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Abstract

In this article, we obtain the weak and strong rates of convergence of time integrals of non-smooth
functions of a one dimensional diffusion process. We propose the use the exact simulation scheme to
simulate the process at discretization points. In particular, we also present the rates of convergence for
the weak and strong error of approximation for the local time of a one dimensional diffusion process as
an application of our method.
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1 Introduction

Let X = (X¢)¢ejo,7) be a 1-dimensional diffusion process defined on a filtered probability space (22, , (F¢)¢>0, P)
as the solution of the stochastic differential equation (sde)

dX, = b(X,)dt + o(X,)dW,, Xo=1z0€R, t€0,T), (1.1)

where W is a one dimensional standard Brownian motion and the coefficients b, 0 : R — R are bounded with
bounded derivatives.

The problem of estimating E[f(F(X))], where X = (Xt)iepo,1), f: R = R and F : C[0,T] — R with
C[0,T] is the set of continuous real valued functions over the time interval [0,T7], is of interest in the recent
literature of weak approximations. For example, the cases of F(X) = fOT h(Xs)ds where h is in general a
measurable bounded function and F(X) = max,<r X, are two typical examples. In both cases, one observes
that the functional F is not regular and therefore the analysis of the error can not be carried out with classical
techniques such as the ones exposed in [13] (see also [1, 16] for other related cases and techniques).

To the best of our knowledge, most of the previous results that evaluate a weak/strong rate of convergence
in this setting assume that the functional F' is Lipschitz or smooth with respect to supremum norm.

In this paper we study the rate of convergence of a numerical scheme to estimate the expectation of some
path dependent irregular functionals of X. To be more precise, we want to estimate

10 =5[s( [ nexas))

where f is a smooth function with polynomial growth at infinity and h is a function which is not necessarily
smooth. For example, this is the case of h(x) = I{;c4y where A C R or h(z) = do(z), the Dirac delta
distribution function at 0.

We remark that in our case, the functional F' : X +— fOT I x, cayds is not continuous in the sup-norm

topology of C[0,T]. It is worth to note here that the path dependent random variable fOT I x, cayds is usually
called the occupation time of X in A. In the case that h(z) = do(x) then F stands for the local time of X
up to time 7" at 0.
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Estimating how much time a diffusion spends on a set is an important problem in various applications.
This is a classical problem which appears in many applied domains such as mathematical finance, queueing
theory and biology.

For example, the occupation time of continuous diffusion processes plays an important role in pricing
some type of occupation time derivatives like corridor option and eddoko option (see [7, 15, 2, 4, 5, 8] and
references therein). Generally speaking, the price of such options depends on the amount of time that the
continuous time price process, say X, stays in some designated intervals.

In this article we study the LP(IP)-strong approximation error

{E

and the weak approximation error
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Here we have used the notation 7, (s) = max{t;, t; < s} for a uniform partition 7, = {t; = *-; i =0,...,n}
and h lies within a class of non-necessarily regular functions that admit h(z) = I;,cay or h(z) = do(z) as an
example.

As one needs to simulate X, for different values of i = 1,...,n, we concentrate on the one dimensional
case and use the retrospective exact simulation method introduced in [3] to generate independent copies of
discrete samples of X and then use the Monte Carlo method to approximate I(f).

From a heuristic mathematical point of view, one may say that the time integral operator in F' should
regularize the properties of F. On the other hand, the fact that h is a non-regular function or even a
Schwartz distribution function introduces a strong non-regular character in the integrand of F. The rates of
convergence for the strong and weak approximation errors which appear in Theorems 2.3, 2.4 and 2.6 reflect
the interplay between these two opposing characteristics.

We now proceed with a discussion of the method of analysis used for the problem and its relationship
with other close results in the literature.

In the particular case that f(z) = x the study of the weak rate of convergence has been done in [10]
and [9] using basic estimates on the forward-backward Kolmogorov equation and a clever combination with
classical techniques. This technique is not applicable to our case. In fact, if one applies a Taylor expansion

to the error . .
£ tocemas) = 1( | I{X,,,MeA}ds)] ,

one quickly finds out that the irregularity of the functional F(X) = fOT Iy x_ cayds appears in multiplicative
form in the error and therefore the expansion only makes the problem more difficult to handle. This problem
does not appear in the particular case that f(z) = x and therefore the interchange between expectation and
integral makes the problem somewhat easier.

In order to find the strong rate of convergence in (1.2) for moderate irregular functions h (e.g. the
indicator function), we first consider a class A (defined before Proposition 2.1), which includes the indicator
function. In particular, in the definition of property .A(iii), it is important that uniform upper estimates of
expectations of {hy }nen are satisfied where {hn}nen is an approximation sequence of h.

