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Abstract Recently, a great deal of attention has been paid
to stochastic resonance as a new framework to understand
sensory mechanisms of biological systems. Stochastic reso-
nance explains important properties of sensory neurons
that accurately detect weak input stimuli by using a small
amount of internal noise. In particular, Collins et al. re-
ported that a network of stochastic resonance neurons gives
rise to a robust sensory function for detecting a variety of
complex input signals. In this study, we investigate ef-
fectiveness of such stochastic resonance neural networks to
chaotic input signals. Using the Rossler equations, we ana-
lyze the network’s capability to detect chaotic dynamics.
We also apply the stochastic resonance network systems to
speech signals, and examine a plausibility of the stochastic
resonance neural network as a possible model for the
human auditory system.
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Introduction

Recently, a great deal of attention has been paid to stochas-
tic resonance’ as a potential model for sensory neurons in
real biological systems.”* Stochastic resonance can eluci-
date functions of the sensory neurons in the sense that it
enables neurons to detect weak input stimuli by using a
small amount of internal noise. From this viewpoint, sto-
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chastic resonance and its sensory functions have been
studied in relation to a variety of neuron models, such as
the FitzHugh-Nagumo neuron model and the Hodgkin-
Huxley neuron model.’ Although periodic signals have
been mainly considered as the input stimuli, Collins et al.’
extended the idea to aperiodic input signals, and demon-
strated a neuronal capability to detect weak aperiodic input
stimuli. In particular, they showed that a network of sto-
chastic resonance neurons gives rise to a sensory function
which is much more robust than a single neuron in the sense
that the network does not require any careful tuning of the
optimal noise intensity.” Their results therefore imply that
the network structure might be of significant importance in
the study of sensory functions in real neural systems.

On the basis of this work,” we use a network of stochastic
resonance neurons as a sensory model to detect chaotic
input. We study how the dynamic structure of chaos is en-
coded into the firing rate of the neural network. This study
is of potential importance because chaotic dynamics have
recently been discovered in a variety of biological systems,*
and it is an important, yet unresolved, problem to consider
how the dynamic characteristics of chaos are encoded into
neuronal information processing systems. Although there
are some related works which discuss the problems of en-
coding chaotic dynamics into single-neuron models,"” " to
our knowledge, encoding chaos into neural network models
has not yet been thoroughly investigated.

By using the Réssler equations as a typical example of
deterministic chaos, we study response characteristics of a
network of stochastic resonance neurons to chaotic input
stimuli. Our main focus is on whether the geometric struc-
ture of chaotic dynamics can be encoded into a delay-
coordinate of the firing rate of a neural network. By using
the nonlinear prediction technique, accuracy of the geo-
metric encoding of chaos is evaluated. Dependence of the
accuracy of the geometric encoding on neural network
parameters such as the noise intensity, the number of neural
elements, and the time-constant parameter are also investi-
gated. As a possible application, we further apply the neural
network model to reconstruct a speech signal of a normal
phonation of vowel /a/, and examine plausibility of using the
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neural network as a real physiological model for the human
auditory system.

This paper is organized as follows. In the next section we
introduce a network of noisy FitzHugh-Nagumo neurons as
a stochastic resonance network model. We then study the
response characteristics of the neural network to chaotic
input generated from the Rossler equations, and investigate
the network’s capability to reconstruct chaotic dynamics by
varying the noise intensity, the network size, and the time-
constant parameter. In the following section we apply the
network model to speech signals, and study how many neu-
rons are required to reconstruct speech signals which are
clear enough to be perceived by the human ear. The final
section is devoted to our conclusions and discussions.

A network of FitzZHugh-Nagumo neurons

Let us consider a network of FitzHugh-Nagumo (FHN)
neurons™" described below (see also Fig. 1).

ey, = —v,(v; — 05)(vi — 1) — w, + S(¢) + E(r) (1)

2)

The variables v, and w; stand for the dynamic states of the i-
th neuron, &, represents independent Gaussian white noise
satisfying E[E(#)] = 0 and E[E(N)E/(s)] = 2Dd(t - 5)d(i — j),
(E[]: ensemble average), K represents a number of neurons
in the network, and e and € represent system parameters of
the FHN model, which are fixed as (e, €) = (0.15, 0.005).
The time-constant parameter 1 that controls the time-scale
of the neural dynamics is set to be © = 0.01. We consider
that the neurons of the network are uniform and commonly
receive a weak subthreshold input S(f). By subthreshold, we
mean that no neuron fires without any noise. In the follow-
ing numerical experiments, the dynamics of the stochastic
differential Eqs. 1 and 2 are simulated by integrating the

