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A b s t r a c t  Recent ly ,  a great  deal  of a t tent ion has been  paid  
to s t o c h a s t i c  r e s o n a n c e  as a new f ramework to unders tand 
sensory mechanisms of biological  systems. Stochastic reso- 
nance explains impor tan t  proper t ies  of sensory neurons 
that  accurately detect  weak input  stimuli by using a small 
amount  of in ternal  noise. In part icular ,  Collins et al. re- 
por ted  that  a ne twork  of stochastic resonance neurons  gives 
rise to a robust  sensory function for detect ing a variety of 
complex input  signals. In this study, we investigate ef- 
fectiveness of such stochastic resonance  neural  networks to 
chaotic input  signals. Using the R6ssler  equations,  we ana- 
lyze the ne twork ' s  capabil i ty to detect  chaotic dynamics. 
We also apply the stochastic resonance  ne twork  systems to 
speech signals, and examine a plausibil i ty of the stochastic 
resonance neural  ne twork  as a possible mode l  for the 
human audi tory system. 
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Introduction 

Recently,  a great  deal  of a t tent ion has been  pa id  to s t o c h a s -  

tic r e s o n a n c e  1 as a potent ia l  mode l  for sensory neurons in 
real  biological  s y s t e m s Y  Stochastic resonance can eluci- 
date  functions of the sensory neurons  in the sense that it 
enables neurons  to detect  weak input  stimuli by using a 
small amount  of internal  noise. F rom this viewpoint,  s to -  
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chastic resonance  and its sensory functions have been 
studied in re la t ion to a variety of  neuron  models,  such as 
the F i t z H u g h - N a g u m o  neuron model  and the H o d g k i n -  
Huxley  neuron  m o d e l /  Al though  per iodic  signals have 
been mainly considered as the input  stimuli, Collins et  al. 6 
ex tended the idea to aperiodic input  signals, and demon-  
s trated a neuronal  capabil i ty to detect  weak aper iodic  input  
stimuli. In part icular ,  they showed that  a ne twork  of  sto- 
chastic resonance  neurons gives rise to a sensory function 
which is much more  robust  than a single neuron in the sense 
that  the ne twork  does not  require  any careful tuning of the 
opt imal  noise in tensi ty]  Their  results therefore  imply that 
the ne twork  structure might be of  significant impor tance  in 
the study of  sensory functions in real  neural  systems. 

On the basis of this work, 7 we use a ne twork  of  stochastic 
resonance neurons  as a sensory mode l  to detect  chaotic 
input. We study how the dynamic structure of chaos is en- 
coded into the  firing rate of the neural  network.  This study 
is of potent ia l  impor tance  because chaotic dynamics have 
recent ly been  discovered in a variety of biological  systems, 8'9 
and it is an impor tant ,  yet  unresolved,  p rob lem to consider  
how the dynamic  characteristics of chaos are encoded  into 
neuronal  informat ion processing systems. Al though  there  
are some re la ted  works which discuss the  problems of en- 
coding chaotic  dynamics into s ingle-neuron models,  1~12 to 
our knowledge,  encoding chaos into neural  ne twork  models  
has not  yet  been  thoroughly investigated.  

By using the R6ssler  equat ions as a typical example  of 
determinis t ic  chaos, we study response  characterist ics of a 
ne twork  of stochastic resonance neurons  to chaotic input  
stimuli. Our  main  focus is on whether  the geometr ic  struc- 
ture of chaotic dynamics can be  encoded  into a delay- 
coordinate  of  the firing rate  of a neura l  network.  By using 
the nonl inear  predic t ion technique,  accuracy of the geo- 
metr ic  encoding of chaos is evaluated.  Dependence  of  the 
accuracy of  the geometr ic  encoding on neural  ne twork  
parameters  such as the noise intensity, the  number  of neural  
elements,  and the t ime-constant  p a r a m e t e r  are also investi- 
gated. As  a possible application, we fur ther  apply the neural  
ne twork  mode l  to reconstruct  a speech signal of a normal  
phonat ion  of vowel /a / ,  and examine plausibil i ty of using the 
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neural  ne twork  as a real  physiological  model  for the human 
audi tory system. 

