数値計算 小テスト 1,2 時限

1. 以下の微分方程式において、 $\dot{x}=v$ とおく、(a), (b), (c), (d), (e) の内、解答用紙に指定されている二つを時間区間 [0,4] で数値的に解き、xとvのグラフを描け、(8点)

(a)
$$\begin{cases} \ddot{x} + 2\dot{x} + 5x + x^3 + 3\sin(t) = 0 \\ x(0) = 2, \quad \dot{x}(0) = 0 \end{cases}$$
(b)
$$\begin{cases} \ddot{x} + (1 - 2\cos(2t))x = 0 \\ x(0) = 2, \quad \dot{x}(0) = 0 \end{cases}$$
(c)
$$\begin{cases} \ddot{x} + x^2 = 0 \\ x(0) = 0, \quad \dot{x}(0) = 2 \end{cases}$$
(d)
$$\begin{cases} \ddot{x} + 5\sin(x)\dot{x} + 4x = 0 \\ x(0) = 2, \quad \dot{x}(0) = 0 \end{cases}$$
(e)
$$\begin{cases} \ddot{x} + 2x^2\dot{x} + 7x = 3\sin(t) \\ x(0) = 2, \quad \dot{x}(0) = 0 \end{cases}$$

2. ピボット型 LU 分解を用いて、4次の正方行列

$$A_4 = \begin{bmatrix} 3 & 9 & 6 & 3 \\ 2 & 8 & 2 & 0 \\ -2 & -5 & -2 & 1 \\ 1 & 4 & 3 & 2 \end{bmatrix}$$

の LU 分解 $A_4 = L_4 U_4$ を、3 次の正方行列 A_3 の LU 分解に変換する.ただし L_4 の対角要素の値を 1 とする.以下の問いに答えよ.(6 点)

- (a) 下三角行列 L_4 の一列目を示せ.
- (b) 上三角行列 U_4 の一行目を示せ.
- (c) 3次の正方行列 A₃を示せ.
- **3.** 変数 t と x の値が

t	0	1	2	3	4	5
x	-0.8000	-0.1909	1.3383	2.1563	1.6271	1.1000
	6	7	8	9	10	
	-0.0091	-1.4383	-1.7563	-2.0271	-1.2000	

で与えられる. ここで変数 $t \ge x$ の関係を

$$x = A\sin((1/5)\pi t - \delta)$$

で近似する. $P = A\cos\delta$, $Q = A\sin\delta$ とする. 以下の問いに答えよ. (5点)

- (a) P,Q に関する正規方程式を示せ.
- (b) *P,Q* の値を求めよ.
- (c) $A \, \mathsf{E} \, \delta$ の値を求めよ.
- 4. 関数 $\phi_0(x)$, $\phi_1(x)$, $\psi_0(x)$, $\psi_1(x)$ は区間 [0, 1] で定義され, $\phi_0(x) = 2x^3 3x^2 + 1$, $\phi_1(x) = -2x^3 + 3x^2$, $\psi_0(x) = x(x-1)^2$, $\psi_1(x) = x^2(x-1)$ で与えられる.以下の問いに答えよ.(6点)
 - (a) 区間 [3, 4] で $f(3) = f_3$, $f(4) = f_4$, $f'(3) = d_3$, $f'(4) = d_4$ を満たすスプライン補間 f(x) を、 関数 $\phi_0, \phi_1, \psi_0, \psi_1$ と f_3, f_4, d_3, d_4 を用いて表せ.
 - (b) 区間 [0,5] で $f(0) = f_0$, $f(5) = f_5$, $f'(0) = d_0$, $f'(5) = d_5$ を満たすスプライン補間 f(x) を, 関数 $\phi_0, \phi_1, \psi_0, \psi_1$ と f_0, f_5, d_0, d_5 を用いて表せ.
 - (c) 区間 [3, 8] で $f(3) = f_3$, $f(8) = f_8$, $f'(3) = d_3$, $f'(8) = d_8$ を満たすスプライン補間 f(x) を、 関数 $\phi_0, \phi_1, \psi_0, \psi_1$ と f_3, f_8, d_3, d_8 を用いて表せ.

