_{0,3}=0$, the equations have no stable stationary solution, if and only if

a ≥ 2 or a ≤ -1 .

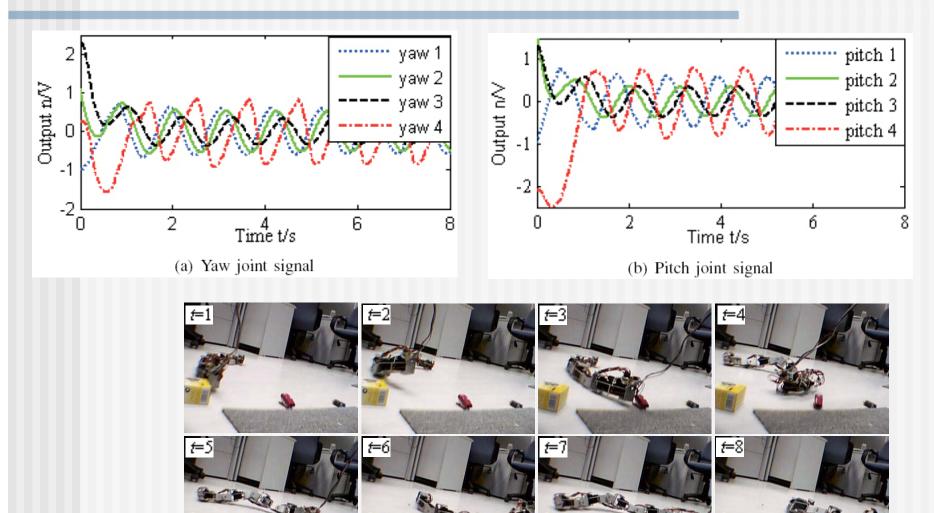
<u>Theorem 2</u>: Any solutions of the equations are bounded for t>0 under the condition $a \ge 0$.



Network Structure and Implementation to Snake Robot



Simulation Result



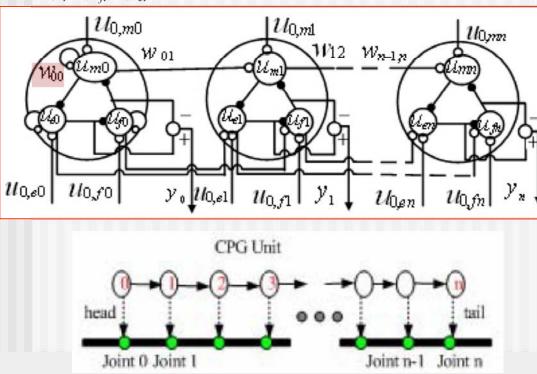
Unilateral Cyclic Inhibitory CPG Model for Serpentine motion of Snake-like Robots

 $\tau \dot{u}\{e, f, m\}_i = -u\{e, f, m\}_i + w_{\{e, f, m\}_i} y\{m, e, f\}_i - \beta v\{e, f, m\}_i + u_0\{e, f, m\}_i + Feed\{e, f, m\}_i$

 $y\{e, f, m\}_i = \max(0, u\{e, f, m\}_i)$

 $\tau' \dot{v} \{e, f, m\}_i = -v \{e, f, m\}_i + y \{m, e, f\}_i$

 $y_i = y_{fi} - y_{ei}$



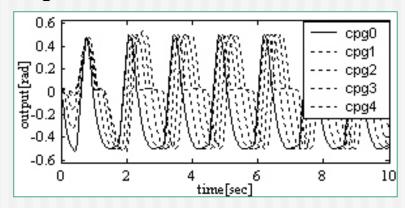
No pitch, only Yaw→ Serpentine Motion

Conditions for a stable oscillation: $w_{\{e\}}/(1+\beta) \ge (\mu_0 \{m\} - \operatorname{Feed}_{\{m\}} - \Sigma w_{ij} y_j \{m\})/$ $(\mu_0 \{e\} - \operatorname{Feed}_{\{e\}} - \Sigma w_{ij} y_j \{e\}).$ $w_{\{e\}} \ge 1 + \tau/\tau'.$ $w_{\{m\}}/(1+\beta) \ge (\mu_0 \{f\} - \operatorname{Feed}_{\{f\}} - \Sigma w_{ij} y_j \{f\})/$ $(\mu_0 \{m\} - \operatorname{Feed}_{\{m\}} - \Sigma w_{ij} y_j \{m\}).$ $w_{\{m\}} \ge 1 + \tau/\tau'.$ $w_{\{f\}}/(1+\beta) \ge (\mu_0 \{e\} - \operatorname{Feed}_{\{e\}} - \Sigma w_{ij} y_j \{e\})/$ $(\mu_0 \{f\} - \operatorname{Feed}_{\{f\}} - \Sigma w_{ij} y_j \{f\}).$ $w_{\{f\}} \ge 1 + \tau/\tau'.$ $w_{\{f\}} \ge 1 + \tau/\tau'.$ $w_{\{f\}} \ge 1 + \tau/\tau'.$