W =V, - w; — e
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Fig. 1. Schematic illustration of a network of FitzHugh-Nagumo
(FHN) neurons with Gaussian white noise. Each neuron received a
same input stimuli S(r). The network activity is measured by the firing
rate of the summing unit Ry(¢) that computes an averaged firing rate of
all the neural elements

S()

equations with a first-order approximate algorithm' with an
integration step of Ar = 5-107°.

When the i-th neuron potential v{f) crosses a threshold
value of v,, = 0.7, we say that the i-th neuron fires. Then the
firing rate R(f) of the i-th neuron is computed by counting
the number of firing times within a duration of W. The
activity of the FHN neural network is finally measured by
the firing rate of the summing unit Ry(r) (Fig. 1) that sums
and averages the firing rates of all the neural elements as

1 <ok
RE(I) = Ezilei(t)'

Figure 2 shows response characteristics of a single neu-
ron (K = 1) to the time-constant input stimuli S. The firing
rate R over a long-term duration W = 500 is computed by
increasing the input stimuli S, where the noise intensity is
set as D = 0 and 107°. In the case of no noise (D = 0), the
FHN model has a stable equilibrium point which corre-
sponds to the resting state, and which never fires for a small
input signal S. Hence, the firing rate is zero until § <
0.11231. As the input signal is increased to over § = 0.11231,
a limit-cycle attractor is generated via a Hopf bifurcation of
the equilibrium point, and the neuron exhibits oscillatory
dynamics. The firing rate jumps up at the bifurcation point,
and then monotonically increases as the input stimuli § is
further increased. In contrast to the noise-free case, when
there is noise of D = 107% the neuron fires also in the
subthreshold regime (S < 0.11231), and the firing rate
monotonically and continuously increases as the subthresh-
old input S is increased. This corresponds to the stochastic
resonance regime, where the low level noise enables a
neuron to detect a weak input stimuli. In order to study
a function of this stochastic resonance noise, in the fol-
lowing sections, we consider only the subthreshold input
signals.
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Fig. 2. Response characteristics of a single neuron to a time-constant
input S. The firing rate R over a Jong-term duration W = 500 is com-
puted by increasing the input stimuli from § = 0 to § = 0.2. The noise
intensity is set to be D = 0 and 107



Reconstructing chaotic dynamics
Reconstructing the Rossler attractor

In this section, we study response characteristics of the net-
work of FHN neurons activated by chaotic input stimuli.
This work presents a different viewpoint from some related
works.”" Castro and Sauer” studied the response character-
istics of a single noisy FHN model to chaotic input, and
reported that stochastic resonance phenomena had been
observed. Collins et al.,*” on the other hand, presented a
theory of a network of stochastic resonance neurons, and
showed the advantage of a network model that realizes a
robust detection of weak input stimuli without any careful
tuning of the noise intensity. In this study, we focus on
chaotic input signals rather than general aperiodic signals so
that we can apply techniques of nonlinear deterministic
prediction to evaluate the response characteristics of the
neural network.
By using the x(¢)-variable of the Rossler equations™®

xX=-y—z
y=x+ay (3)
z'=bx+z(x-c)

we study how the dynamic structure of the chaotic input can
be encoded into the firing rate of the network of FHN
neurons. Parameter values of the Rdssler equations are
fixed as (a, b, ¢) = (0.36, 0.4, 4.5), and the input signal is set
to be

_ x(1)
S(t) = 0.05 + 0.06 —ywp 4)

Figures 3b,c show the dynamic structures of the chaotic
input signal reconstructed by using a delay coordinate of the
mean firing rate R;(¢) of the FHN network as

{Re(t), Re(t = 0),.... Ry(t = (d — 1)0)} 5)

where d and 0 stand for the reconstruction dimension and
the time lag, respectively.””"® Compared with the original
chaotic dynamics in Fig. 3a, the dynamic characteristics of
the Rossler attractor with “stretching” and “folding” are
well reproduced in Fig. 3b,c. Although the reconstructed
dynamics by a network of 20 neurons looks rather noisy in
Fig. 3b, a smoother nonlincar dynamics can be recon-
structed by a network of 1000 neurons, as in Fig. 3c. This is
due to the effect of the network structure, which realizes a
reliable and accurate detection of a weak input stimuli by
using an ensemble average of the firing rates of many neural
elements.

