Analytical Mechanics Final Exam．

1．A bead of mass m is constrained to slide along a thin，circular hoop of radius l ．The hoop rotates with a constant angular velocity ω in a horizontal plane around point O on its rim，as illustrated in Figure 1.

Figure 1：Bead moving along hoop
（a）Find the Lagrange equation of motion of the bead．
（b）Let O^{\prime} be the point on the hoop rim diamet－ rically opposite to point O ．Show that the bead oscillates like a simple pendulum about point O^{\prime} ．

2．Let us investigate the transversal vibration of a beam．The beam is of length L and its one end is fixed on a wall，as illustrated in Figure 2. Force $f(t)$ is applied to the other end at time t ． Let μ be the line density of the beam，E be its Young＇s module，and I be its geometrical mo－ ment of inertia．Let x be the distance from the wall and $u(x, t)$ be the traversal displacement
at distance x and time t ，as illustrated in the figure．Kinetic energy and bend potential en－ ergy of the beam are then described as follows， respectively：

$$
\begin{aligned}
& T=\int_{0}^{L} \frac{1}{2} \mu\left(\frac{\partial u}{\partial t}\right)^{2} d x \\
& U=\int_{0}^{L} \frac{1}{2} E I\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{2} d x
\end{aligned}
$$

Work done by the external force is described as

$$
\text { Work }=f(t) u(L, t) .
$$

Compute the variation of action integral

$$
\delta \int_{t_{1}}^{t_{2}}(T-U+W \text { ork }) d t
$$

and derive a differential equation that $u(x, t)$ must satisfy．

Figure 2：Transversal vibration of beam

transversal vibration	横振動
line density	線密度
Young＇s module	ヤング率
geometrical moment	
of inertia	
action integral	断面二次モーメント
作用積分	

