How to control Universal Robot by using ROS2

Version: 2.0, 2021/06/24

Author: Qiu zhe

# PREFACE

This introduction aims to provide a tutorial about how to control the real Universal Robot by using the Robot Operating System 2 (ROS2). The introduction is compatible across the entire line of UR robots -- from 3 kg to 16 kg payload and includes both the CB3 and the E-series. Especially, a ur\_5e robot is used for explanation.

# Content

## 1. Preliminaries

1.1 ROS distribution

1.2 Ubuntu system

## 2. Introduction

- 2.1 Download and build ROS 2 packages
- 2.2 Hardware setup: setting a ur\_5e robot
  - 2.2.1 Preparation
  - 2.2.2 Install an URCap on an e-Series robot

## 3. Examples

- **3.1 Preparation** 
  - 3.1.1 Set IP address of the robot
  - 3.1.2 Set IP address of the control PC
- 3.2 Test joint trajectory controller
- 3.3 Test scaled\_joint\_trajectory\_controller
- 3.4 Test MoveIt plugin
- 3.5 Modified ROS 2 package of scaled-/joint trajectory controller

# 1. Preliminaries

## 1.1 ROS 2 distribution

ROS 2 Foxy is highly recommended.



(ROS 2 Foxy Fitzroy, released June 5th, 2020, supported until May 2023)

Installation: https://docs.ros.org/en/foxy/Installation/Ubuntu-Development-Setup.html

### 1.2 Ubuntu system

To match ROS 2 Foxy distribution, Ubuntu 20.04 is required.

Installation: https://ubuntu.com/download/desktop

#### 2. Introduction

This introduction is based on the official universal robot ROS 2 driver: https://github.com/UniversalRobots/Universal Robots\_ROS2\_Driver

#### 2.1 Download and build ROS 2 packages

Follow the steps below to build the required ROS 2 packages:

```
Step 1:
# source global ROS 2
$ gedit ~/.bashrc
At the last line, add "source ~/ros2 foxy/install/local setup.bash"
$ source ~/.bashrc
Step 2:
# create a new ROS 2 workspace
$ export COLCON_WS=~/workspace/ros_ws_foxy_ur_driver
$ mkdir -p $COLCON WS/src
Step 3:
# Pull relevant packages, install dependencies, compile, and source the
workspace
$ cd $COLCON WS
$ git clone
https://github.com/UniversalRobots/Universal Robots ROS2 Driver.git
src/Universal_Robots_ROS2_Driver
$ vcs import src --skip-existing --input
src/Universal_Robots_ROS2_Driver/Universal_Robots_ROS2_Driver.repos
$ rosdep install --ignore-src --from-paths src -y -r
$ colcon build --cmake-args -DCMAKE BUILD TYPE=Release
$ source install/setup.bash
Step 4:
# To use MoveIt, some additional packages should be added into workspace
$ cd $COLCON WS
$ vcs import src --skip-existing --input
src/Universal_Robots_ROS2_Driver/MoveIt_Support.repos
$ vcs import src --skip-existing --input src/moveit2/moveit2.repos
$ rosdep install --ignore-src --from-paths src -y -r
$ colcon build --cmake-args -DCMAKE_BUILD_TYPE=Release
$ source install/setup.bash
```

### 2.2 Hardware setup: setting a ur\_5e robot

#### 2.2.1 Preparation

To enable external control of the UR robot from a control PC, you need to install the external control-1.0.5.urcap which can be found inside the resources folder of this driver:

# (ros\_ws\_foxy\_ur\_driver→src→Universal\_Robots\_ROS2\_Driver→ur\_r obot\_driver→resources)

or download the latest from Universal\_Robots\_ExternalControl\_URCap:

https://github.com/UniversalRobots/Universal\_Robots\_ExternalControl\_URCap/relea ses

Note: For installing this URCap, a minimal PolyScope version 5.1 (for e-Series) is necessary.

### 2.2.2 Install an URCap on an e-Series robot

For installing the necessary URCap and creating a program, please see the individual tutorial on how to setup a CB3 robot or how to setup an e-Series robot

To install it you first have to copy it to the robot's programs folder which can be done using a USB stick.

## Step 1:

On the welcome screen, click on the hamburger menu in the top-right corner and select **Settings** to enter the robot's setup. Select **System** and then **URCaps** to enter the URCaps installation screen.

### Step 2:

Click the little plus sign at the bottom to open the file selector. You should see all URCap files stored inside the robot's programs folder. Select and open the externalcontrol-1.0.5.urcap file. Your URCaps view should now show the External Control in the list of active URCaps and a notification to restart the robot.