Nonlinear prediction

In this subsection, we quantify the accuracy of reconstruct-
ing chaotic dynamics by the stochastic resonance neural
networks. Although Collins et al.” used the correlation coef-
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Fig. 3. a Three-dimensional delay-coordinate reconstruction

{x(®), x (r — 0.125), x(r — 0.25)} of the Réssler attractor. b, ¢ Three-
dimensional delay-coordinate {Ry(f), Ry(t — 0.125), Ry(¢ — 0.25)} of the
mean firing rate Ry(r) of the network of FHN neurons with K = 20 and
1000, respectively

ficient to measure the accuracy of the signal detection,
we exploit the nonlinear prediction error (NPE)”"* to
evaluate the accuracy of the geometric reconstruction of
chaotic dynamics.

First, we compute a time-series of the average firing rate
of the neural network

{u(n) = Re(nA):n = 0,1,...,N} (6)
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with a sampling rate of A = 0.1. Then the time-series {u(n)}
is divided into first and second halves. From the first-half
data, a nonlinear predictor f:R* — R“, which approximates
the data dynamics as u(n + 1) = f (u(n)), is constructed
using the delay coordinate u(n) = {u(n), u{n ~ 0),..., u(n
— (d — 1)0)}. For the nonlinear predictor f, Sugihara-May’s
local linear predictor” is used. For the latter-half data, a
nonlinear prediction is carried out. The forecasting proce-
dure is that for a give initial state u(n), the p-step further
state u(n + p) is predicted to be @i(n + p) = f7(u(n)) using
the p-iterate of the predictor f. The NPE is finally computed
as the normalized root-mean-square error

2 g —uln :
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In our analysis, the reconstruction dimension d, the time
lag0, the prediction step p, and the number of the data N
are set as {d, 0, p, N) = (3, 15, 2, 5000).

Figure 4 shows the nonlinear prediction curve computed
for the FHN network with an increasing noise intensity
from D = 2.5-107" t0 5.12-107". The four prediction curves
correspond to networks with different sizes of K (i.e.,
1, 10, 100, and 1000). First, we focus on a single neuron’s
response curve (K = 1). In a small noise regime, a very large
prediction error is initially observed. As the noise intensity
is slightly increased, the prediction error is significantly de-
creased, and the response curve produces a single sharp
minimum at D ~ 10~%. As the noise intensity is further
increased, the prediction error is eventually increased. This
1s a typical characteristic of stochastic resonance, which is

™)

known to exhibit a small effective noise for detecting weak
input signals.

Next, let use see the the resonance characteristics of the
network of FHN neurons (K = 10, 100, 1000). We recognize
a basically similar prediction curve to that of the single
neuron model (K = 1) in Fig. 4. A significant difference is
observed as range of effective noise that realizes an accu-
rate reconstruction of chaotic dynamics. Namely, as the
number of the neurons is increased, the effective noise
range is widen considerably, and a robust reconstruction of
chaotic dynamics is realized in a wide area of noise. As has
been pointed out by Collins et al.,” this is due to the advan-
tage of the network structure, which reliably estimates the
strength of the input stimuli by using an ensemble averaged
firing rate of many neurons. In a statistical sense, it is rea-
sonable that the estimate becomes more accurate as the
number of the neurons is increased.