This paper  is organized as follows. In the next section we 
int roduce a network of noisy F i t z H u g h - N a g u m o  neurons as 
a stochastic resonance  network model .  We  then study the 
response characterist ics of the neura l  ne twork  to chaotic 
input genera ted  from the R6ssler  equations,  and investigate 
the ne twork ' s  capabil i ty to reconstruct  chaotic dynamics by 
varying the noise intensity, the ne twork  size, and the t ime- 
constant  parameter .  In the following section we apply the 
ne twork  model  to speech signals, and study how many neu- 
rons are required to reconstruct  speech signals which are 
clear enough to be perceived by the human ear. The  final 
section is devoted  to our conclusions and discussions. 

A network of FitzHugh-Nagumo neurons 

Let  us consider  a network of F i t z H u g h - N a g u m o  (FHN)  
neurons 23'14 descr ibed below (see also Fig. 1). 

~e~, = - v ~ ( v ~ -  O.5)(v~- 1) - w~ + S(t) + ~( t )  (1) 

T,(D i : P i - -  (D e - -  e (i = 1 . . . . .  K) (2) 

The var iables  v~ and ws stand for the  dynamic states of the i- 
th neuron,  ~i represents  independen t  Gaussian white noise 
satisfying E[~i(t)] = 0 and E[~i(t)~j(s)] = 2D6( t  - s)6(i  - j) ,  
(E[-]: ensemble  average),  K represents  a number  of neurons 
in the network,  and e and e represent  system paramete r s  of 
the F H N  model ,  which are fixed as (e, e) = (0.15, 0.005). 
The t ime-constant  pa rame te r  z that  controls  the t ime-scale 
of the neural  dynamics is set to be x = 0.01. W e  consider  
that  the neurons  of the ne twork  are  uniform and commonly 
receive a weak subthreshold input  S(0.  By subthreshold,  we 
mean  that  no neuron fires without  any noise. In the follow- 
ing numer ica l  experiments ,  the dynamics of the stochastic 
differential  Eqs. i and 2 are s imulated by integrat ing the 

S(t) 

Ill 

~ ming Unit: Rx(t) 

Fig. L Schematic illustration of a network of F i t zHugh-Nagumo 
( F H N )  neurons  with Gaussian white noise. Each  neuron  received a 
same input  stimuli S ( t ) .  The network activity is measured  by the firing 
rate of the summing  unit  Rz(t ) that  computes  an averaged firing rate of 
all the neural  e lements  

equat ions with a first-order approximate  algori thm 15 with an 
integrat ion step of At = 5 .10 5. 

When  the i-th neuron potent ia l  vi(t) crosses a threshold 
value of  va~ = 0.7, we say that  the i-th neuron fires. Then the 
firing rate  Ri(t) of the i-th neuron is computed  by  counting 
the number  of  firing t imes within a durat ion of W. The  
activity of the F H N  neural  ne twork  is finally measured  by 
the firing rate  of the summing unit  Rz(t) (Fig. 1) that  sums 
and averages the firing rates of all the neural  e lements  as 

Rz(t) : --~zKi=lRi(t). 
Figure  2 shows response characterist ics of a single neu- 

ron (K = 1) to the t ime-constant  input  stimuli S. The  firing 
rate  R over  a long-term durat ion W = 500 is computed  by 
increasing the input stimuli S, where the noise intensi ty is 
set as D = 0 and 10 -8. In the case of no noise (D = 0), the 
F H N  mode l  has a stable equi l ibr ium point  which corre- 
sponds to the resting state, and which never  fires for a small  
input  signal S. Hence,  the firing rate  is zero until  S < 
0.11231. As  the input signal is increased to over S ~ 0.11231, 
a limit-cycle a t t ractor  is genera ted  via a Hopf  bifurcat ion of 
the equi l ibr ium point,  and the neuron  exhibits oscil latory 
dynamics.  The  firing rate  jumps  up at the bifurcat ion point,  
and then monotonical ly  increases as the input  stimuli S is 
further  increased.  In  contras t  to the noise-free case, when 
there is noise of D = 10 8, the neuron  fires also in the 
subthreshold  regime (S < 0.11231), and the firing rate  
monotonica l ly  and cont inuously increases as the subthresh- 
old input  S is increased. This corresponds  to the stochastic 
resonance regime, where  the  low level noise enables  a 
neuron  to detect  a weak input  stimuli, In order  to study 
a function of  this stochastic resonance noise, in the fol- 
lowing sections, we consider  only the subthreshold  input  
signals. 