### Step 3:

After the reboot you should find the External Control in URCaps tag inside Installation.

### Step 4:

You should setup the IP address of the external PC which will be running the ROS 2 driver. Note that the robot and the external PC have to be in the same network, ideally in a direct connection with each other to minimize network disturbances. The custom port should be left untouched for now.

### Step 5:

To use the new URCaps, create a new program and insert the External Control program node into the program tree.

If you click on the **command** tab again, you'll see the settings entered inside the **Installation**. Check that they are correct, and then save the program. Your robot is now ready to be used together with this driver.

# 3. Examples

#### **3.1 Preparation**

First, the physical connection between the robot and the control PC should be established, e.g., connect the robot and the PC via a net cable.

#### **3.1.1 Set IP address of the robot**

The IP address of the ur\_5e robot is set as: 192.168.20.35.

|                   |                            | Settings |   |               |  |
|-------------------|----------------------------|----------|---|---------------|--|
| > Preferences     | Network                    |          |   |               |  |
| > Password        | Select your network method |          |   |               |  |
| V System          | O DHCP                     |          |   |               |  |
| Update            | Static Address             |          |   |               |  |
| Network           | O Disabled network         |          |   |               |  |
| URCaps            | -                          |          |   |               |  |
|                   | Network is connected       |          |   |               |  |
| Remote<br>Control | Network detailed settings: |          |   |               |  |
|                   | IP address                 |          |   | 192.168.20.35 |  |
|                   | Subnet mask:               |          |   | 255.255.252.0 |  |
|                   | Default gateway:           |          |   | 0.0.0.0       |  |
|                   | Preferred DNS server:      |          | Г | 0.0.0.0       |  |
|                   | Alternative DNS server:    |          |   | 0.0.0.0       |  |
|                   |                            |          |   |               |  |
|                   |                            |          |   | Apply         |  |
| Exit              |                            |          |   |               |  |

## 3.1.2 Set IP address of the control PC

First, configure the IP address of the control PC, which is set as: 192.168.20.36.

| Q Settings            |                          |                                    | Network           |              |
|-----------------------|--------------------------|------------------------------------|-------------------|--------------|
|                       |                          |                                    |                   |              |
| Bluetooth             | PCIE                     | thernet                            |                   | +            |
| Background            | Con                      | inected - 1000 Mb/s                |                   |              |
| P Appearance          | Cancel                   | Wired                              | Apply             | +            |
| A Notifications       | Details Identity         | IPv4 IPv6 Sec                      | urity             |              |
| Q Search              | IPv4 Method              | Automatic (DHCP)                   | C Link-Local Only |              |
| <b>H</b> Applications |                          | Manual<br>Shared to other computer | O Disable         | +            |
| Privacy               | Addresses                |                                    |                   |              |
| Online Accounts       | Address                  | Netmask                            | Gateway           | Difference - |
| ≪° Sharing            | 192.168.20.36            | 255.255.252.0                      | <b>D</b>          | Off O        |
| ♫ Sound               |                          |                                    |                   |              |
| Power                 | DNS                      |                                    | Automatic         |              |
|                       | 0.0.0.0                  |                                    |                   |              |
| Displays              | Separate IP addresses wi | th commas                          |                   |              |

Second, update the information of External Control in URCaps in Installation.



As shown in the above figure, configure the Host IP and Host name.

#### **3.2** Test joint trajectory controller

A ur\_5e robot is controlled via joint\_trajectory\_controller by using a PC (ROS 2 Foxy with Ubuntu 20.04).

The following steps are recommended:

Step 1:

Power on the ur\_5e robot, and confirm the connection between the robot and the PC. The IP address of the ur\_5e robot is set as: 192.168.20.35. The IP address of the PC is set as: 192.168.20.36.

Open Terminal 1: \$ ping 192.168.20.35

| PING 192.168.20.35<br>64 bytes from 192.1<br>64 bytes from 192.1<br>64 bytes from 192.1  | qiuzhe@qiuzhe-GE: ~<br>5 ping 192.168.20.35<br>(192.168.20.35) 56(84) bytes of data.<br>168.20.35: tcmp_seq=1 ttl=64 ttme=0.429<br>(68.20.35: tcmp_seq=2 ttl=64 ttme=0.229                                                                             | Q =                                    |  | ( |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|---|
| PING 192.168.20.35<br>64 bytes from 192.1<br>64 bytes from 192.1<br>64 bytes from 192.1  | (192.168.20.35) 56(84) bytes of data.<br>168.20.35: icmp_seq=1 ttl=64 time=0.468                                                                                                                                                                       |                                        |  |   |
| 64 bytes from 192.1<br>64 bytes from 192.1<br>64 bytes from 192.1<br>64 bytes from 192.1 | 2007.20.33; tong.arq3 ttl.dq (tree.224<br>662.20.35; tong.arq4 ttl.dq (tree.224<br>662.20.35; tong.arq4 ttl.dq (tree.224<br>662.20.35; tong.arq4 ttl.dq (tree.224<br>662.20.35; tong.arq4 (ttl.dq (tree.224<br>2007.2007.2007.2007.2007.2007.2007.2007 | MS<br>MS<br>MS<br>MS<br>MS<br>MS<br>MS |  |   |