Effect of the network size and the
time-constant parameter

In this subsection, we study dependence of the network
capability of reconstructing chaotic dynamics on the net-
work size K and the time-constant parameter t. By using the
same chaotic input (Eq. 4) from the Rdssler equations (Eq.
3), the nonlinear predictability of the chaotic dynamics re-
constructed by the network of FHN neurons is computed by
changing the network size and the time-constant parameter
within the range of (K, ) € [10,200] x [0.01, 0.1]. As shown
in Fig. 5, the prediction error is decreased not only by
increasing the network size K, but also by decreasing the
time-constant parameter t. The reason why the nonlinear
predictability is improved by decreasing the time constant

Fig. 4. Nonlinear prediction curve com- 0.7 -1 T
puted for a network of FHN neurons. The
noise intensity is increased from D =
2.5-107° to D = 5.12-1077, and the net-
work size is varied as K = 1, 10, 100, and
1000
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Fig. 5. Nonlinear prediction error (NPE) computed by changing the
network size K and the time-constant parameter T within the range
(K, 7) e [10, 200] x [0.01, 0.1]

parameter can be explained as follows. As the time-
constant parameter is decreased, dynamics of the FHN neu-
rons become faster. Compared with the accelerated neural
dynamics, temporal change in the input signal becomes
relatively slow. As a consequence, the neuronal capability
to estimate the strength of the slow-varying input stimuli is
improved, and an accurate reconstruction of chaotic dy-
namics is realized.

Suppose we have a noisy reconstruction of chaotic dy-
namics by the present network model. How can we improve
the reconstruction capability? As we have seen, one way is
to set the time-constant value small so that the temporal
resolution of a single neuron becomes high. The other way
is to increase the network size so that a more reliable esti-
mate of the input stimuli is realized by using the ensemble
averaged firing rate of many neurons. From a physiological
viewpoint, it is not realistic to control the network capability
by changing the time-constant parameter, because biologi-
cal neurons have their own physical properties which are
not easy to adjust, although this is not impossible.”! It is
physiologically more plausible to control the network size
in order to improve the network capability to reconstruct
chaotic dynamics.

In Fig. 6, number of the neurons required to reconstruct
chaotic dynamics with an accuracy of NPE < (.1 is drawn
by changing the time-constant parameter. As the time-
constant parameter is increased, the number of the neurons
required increases in an exponential manner. In physiologi-
cal modeling of robust sensory systems, this figure presents
an abstract idea of how many neurons are required for the
network model.

Application to speech

In this section, we apply the network of FHN neurons
to speech signals. In this experiment, we consider the
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Fig. 6. Number of neurons required to reconstruct chaotic dynamics
with a prediction accuracy of NPE < 0.1. The time-constant parameter
is ranged as 0.02 < © < 0.027

neural network as a possible model for the human auditory
system.

As a sample speech signal, normal phonation of a vowel
/a/ (mausy003.ad) in the standard Advanced Telecommuni-
cations Research Institute International (ATR) data-base is
exploited. The waveform structure of the speech signal

{¥(r):0 < £ < 200msec} (8)

is shown in Fig. 7a. The subject is a male speaker who has no
evidence of laryngeal pathology. The speech signal is low-
pass-filtered with a cut-off frequency of 8kHz, and digitized
with a sampling rate of 20kHz and with 16-bit resolution.
The recording conditions and the speech quality are good
enough in the sense that a natural vocal sound can be
reproduced by D/A conversion of the speech signal.

By using the speech signal, the input signal for the neural
network is set to be

S@:01+&m;£%6[ 9)

so that the speech is treated as a subthreshold input signal.
The parameter values of the FHN neuron are fixed as (D,
W, t) = (5.7-107", 5-107°, 0.001). With these parameter
values, the firing rate of a single neuron activated by a
constant input of § = 0.1 becomes 98.8Hz. According to
Kelly,” the average frequency of the sensory neurons in the
active state in the human auditory system is about 100Hz.
Hence, this parameter setting may well correspond to the
situation of real sensory neurons.

Figure 7b,c show a time-series of the firing rate Ry(f)
of the network of FHN neurons with K = 10" and 10°,
Although the network of 10* neurons generates rather noisy
dynamics, the firing rate Ry(¢) of the network of 10* neurons
produces a qualitatively similar time-waveform structure
to the original speech signal in Fig. 7a. Figure 8 shows the
nonlinear prediction errors computed for the speech signals
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Fig. 7. a Speech signal of a normal phonation of the vowel /a/. b, ¢
Time-series of the average firing rate Ry(f) of the network of FHN
neurons activated by the speech signal in a. The number of the neurons
was set as K = 10" (b) and K = 10° (¢)

reconstructed by the FHN neural networks with K e [10%,
10°]. We can see that as the number of the neurons is
increased, an inverse of the prediction error (1/NPE) also
increases, and the accuracy of the speech reconstruction
is improved.
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Fig. 8. Simultaneous plots of the inverse of the nonlinear prediction
error (1/NPE, dotted line) and the “clarity” measure (solid line) com-
puted for speech signals reconstructed by the FHN neural network.
The network size was varied from K = 10" to K = 10°

We also examined sound quality of the reconstructed
speech signals on the basis of a psychoacoustic experiment.
For the psychoacoustic experiment, a paired-comparison
test” was used. For four speech signals reconstructed by the
network with K = 2-10", 10°, 5-10°, and 10°, “clarity”’ of the
speech sound was evaluated as follows.