2 e  
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Fig. 2. Response characteristics of a single neuron to a time-constant 
input S. The firing rate R over a long-term duration W - 500 is com- 
puted by increasing the input stimuli from S = 0 to S = 0.2. The noise 
intensity is set to be D - 0 and 10 _8 
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Reconstructing chaotic dynamics 

Reconstruct ing the R6ssler  a t t ractor  

In this section, we study response characterist ics of the net- 
work of F H N  neurons  act ivated by chaotic input  stimuli. 
This work presents  a different viewpoint  from some re la ted  
works. 7'12 Castro and Sauer  12 s tudied the response character-  
istics of a single noisy F H N  mode l  to chaotic input, and 
repor ted  that  stochastic resonance  phenomena  had been 
observed.  Collins et al., 6; on the other  hand, presented  a 
theory of a ne twork  of stochastic resonance neurons,  and 
showed the advantage  of a ne twork  model  that  realizes a 
robust  detect ion of weak input  stimuli without  any careful 
tuning of the noise intensity. In  this study, we focus on 
chaotic input  signals ra ther  than genera l  aper iodic  signals so 
that  we can apply  techniques of nonl inear  determinist ic  
predic t ion to evaluate  the response characterist ics of the 
neural  network.  

By using the x(t)-variable of the R6ssler  equat ions 16 

2 = - y  - z 

j; = x  + ay 

: b x  + z ( x  - c)  
(3) 

we study how the dynamic structure of the chaotic input  can 
be encoded into the firing ra te  of the ne twork  of F H N  
neurons.  Pa ramete r  values of the R/Sssler equat ions are 
fixed as (a, b, c) = (0.36, 0.4, 4.5), and the input  signal is set 
to be 

x( t )  
S(t)  = 0.05 + 0.06 

maxtlx(t)[ (4) 

Figures 3b,c show the dynamic structures of the chaotic 
input  signal reconst ructed by using a delay coordinate  of the 
mean firing rate  Rz( t )  of the F H N  network  as 

{ R ~ ( t ) , R x ( t -  O) . . . . .  R ~ ( t -  (d - 1)0)} (5) 

where d and 0 s tand for the reconstruct ion d imension and 
the t ime lag, respectively,  lv'~s Compared  with the original 
chaotic dynamics in Fig. 3a, the dynamic  characterist ics of 
the R6ssler  a t t rac tor  with "stretching" and "folding" are 
well r ep roduced  in Fig. 3b,c. Al though  the reconstructed 
dynamics by a ne twork  of 20 neurons  looks ra ther  noisy in 
Fig. 3b, a smoother  nonl inear  dynamics can be recon- 
structed by a ne twork  of 1000 neurons,  as in Fig. 3c. This is 
due to the effect of the network structure,  which realizes a 
rel iable and accurate  detect ion of a weak input  stimuli by 
using an ensemble  average of the firing rates of many neural  
elements.  

Nonl inear  predic t ion  

In this subsection, we quantify the accuracy of reconstruct-  
ing chaotic dynamics by the stochastic resonance neural  

7 networks.  Al though  Collins et al. used the correla t ion coef- 

Fig. 3. a Three-dimensional delay-coordinate reconstruction 
{x(t), x (t - 0.125), x(t 0.25)} of the R6ssler attractor, b, r Three- 
dimensional delay-coordinate {Rz(t), Rz(t - 0.125), R~(t - 0.25)} of the 
mean firing rate R~(t) of the network of FHN neurons with K = 20 and 
1000, respectively 

ficient to measure  the accuracy of the  signal detect ion,  
we exploit  the nonl inear  predic t ion error  (NPE)  ~9'2~ to 
evaluate  the accuracy of the geometr ic  reconstruct ion of 
chaotic dynamics.  