We can see the robot and the PC are successfully connected.

Step 2:

Set the robot control mode to the local control mode by using the teach-pendant.



As shown in the above figure, the local control mode has already set.

Step 3: Start the robot.

| Robot Status   |                      |                             | Initialize      |                    |                         |  |
|----------------|----------------------|-----------------------------|-----------------|--------------------|-------------------------|--|
|                | Power                | Booting<br>Complete         | Robot<br>Active | Brakes<br>Released | Robot in<br>Normal Mode |  |
|                |                      | • START                     | Г               |                    | OFF                     |  |
| Payload        | emporarily overwrite | ,<br>the installation Paylo | Robot           |                    | IJ                      |  |
| Active Payload | Install              | ation Payload<br>) kg       |                 |                    | <b>L</b>                |  |
|                |                      |                             |                 |                    |                         |  |

As shown in the above figure, the robot has already started.

Step 4:

Start the robot driver. Remember source the bash file first.

Open Terminal 2:

- \$ export COLCON\_WS=~/workspace/ros\_ws\_foxy\_ur\_driver
- \$ cd \$COLCON\_WS
- \$ source install/setup.bash



\$ ros2 launch ur\_bringup ur\_control.launch.py ur\_type:=ur5e robot\_ip:=192.168.20.35 launch\_rviz:=true



As shown in the above figure, the driver is successfully started.

# Step 5:

Load Robot Program: External Control, and start it.



As shown in the above figure, the program is already started.

Step 6:

Start the Joint Trajectory Controller. Remember source the bash file first. Open Terminal 3:

\$ export COLCON\_WS=~/workspace/ros\_ws\_foxy\_ur\_driver

- \$ cd \$COLCON\_WS
- \$ source install/setup.bash
- \$ ros2 launch ur\_bringup test\_joint\_trajectory\_controller.launch.py



After a few seconds, the robot starts to move.

#### 3.3 Test scaled\_joint\_trajectory\_controller

A ur\_5e robot is controlled via scaled\_joint\_trajectory\_controller by using a PC (ROS 2 Foxy with Ubuntu 20.04).

The following steps are recommended:

Step 1: Same as Step 1 of Example 3.2

Step 2: Same as Step 2 of Example 3.2

Step 3: Same as Step 3 of Example 3.2

Step 4:

Start the robot driver. Remember source the bash file first.

Open Terminal 2:

\$ export COLCON\_WS=~/workspace/ros\_ws\_foxy\_ur\_driver

\$ cd \$COLCON\_WS

\$ source install/setup.bash

\$ ros2 launch ur\_bringup ur\_control.launch.py ur\_type:=ur5e robot\_ip:=192.168.20.35 robot\_controller:=scaled\_joint\_trajectory\_controller launch\_rviz:=true



As shown in the above figure, the driver is already started.

Step 5:

Load Robot Program: External Control, and start it. Same as Step 5 of Example 3.2

Step 6:

Start the Scaled Joint Trajectory Controller. Remember source the bash file first. Open Terminal 3:

- \$ export COLCON\_WS=~/workspace/ros\_ws\_foxy\_ur\_driver
- \$ cd \$COLCON\_WS
- \$ source install/setup.bash

\$ ros2 launch ur\_bringup test\_scaled\_joint\_trajectory\_controller.launch.py



After a few seconds, the robot starts to move.

#### 3.4 Test MoveIt plugin

A ur\_5e robot is controlled via MoveIt by using a PC (ROS 2 Foxy with Ubuntu 20.04).

The following steps are recommended:

Step 1: Same as Step 1 of Example 3.2

Step 2: Same as Step 2 of Example 3.2

Step 3: Same as Step 3 of Example 3.2

Step 4:

Start the robot driver. Remember source the bash file first.