数値計算 小テスト 3,4 時限

1. 以下の微分方程式において、 $\dot{x}=v$ とおく、(a), (b), (c), (d), (e) の内、解答用紙に指定されている二つを時間区間 [0,4] で数値的に解き、xとvのグラフを描け、(8点)

(a)
$$\begin{cases} \ddot{x} + 2\dot{x} + 5x + x^3 + 3\sin(t) = 0 \\ x(0) = 2, \quad \dot{x}(0) = 0 \end{cases}$$
(b)
$$\begin{cases} \ddot{x} + (1 - 2\cos(2t))x = 0 \\ x(0) = 2, \quad \dot{x}(0) = 0 \end{cases}$$
(c)
$$\begin{cases} \ddot{x} + x^2 = 0 \\ x(0) = 0, \quad \dot{x}(0) = 2 \end{cases}$$
(d)
$$\begin{cases} \ddot{x} + 5\sin(x)\dot{x} + 4x = 0 \\ x(0) = 2, \quad \dot{x}(0) = 0 \end{cases}$$
(e)
$$\begin{cases} \ddot{x} + 2x^2\dot{x} + 7x = 3\sin(t) \\ x(0) = 2, \quad \dot{x}(0) = 0 \end{cases}$$

2. ピボット型 LU 分解を用いて, 4次の正方行列

$$A_4 = \begin{bmatrix} -3 & -6 & -3 & 9 \\ 2 & 6 & 0 & -8 \\ 1 & 3 & 3 & 0 \\ -2 & -3 & -1 & 7 \end{bmatrix}$$

の LU 分解 $A_4 = L_4 U_4$ を, 3次の正方行列 A_3 の LU 分解に変換する. ただし L_4 の対角要素の値を 1 とする. 以下の問いに答えよ. (6点)

- (a) 下三角行列 L_4 の一列目を示せ.
- (b) 上三角行列 U_4 の一行目を示せ.
- (c) 3次の正方行列 A₃を示せ.
- **3.** 変数 t と x の値が

t	0	1	2	3	4	5
x	-1.4000	0.3091	1.5383	1.9563	2.0271	0.9000
	6	7	8	9	10	
	-0.4091	-1.2383	-2.3563	-1.4271	-1.4000	

で与えられる. ここで変数 $t \ge x$ の関係を

$$x = A\sin((1/5)\pi t - \delta)$$

で近似する. $P = A\cos\delta$, $Q = A\sin\delta$ とする. 以下の問いに答えよ. (5点)

- (a) P,Q に関する正規方程式を示せ.
- (b) *P,Q* の値を求めよ.
- 4. 関数 $\phi_0(x)$, $\phi_1(x)$, $\psi_0(x)$, $\psi_1(x)$ は区間 [0, 1] で定義され, $\phi_0(x) = 2x^3 3x^2 + 1$, $\phi_1(x) = -2x^3 + 3x^2$, $\psi_0(x) = x(x-1)^2$, $\psi_1(x) = x^2(x-1)$ で与えられる.以下の問いに答えよ.(6点)
 - (a) 区間 [2,3] で $f(2) = f_2$, $f(3) = f_3$, $f'(2) = d_2$, $f'(3) = d_3$ を満たすスプライン補間 f(x) を, 関数 $\phi_0, \phi_1, \psi_0, \psi_1$ と f_2, f_3, d_2, d_3 を用いて表せ.
 - (b) 区間 [0,5] で $f(0) = f_0$, $f(5) = f_5$, $f'(0) = d_0$, $f'(5) = d_5$ を満たすスプライン補間 f(x) を, 関数 $\phi_0, \phi_1, \psi_0, \psi_1$ と f_0, f_5, d_0, d_5 を用いて表せ.
 - (c) 区間 [2,7] で $f(2) = f_2$, $f(7) = f_7$, $f'(2) = d_2$, $f'(7) = d_7$ を満たすスプライン補間 f(x) を, 関数 $\phi_0, \phi_1, \psi_0, \psi_1$ と f_2, f_7, d_2, d_7 を用いて表せ.