First,  we compute  a t ime-series of the average firing rate  
of the neural  ne twork  

= = o , 1 , . . . , u }  (6) 
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with a sampling rate of A = 0.1. Then the time-series {u(n)} 
is divided into first and second halves. From the first-half 
data, a nonlinear predictor f :R d ~ R d, which approximates 
the data dynamics as u(n + 1) ~ f (u(n)), is constructed 
using the delay coordinate u(n) = {u(n), u(n - 0) , . . . ,  u(n 
- (d - 1)0)}. For the nonlinear predictor f ,  Sugihara-May's  
local linear predictor 2~ is used. For  the latter-half data, a 
nonlinear prediction is carried out. The forecasting proce- 
dure is that for a give initial state u(n), the p-step further 
state u(n + p) is predicted to be ~(n + p)  = fP(u(n)) using 
the p-iterate of the predictorf .  The NPE is finally computed 
as the normalized root-mean-square error 

2 N 

NPE = INY--"~=N/2{u(n)- t/(n)}2 

X n \ N , { " ( n )  - e k l }  2 
(7) 

In our analysis, the reconstruction dimension d, the time 
lag0, the prediction step p, and the number  of the data N 
are set as (d, 0, p,  N) = (3, 15, 2, 5000). 

Figure 4 shows .the nonlinear prediction curve computed 
for the F H N  network with an increasing noise intensity 
from D = 2.5.10 -1~ to 5.12" 10 7. The four prediction curves 
correspond to networks with different sizes of K (i.e., 
1, 10, 100, and 1000). First, we focus on a single neuron's  
response curve (K = 1). In a small noise regime, a very large 
prediction error is initially observed. As the noise intensity 
is slightly increased, the prediction error is significantly de- 
creased, and the response curve produces a single sharp 
minimum at D ~ 10 -s. As the noise intensity is further 
increased, the prediction error is eventually increased. This 
is a typical characteristic of stochastic resonance, which is 

known to exhibit a small effective noise for detecting weak 
input signals. 

Next, let use see the the resonance characteristics of  the 
network of FHN neurons (K = 10, 100, 1000). We recognize 
a basically similar prediction curve to that of the single 
neuron model  (K = 1) in Fig. 4. A significant difference is 
observed as range of effective noise that realizes an accu- 
rate reconstruction of chaotic dynamics. Namely, as the 
number  of the neurons is increased, the effective noise 
range is widen considerably, and a robust reconstruction of 
chaotic dynamics is realized in a wide area of noise. As has 
been pointed out by Collins et al., 7 this is due to the advan- 
tage of  the network structure, which reliably estimates the 
strength of the input stimuli by using an ensemble averaged 
firing rate of  many neurons. In a statistical sense, it is rea- 
sonable that the estimate becomes more accurate as the 
number  of the neurons is increased. 

Effect of the network size and the 
time-constant parameter  

In this subsection, we study dependence of the network 
capability of reconstructing chaotic dynamics on the net- 
work size K and the time-constant parameter  x. By using the 
same chaotic input (Eq. 4) from the R6ssler equations (Eq. 
3), the nonlinear predictability of the chaotic dynamics re- 
constructed by the network of F H N  neurons is computed by 
changing the network size and the time-constant parameter  
within the range of (K, r) ~ [10, 200] • [0.01, 0.1]. As shown 
in Fig. 5, the prediction error is decreased not only by 
increasing the network size K, but also by decreasing the '  
t ime-constant parameter  x. The reason why the nonlinear 
predictability is improved by decreasing the time constant 

