Analytical Mechanics Final Exam.

1. Let us investigate the transversal vibration of a beam. The beam is of length L and its one end is fixed on a wall, as illustrated in Figure 1. Force $f(t)$ is applied to the other end at time t. Let μ be the line density of the beam, E be its Young's module, and I be its geometrical moment of inertia. Let x be the distance from the wall and $u(x, t)$ be the traversal displacement at distance x and time t, as illustrated in the figure. Kinetic energy and bend potential energy of the beam are then described as follows, respectively:

$$
\begin{aligned}
& T=\int_{0}^{L} \frac{1}{2} \mu\left(\frac{\partial u}{\partial t}\right)^{2} \mathrm{~d} x \\
& U=\int_{0}^{L} \frac{1}{2} E I\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{2} \mathrm{~d} x
\end{aligned}
$$

Work done by the external force is described as

$$
\text { Work }=f(t) u(L, t) .
$$

Compute the variation of action integral

$$
\delta \int_{t_{1}}^{t_{2}}(T-U+\text { Work }) \mathrm{d} t
$$

and derive a differential equation that $u(x, t)$ must satisfy.

Figure 1: Transversal vibration of beam

transversal vibration
line density
Young's module
geometrical moment
of inertia
action integral

2. A bead of mass m moves along a inclined rigid bar. Friction between the bead and the bar is negligible. The bar rotates along a vertical plane and inclination of the bar is increasing at a constant rate ω. Assuming that $\theta=0$ at time $t=0$, find the motion of the bead using Lagrangean formulation.

Figure 2: Bead moving along rotating bar