Among the four speech signals, pick a pair of signals, say
A and B, and synthesize the sounds one by one. Subjects are .
requested to judge which one is clearer than the other after
listening to two signals in each paired-comparison test. The
paired-comparison test was carried out for all possible pairs
of the four speech signals. Using Thurstone’s method,” the
clarity of the four speech signals was finally evaluated. The
subjects were consisted of ten males and ten females, where
none were experts in psychoacoustic experiments.

Figure 8 shows the clarity measures of the four speech
signals. As the number of the neurons is increased from K =
2-10* to K = 5-10°, we see that the clarity of the speech
improves significantly. However, only a little difference is
recognized between K = 5-10° and K = 5-10° This implies
that a network of more than 5-10° neurons is capable of
reconstructing speech signals which are clear enough to be
perceived as a human speech signal. This result suggests
that in order to apply the stochastic resonance neural net-
works to auditory systerns, at least 5-10° sensory neurons
are, required.

We also note that there is a good agreement between the
inverse of the nonlinear prediction error (1/NPE, dotted
line) and the clarity measure (solid line) in Fig. 8. This
implies the possibility of using the nonlinear predictability
as a measure for quantifying the clarity and the dynamic
characteristics of speech signals. Recently, there has been
increasing interest in nonlinear analysis of speech signals,
and many researchers have considered possible applications
of nonlinear dynamic statistics to characterize speech sig-
nals. > The present results encourage further applications



of nonlinear statistics, such as nonlinear predictability, for
evaluating speech signals.

Conclusions and discussions

We studied a network of FHN neurons to detect chaotic
dynamics in weak input stimuli. We investigated whether
the geometric structure of chaotic dynamics can be recon-
structed in the delay-coordinate space of the averaged firing
rate of the neural network, where the reconstruction accu-
racy was evaluated by nonlinear prediction errors.

Using the Rossler equations, we first studied the depen-
dence of the network capability to reconstruct chaotic
dynamics on the noise intensity. Our analyses showed a
stochastic resonance property that-gives rise to an interme-
diate noise level which efficiently reconstructs chaotic
dynamics. We also showed that a more robust and accurate
reconstruction of chaos can be realized by increasing the
network size and by decreasing the time-constant param-
eter. From a physiological viewpoint, it is not realistic to
change the time-constant parameter in order to improve the
network’s capability because real neurons have their own
physical properties. It may be biologically more plausible
to increase the network size in order to realize a robust
sensory mechanism.

On the basis of the experiments with Rossler equations,
we further applied the network of FHN neurons to recon-
struct speech signals, and considered the stochastic reso-
nance neural network as a possible model for human
auditory system. By using the neural elements with a dy-
namic frequency of about 100 Hz, we have confirmed that a
speech signal which is perceived to be clear enough for the
human ear can be reconstructed by using a network of more
than 5-10° neurons. This implies a possibility that the hu-
man auditory system uses this type of noisy neural network
for detecting speech signals. As a possible engineering
application, present result also encourages a use of the
stochastic resonance network model as a sound amplifier
device to aid hearing disabilities.”

Note that the present investigation is only preliminary in
the sense that no detailed physiological structure has been
considered for the human auditory system. The real audi-
tory system has a more complex and systematic organ-
ization, such as the spectral decomposition of the basilar
membrane.” Also, neural elements may not be as uniform
as we have considered them to be in the present study. In
other words, individual neurons may have different fre-
quency ranges, and the noise intensities may be different in
the brain area. Hence, an important future project is to
study a network of nonuniform neuron models. More
realistic auditory models should be constructed to assess
plausibility of the stochastic resonance neural network
for real auditory systems.
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