Fig.  4. N o n l i n e a r  p r e d i c t i o n  c u r v e  c o m -  0 . 7  
p u t e d  f o r  a n e t w o r k  o f  F H N  n e u r o n s .  T h e  
no i se  i n t e n s i t y  is i n c r e a s e d  f r o m  D - 
2 . 5 . 1 0  i0 to D = 5 . 1 2 . 1 0  7, a n d  the  n e t -  
w o r k  size is v a r i e d  as K - 1, 10, 100, a n d  3 . 6  
1000 
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Fig. g. Nonlinear prediction error (NPE) computed by changing the 
network size K and the time-constant parameter �9 within the range 
(K, ~) ~ [10, 2001 x [0.01, 0.11 
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Fig. 6. Number of neurons required to reconstruct chaotic dynamics 
with a prediction accuracy of NPE < 0.1. The time-constant parameter 
is ranged as 0.02 < ~ < 0.027 

pa rame te r  can be explained as follows. As  the time- 
constant  pa r ame te r  is decreased,  dynamics of the F H N  neu- 
rons become faster. Compared  with the accelerated neural  
dynamics, t empora l  change in the input  signal becomes 
relat ively slow. As  a consequence,  the neuronal  capabil i ty 
to es t imate  the s t rength of the slow-varying input  stimuli is 
improved,  and an accurate reconstruct ion of chaotic dy- 
namics is realized. 

Suppose we have a noisy reconstruct ion of chaotic dy- 
namics by the present  ne twork  model .  How can we improve 
the reconstruct ion capabil i ty? As  we have seen, one way is 
to set the t ime-constant  value small so that the tempora l  
resolut ion of a single neuron becomes  high. The o ther  way 
is to increase the ne twork  size so that  a more  rel iable esti- 
mate  of the input  stimuli is real ized by using the ensemble  
averaged firing rate  of many neurons.  F rom a physiological 
viewpoint,  it is not  realistic to control  the ne twork  capabil i ty 
by changing the t ime-constant  parameter ,  because biologi- 
cal neurons have their  own physical  p roper t ies  which are 
not  easy to adjust, a l though this is not  impossible.  21 It is 
physiological ly more  plausible to control  the network size 
in o rder  to improve  the ne twork  capabil i ty to reconstruct  
chaotic dynamics.  

In Fig. 6, number  of the neurons  required to reconstruct  
chaotic dynamics with an accuracy of NPE < 0.1 is drawn 
by changing the t ime-constant  parameter .  As  the t ime- 
constant  pa r ame te r  is increased,  the number  of the neurons  
required increases in an exponent ia l  manner .  In physiologi-  
cal model ing of robus t  sensory systems, this figure presents  
an abstract  idea  of how many neurons  are required for the 
network model .  

Application to speech 

In this section, we apply the ne twork  of F H N  neurons  
to speech signals. In this exper iment ,  we consider  the 

neural  ne twork  as a possible mode l  for the human  audi tory 
system. 

As  a sample  speech signal, normal  phona t ion  of a vowel 
/a / (mausy003.ad)  in the s tandard  Advanced  Telecommuni-  
cations Research  Inst i tute In terna t ional  ( A T R )  da ta-base  is 
exploited.  The  waveform structure of the  speech signal 

{x(t):0 < t < 200msec} (8) 

is shown in Fig. 7a. The subject  is a male speaker  who has no 
evidence of laryngeal  pathology.  The speech signal is low- 
pass-fi l tered with a cut-off frequency of  8 kHz, and digitized 
with a sampling rate  of 20kHz and with 16-bit resolution. 
The recording condit ions and the speech quali ty are good 
enough in the sense that  a natural  vocal sound can be 
reproduced  by D / A  conversion of  the speech signal. 

By using the speech signal, the input  signal for the neural  
ne twork  is set to be 

4 0  s(t) = 0.1 + 0 0 1  max,[x(t)l (9) 

so that  the speech is t rea ted  as a subthreshold  input  signal. 
The p a r a m e t e r  values of the F H N  neuron  are fixed as (D, 
W, ~) = (5.7-10 -~1, 5.10 5, 0.001). With  these pa rame te r  
values, the firing rate  of a single neuron  act ivated by a 
constant  input  of S = 0.1 becomes 98.8Hz. Accord ing  to 
Kelty, 22 the average frequency of the sensory neurons  in the 
active state in the human audi tory  system is about  100Hz. 
Hence,  this pa rame te r  setting may  well correspond to the 
si tuation of real  sensory neurons.  