Next, we assume uniform ellipticity for the diffusion coefficient ¢ in order to apply the Lamperti transform
to X in (1.1) so that the problem is reduced to the consideration of a simpler process Y which has a unit
diffusion coefficient. For Y we have uniform bounds on its Malliavin derivatives and Gaussian bounds on its
density, both of which are needed in our proofs (see Section 3.1 and Remark 3.2 for more details).

Then our method uses the case f(x) = z as a first building block and then a centering argument together
with the Clark-Ocone formula allows us to obtain a first expression for the error. This formula explodes due
to the stochastic derivative in the Clark-Ocone formula. On the other hand, one obtains some regularity due
to the time integrals of conditional expectations which allow us to deal with the general case in a non-trivial
manner.

The technique described above which is used in order to obtain the strong rate of convergence may have
a wider applicability. In fact, it also serves to study of the corresponding weak type problem and further to
investigate the approximations of local time.
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This is our second step: to consider approximations for local times. We obtain the strong rates of
convergence and the weak rates in the case where f is a polynomial function.

As mentioned before, the use of the Lamperti transformation and the uniform ellipticity assumption
are crucial for the success of our method of proof. The cases where f satisfies weaker conditions, X is
multi-dimensional or the diffusion ¢ is not uniformly elliptic remain as challenging problems.

Throughout the article, constants are denoted by C or K which may change from one line to the next and
which are independent of the partition n, N and € (to be introduced later as the approximation parameter
for the Dirac delta function) but may depend on other parameters of the problem such as the time parameter
T > 0, the coefficients of the sde or the initial point zy. The time T is fixed throughout the article.

C'(A, B) denotes the space of once continuously differentiable functions from A to B. In the case that
A = B, we use the notation C!'(A) = C*(A, A) and C! = C*(R). Similarly, CF(R) denotes the space of real
valued bounded functions which are k& € N times continuously differentiable with bounded derivatives. L” ()
denotes the space of p-th power integrable functions with respect to the measure p and which induces a norm
denoted by || - || zr(u)-

2 Main results
A function h is called exponentially bounded if there exist positive constants Kp, Ko such that |h(z)| <

Kl €K2 \:C| .
Ck (R, A) denotes the space of exponentially bounded functions taking values in A, which have continuous

exp
derivatives of any order up to k . In the case where A = R, we may just write Cfxp (R). In the particular case
that o € (0,1] we also define C‘g‘xp(R, A) as the space of a-Holder exponentially bounded functions. Note in
particular that CL (R, A) # CL (R, A).

Let A be a class of exponentially bounded functions h : R — R such that there exists a sequence of
functions (hn)nen C C2, (R) satisfying:

exp

A(i):  hy —hin L} (R),
A(ii) : supy |hn(z)] + |h(z)| < K1e®2l*] for some constant K1, Ko,
12
A(iii) : K (h) :=supy ue0.0m) J |hv(2)]e” " dx < oo, for every positive constant C.

Note that K (h) defines some notion of norm which will appear in the error estimates. Clearly, Celxp(R) C A.
The following Proposition shows that the class A is even larger.

Proposition 2.1. A is a vector space on R. Furthermore, A contains all monotone, exponentially bounded
Sfunctions.

Proof. Tt is obvious that A is a vector space on R. Now we show that A contains all monotone, exponentially
bounded functions. Indeed, let h be an non-decreasing, exponentially bounded function on R. We introduce

PN)Nen a sequence of mollifiers given by py(x) = Np(Nzx) with p(x) = erlfllx 1- Finally, we set
] <
hn(z) = [ h(z — y)pn(y)dy. Since |h(z)| < KeXl*! for some K > 0, we have

1/N
|y ()] < /KeK”'_y'pN(y)dy < KeKll'l/ NeK‘y|emdy < KeK(zl+1)
0

Therefore (hy)nen is uniformly exponentially bounded. Furthermore, since h is non-decreasing, so is hy. It
means that h’y > 0 and

12 _=z2 _a? 2z _ a2
/|hN(:,E)|6 u dx:/e v dhy () :/hN(m);e v dx

C o2
< —/emxl_ﬁdm < 00,

= Va

implies that (hn)nen satisfies A(4iz). It remains to show that (hy)nen satisfies A(7). Indeed, for any L > 0,



we have

/_LL|hN<x) h(z |d;v</ dx/|hx— — h(@)lpn (y)dy
:/IZSl (/_L|h(x—N_1z)—h(gc)|dx)p(z)dz. (2.1)

Note that monotonic functions are continuous almost everywhere and therefore f_LL |h(x—N"12)—h(z)|dx —
0 as N — oo for all z € [—1,1]. This fact together with Lebesgue dominated convergence theorem implies
that the last term of (2.1) tends to 0 as N — oo. Thus hy — h in L} (R). We conclude the proof of
Proposition 2.1. O

Remark 2.2. This result implies that h = 14 € A, where A is any finite union or intersection of intervals.
Also any finite linear combination of indicator functions is an element of A.