Realization of Serpentine Motion by Unilateral Cyclic Inhibitory CPG Model

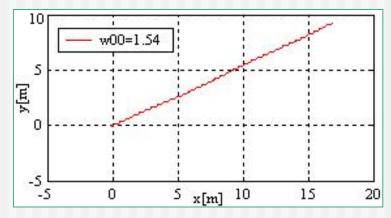
MAIN PARAMETRS OF THE CPG MODEL	
Driving input $\mu_0(e, f, m)_i$ (i =0, ,n-1)	25
Time constant for state τ	03
Time constant for fatigue τ'	03
Fatigue coefficient β	1
Head-neuron connection weight w_{00}	1.54
Inter-CPG connection weight WD	15
Inter-neuron connection weight $W{e, f, m}_{i}^{(i=1,, n-1)}$	25

Output curve of CPG

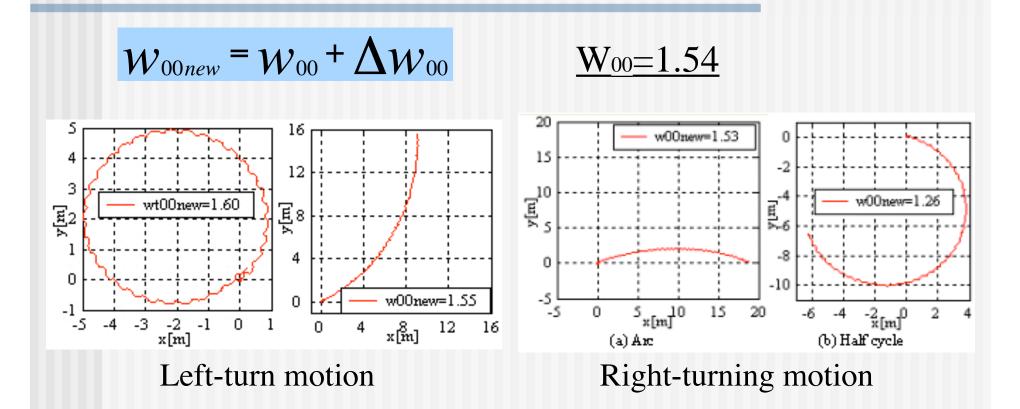


Exp

Head trajectory of the robot

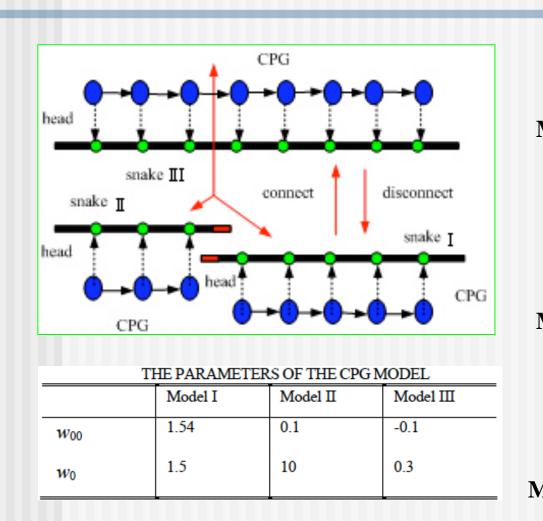


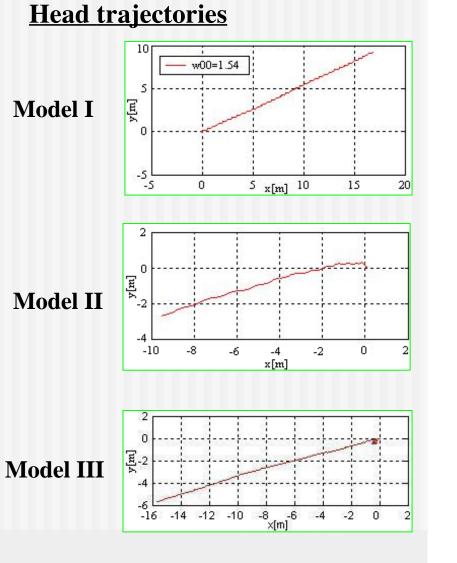
CPG Parameters for Turn Motions



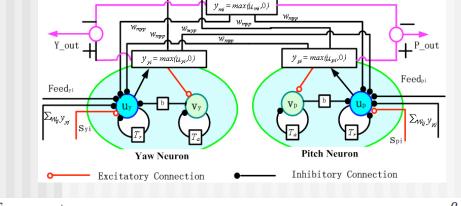
- 1) $\Delta w_{00} > 0$, turns left (anti-clockwise)
- 2) $\Delta W_{00} < 0$, turns right (clockwise)
 - $|\Delta w_{00}|$ becomes smaller, turn motion angle become smaller