Figure  7b,c show a t ime-series of the firing rate  Rz(t) 
of the ne twork  of F H N  neurons  with K = 1 0  4 and 106. 
Al though  the network of 104 neurons generates  ra ther  noisy 
dynamics,  the firing rate Rz(t) of the ne twork  of 1 0  4 n e u r o n s  

produces  a quali tat ively similar t ime-wavefo rm structure 
to the original speech signal in Fig. 7a. Figure 8 shows the 
nonl inear  predic t ion  errors computed  for the speech signals 
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Fig. 7. a Speech signal of a normal phonation of the vowel/a/, b, c 
Time-series of the average firing rate R~(t) of the network of FHN 
neurons activated by the speech signal in a. The number of the neurons 
was set as K = 104 (b) and K = 106 (c) 

reconst ructed by the F H N  neural  networks  with K e [104, 
106]. W e  can see that  as the number  of the neurons is 
increased,  an inverse of the  predic t ion  error  (1/NPE) also 
increases,  and the accuracy of the  speech reconstruct ion 
is improved.  

3 ~ ...................... ............................ -'~ .......................................................................................................... NPEI 

j j l  Clarity 

-i  i i 
. . . . . . . . . . . . . . .  , ;  . . . .  2,~ l..00~- 

Network Size: K 

Fig. 8. Simultaneous plots of the inverse of the nonlinear prediction 
error (I/NPE, dotted line) and the "clarity" measure (solid line) com- 
puted for speech signals reconstructed by the FHN neural network. 
The network size was varied from K = 104 to K = 106 

W e  also examined sound quali ty of the reconst ructed 
speech signals on the basis of a psychoacoust ic  exper iment .  
For  the psychoacoust ic  exper iment ,  a pa i red-compar ison  
test 23 was used. For  four speech signals reconstructed by the 
ne twork  with K = 2.104, 105, 5.105, and 106, "c lar i ty"  of  the 
speech sound was evalua ted  as follows. 

A m o n g  the four speech signals, pick a pair  of signals, say 
A and B, and synthesize the  sounds one by one. Subjects a re  , 
reques ted  to judge which one is c learer  than the other  after 
l istening to two signals in each pa i red-compar i son  test, The 
pa i red-compar i son  test was carr ied out  for all possible  pairs 
of the four speech signals. Using Thurs tone ' s  method,  23 the 
clarity of the four speech signals was finally evaluated.  The 
subjects were consisted of ten males and ten females,  where  
none  were experts  in psychoacoust ic  experiments .  

Figure  8 shows the clarity measures  of the four speech 
signals. As  the  number  of the neurons is increased f rom K = 
2-104 to K = 5-105, we see that  the clarity of the speech 
improves  significantly. However ,  only a little difference is 
recognized be tween  K = 5.105 and K = 5.106. This implies 
that a ne twork  of more  than 5.105 neurons is capable  of 
reconstruct ing speech signals which are clear enough to be 
perceived as a human speech signal. This result  suggests 
that  in order  to apply the stochastic resonance neural  net- 
works to audi tory systems, at least  5-105 sensory neurons 
are. required.  

We also note  that there  is a good agreement  be tween the 
inverse of the nonl inear  predic t ion  error  (1/NPE, dot ted  
line) and the clarity measure  (solid line) in Fig. 8. This 
implies the possibil i ty of using the nonl inear  predictabi l i ty  
as a measure  for quantifying the clarity and the dynamic 
characterist ics of speech signals. Recently,  there  has been 
increasing interest  in nonl inear  analysis of speech signals, 
and many researchers  have considered possible applicat ions 
of nonl inear  dynamic statistics to character ize speech sig- 
nals. 24-2v The  present  results encourage further applicat ions 



of non l inea r  statistics, such as non l inea r  predic tabi l i ty ,  for  
eva lua t ing  speech  signals. 

Conclusions and discussions 

W e  s tudied  a n e t w o r k  of  F H N  neurons  to de tec t  chaot ic  
dynamics  in weak  inpu t  st imuli .  W e  inves t iga ted  w h e t h e r  
the  g e o m e t r i c  s t ruc ture  of  chaot ic  dynamics  can be  recon-  
s t ructed in the  de l ay -coo rd ina t e  space  o f  the  ave raged  firing 
ra te  of  the neu ra l  ne twork ,  w h e r e  the  r econs t ruc t ion  accu- 
racy was e v a l u a t e d  by non l inea r  p red ic t ion  errors .  