Open Terminal 2:

\$ export COLCON\_WS=~/workspace/ros\_ws\_foxy\_ur\_driver

\$ cd \$COLCON\_WS

\$ source install/setup.bash

\$ ros2 launch ur\_bringup ur\_control.launch.py ur\_type:=ur5e

robot\_ip:=192.168.20.35 launch\_rviz:=false

| 🕫 🛛 qiuzhe@qiuzhe-GE: ~/workspace/ros_ws_foxy_ur_driver 🔍 📃 🗕 🗆 😣                                                                                                                                                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <pre>[ros2_control_node-1] [INFO] [1621520160.861255717] [controller_manager]: Config<br/>uring controller 'speed scaling state broadcaster'</pre>                                                                         |  |
| <pre>[ros2_control_node-1] [INFO] [1621520160.861322247] [speed_scaling_state_broadca<br/>ster]: Publisher rate set to : 100.0 Hz</pre>                                                                                    |  |
| <pre>[INFO] [spawner.py-3]: process has finished cleanly [pid 11472]<br/>[spawner.py-5] [INFO] [1621520160.866060500] [spawner_speed_scaling_state_broadc</pre>                                                            |  |
| <pre>aster]: Configured and started speed_scaling_state_broadcaster [ros2_control_node-1] [INF0] [1621520160.866946614] [controller_manager]: Loadin g controller 'joint_trajectory_controller'</pre>                      |  |
| [INFO] [spawner_py-4]: process has finished cleanly [pid 11474]<br>[spawner_py-7] [INFO] [1621520160.870214226] [spawner_joint_trajectory_controlle                                                                        |  |
| <pre>[spamme1.py-1] [INF0] [1021520100.37014220] [spamme1_j0tnt_trajectory_controtte<br/>r]: Loaded joint_trajectory_controller<br/>[ros2_control_node-1] [INF0] [1621520160.870980825] [controller_manager]: Config</pre> |  |
| <pre>[ros2_control_node-1] [INF0] [1621520160.871382973] [joint_trajectory_controller'</pre>                                                                                                                               |  |
| ]: Controller state will be published at 100.000000Hz.<br>[ros2 control_node-1] [INFO] [1621520160.871705538] [joint trajectory controller                                                                                 |  |
| ]: Action status changes will be monitored at 20.000000Hz.<br>[INFO] [spawner.py-6]: process has finished cleanly [pid 11478]                                                                                              |  |
| [spawner.py-7] [INFO] [1621520160.878070644] [spawner_joint_trajectory_controlle<br>r]: Configured and started joint_trajectory_controller                                                                                 |  |
| [INFO] [spawner.py-5]: process has finished cleanly [pid 11476]<br>[INFO] [spawner.py-7]: process has finished cleanly [pid 11480]                                                                                         |  |
|                                                                                                                                                                                                                            |  |

As shown in the above figure, the driver is successfully started.

Step 5:

Load Robot Program: External Control, and start it. Same as Step 5 of Example 3.2

Step 6:

Start the MoveIt example. Remember source the bash file first. Open Terminal 3:

\$ export COLCON\_WS=~/workspace/ros\_ws\_foxy\_ur\_driver

- \$ cd \$COLCON\_WS
- \$ source install/setup.bash

\$ ros2 launch ur\_bringup ur\_moveit.launch.py ur\_type:=ur5e robot\_ip:=192.168.20.35 launch\_rviz:=true



As shown in the above figure, now you can use the MoveIt Plugin in rviz2 to plan and execute trajectories with the robot.

#### 3.5 Modified ROS 2 package of scaled-/joint trajectory controller

A ur\_5e robot is controlled via modified joint\_trajectory\_controller by using a PC (ROS 2 Foxy with Ubuntu 20.04). Similarly, the same setting can be applied to the scaled\_joint\_trajectory\_controller for controlling the ur\_5e robot.

#### The following steps are recommended:

```
Step 1:
```

# Set desired position of each joint

#### Open Terminal 1:

# Find the controller config file.

\$ cd ~ /workspace/ros\_ws\_foxy\_ur\_driver/src/Universal\_Robots\_ROS2\_Driver/ ur\_bringup/config

# Modify the controller config file: change desired position of each joint.

\$ vim test\_goal\_publishers\_config.yaml

Six values of "pos" mean the desired position associated with six joints. In addition, "pos1-4" mean four desired joint trajectories for the ur\_5e robot.



#### Step2:

# The package should be recompiled after modification

In Terminal 1:

```
$ cd ~ /workspace/ros_ws_foxy_ur_driver
```

# Only compile the modified package to save time

\$ colcon build -packages-select ur\_bringup



Then, refer to Step1 to Step6 of Sec 3.2 to control the ur\_5e robot. The performances of the joint trajectory controller are shown as follows.