CPG Parameters for Reconfiguration





A New Neural Model (2) (Cyclic Inhibitory CPG Model)



 $T_{n, \{y,p,m\}, i} \dot{u}_{\{y,p,m\}, i} = -u_{\{y,p,m\}, i} - w_{\{y,p,m\}, i} y_{\{p,m,y\}, i} - w_{\{y,p,m\}, i} y_{\{m,y,p\}, i} - \beta v_{\{y,p,m\}, i}$

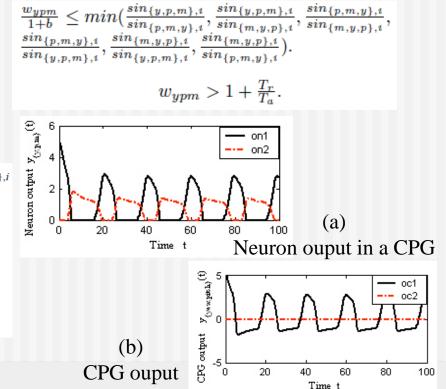
$$+s_{0,\{y,p,m\},i}+Feed_{\{y,p,m\},i}+\sum_{j=1}^{n}w_{ij}y_{\{y,p,m\},j}$$

$$T_{a, \{y,p,m\},i} \dot{v}_{\{y,p,m\},i} = -v_{\{y,p,m\},i} + y_{\{y,p,m\},i}$$
$$y_{\{y,p,m\},i} = g(u_{\{y,p,m\},i}), \quad g(u_{\{y,p,m\},i}) = \max(0, u_{\{y,p,m\},i})$$
$$y_{yaw,i} = y_{y,i} - y_{m,i}$$

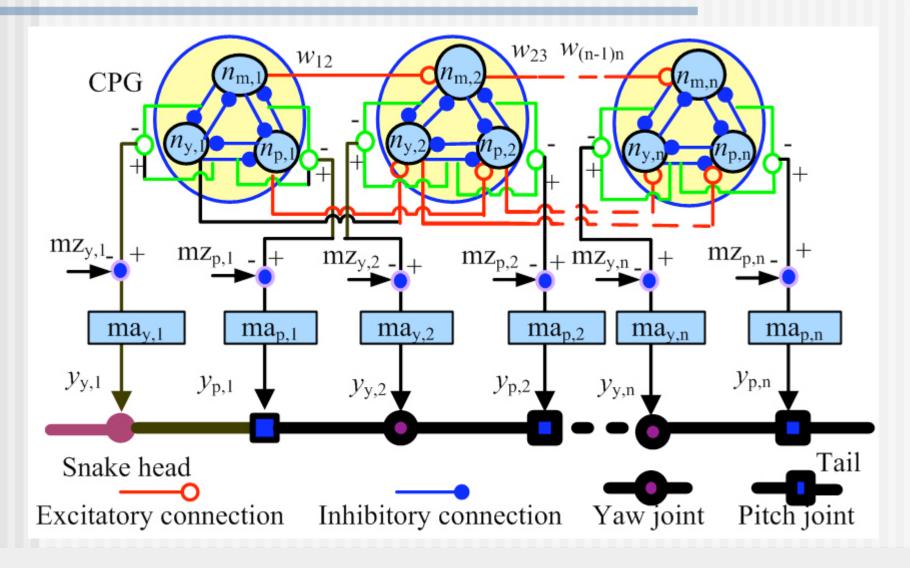
$$y_{\text{pitch},i} = y_{\text{p},i} - y_{\text{m},i}$$

<u>Theorem 1</u>: A solution of equations exists uniquely for any initial state and is bounded for t > 0. <u>Theorem 2</u>: The equations have at least one stationary solution.

Conditions for a stable oscillation:

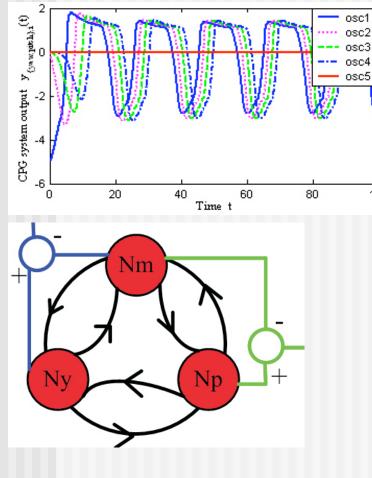


Network Structure and Implementation to Snake Robot



Simulation Result

100



[Y1,P1,M1]

[1,0,0]: Serpentine

[0,**1**,0]: Concertina

[0,0,1]: Sidewinding