Us ing  the  R6ss l e r  equa t ions ,  we first s tud ied  the  depen -  
dence  of  the  n e t w o r k  capabi l i ty  to r econs t ruc t  chaot ic  
dynamics  on the  noise  intensi ty.  O u r  analyses  s h o w e d  a 
s tochast ic  r e s o n a n c e  p rope r ty  thaVgives rise to an in t e rme-  
d ia te  noise  l eve l  which  eff iciently recons t ruc ts  chaot ic  
dynamics .  W e  also showed  that  a m o r e  robus t  and accura te  
r econs t ruc t ion  of  chaos  can be  rea l i zed  by increas ing  the  
n e t w o r k  size and  by dec reas ing  the  t ime-cons t an t  pa ram-  
eter .  F r o m  a phys io logica l  v iewpoin t ,  it is no t  real is t ic  to 
c h a n g e  the  t ime-cons t an t  p a r a m e t e r  in o rde r  to i m p r o v e  the  
n e t w o r k ' s  capabi l i ty  because  rea l  neu rons  h a v e  the i r  own  
physical  p roper t i es .  It  may  be  b io logica l ly  m o r e  p laus ib le  
to increase  the  n e t w o r k  size in o r d e r  to rea l ize  a robus t  
sensory  mechan i sm.  

O n  the  basis of  the  expe r imen t s  wi th  R6ss le r  equa t ions ,  
we  fu r the r  app l ied  the  n e t w o r k  of  F H N  neu rons  to recon-  
s truct  speech  signals, and cons ide r ed  the  s tochast ic  reso-  
nance  neura l  n e t w o r k  as a poss ible  m o d e l  for  h u m a n  
aud i to ry  system. By  using the  neu ra l  e l e m e n t s  wi th  a dy- 
namic  f r e q u e n c y  of  abou t  100Hz,  we have  conf i rmed  that  a 
speech  signal which  is p e r c e i v e d  to be  clear  e n o u g h  for  the  
h u m a n  ea r  can  be  r econs t ruc t ed  by using a n e t w o r k  of  m o r e  
than  5.105 neurons .  This  impl ies  a possibi l i ty  that  the  hu- 
m a n  aud i to ry  sys tem uses this type  of  noisy neura l  n e t w o r k  
for  de tec t ing  speech  signals. A s  a poss ible  eng inee r ing  
appl icat ion,  p r e sen t  resul t  also encourages  a use of  the  
s tochast ic  r e s o n a n c e  n e t w o r k  m o d e l  as a sound  ampli f ier  
device  to aid hea r ing  disabili t ies.  2a 

N o t e  that  the  p r e sen t  inves t iga t ion  is only  p re l imina ry  in 
the  sense  that  no  de ta i l ed  phys io logica l  s t ruc ture  has b e e n  
cons ide red  for  the  h u m a n  aud i to ry  system. T h e  rea l  audi-  
tory  sys tem has a m o r e  c o m p l e x  and sys temat ic  organ-  
izat ion,  such as the  spectra l  d e c o m p o s i t i o n  of  the  basi lar  
m e m b r a n e .  = Also ,  neu ra l  e l emen t s  may  no t  be  as un i fo rm  
as we  have  cons ide r ed  t h e m  to be  in the  p re sen t  study. In  
o the r  words,  ind iv idua l  neu rons  m a y  have  d i f fe ren t  fre-  
quency  ranges ,  and  the  noise  in tensi t ies  m a y  be  d i f ferent  in 
the  bra in  area.  H e n c e ,  an i m p o r t a n t  fu ture  p ro jec t  is to 
s tudy a n e t w o r k  of  n o n u n i f o r m  n e u r o n  models .  M o r e  
real ist ic  aud i to ry  mode l s  should  be  cons t ruc ted  to assess 
plausibi l i ty of  the  s tochast ic  r e s o n a n c e  neu ra l  n e t w o r k  
for  real  aud i to ry  systems.  
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