Throughout this paper, we always suppose that the following assumption holds.

Assumption (H): f has two derivatives and its second derivative is bounded. b € C3(R),o € C(R) and
o(x) > o9 >0 for all z € R.

Our main results are:

Theorem 2.3 (Strong rates). Suppose (H). Then for any p > 1, there exists a positive constant C such that
the following upper bounds for the strong error of approrimation are valid.

T 2p C
’/ dS —/0 h(Xnn(S))dS < np+%.

(ii) Let h € C% (R) for some a € (0,1]. Then

exp
T T op
E|| / h(X4)ds — / By )|
0 0

Theorem 2.4 (Weak rates). Suppose (H) and that h € A. Then there exists a positive constant C' such that

f(/OTh(Xs)ds)] - / B(X ()
Remark 2.5.

(i) The strong rate in Theorem 2.3(i) is optimal as it can be verified in the case that b = 0 and o = 1(see
Proposition 2.3 in [16]). Similarly, the weak rate in Theorem 2.4 is optimal up to the factor log(n) in the
uniformly elliptic case (see e.g. [10] or [13]).

(i) Let h € A. Then

o H(TCVa)pV 'Lfa S (0,1)

< clos(m).
n

(ii) When oo =1 in Theorem 2.3, the strong approzimation error is of order 1, i.e,

T
H/ dsf/ h(Xnn(s))ds‘
0

This result is compatible with the result of Theorem 1.1 in [12].

(111) A — exp( ) # 0 and exp( ) — A # 0 for any o« € (0,1). However, note that h(x) := sin(exp(z3)) €
CL.(R) buth ¢ A.

exp

(iv) The L*(P) (p = 1) bound of the strong error estimate in Theorem 2.3 (i) for h € A is larger than the
estimate in Theorem 2.3 (ii) for h € C&,(R) iff « > 5. On the other hand, if we consider the general

L?(P) norms, the strong rate of convergence estimate for functions h € OSXP(R) and h € A are 42 and }
as p — 0o, respectively. It means that the bound of the former case is smaller than the one of the latter case
when we consider higher order moments.

< closm)
L2p(P) n




Finally, we present some applications about the strong and weak approximation for the local time of X
which is defined as

Denote ¢ (1) = \/Le*ﬁ/% for € > 0. We have

2me

Theorem 2.6. There exists a constant C > 0 such that

T 2
(LT(0>— / ¢;<Xnn(s>>ds> scloj(nf), (2:2)

‘IE LT / 6 ( ” < Clof}) (2.3)

n

Moreover, if xo # 0 then

log(n)
E L / 61 (X, (s s” <C . 2.4
[E[Lr(0 (X0 o (2.4)
Remark 2.7. (i) The estimate (2.2) can be used to show the statistical consistence of the statistic fOT 1 (X, (5))ds
for the estimation of the local time L (0). On the other hand, it has been shown in [11] that the process
ni (Lt fo KXo (s) ds) converges stably in law to some non-degenerate process. This implies that
the strong rate obtamed in (2.2) is optimal up to the log(n) term.

(ii) Estimates (2.3) and (2.4) give the rates of weak approximation for E[f(L7(0))] when f(x) = x. The
rate in (2.3) is almost optimal since one can easily verify that when X is a standard Brownian motion
starting at 0 (i.e. b=x9 =0, c =1) then

/OT@(XWS)MS}%( -3 )z\)/%

=1

Following the same method of proof as the one presented here, we may obtain the same rates in (2.3)
and (2.4) when f is any polynomial function. However, the problem of estimating the rate of weak
approximation for general function f is still open.

(iii) The rate in (2.4) is better than (2.3) because in the particular case that the starting point of X is zero
then the crossings of X at smaller times around zero increase significantly and therefore the approzi-
mation method deteriorates.

3 Proofs

We start with the following observation: we set 8(z fo P dy and Y; = 8(X;). That is, using the standard
Lamperti transform (see [14]), one deduces from Ito formula that

dY; = b(Y)dt +dW,, 0<t<T, (3.1)
where b(z) = b(8™!(z)) with b = 2 _ 15" and 87! denotes the inverse function of 8. It is straightforward to

verify that if b and o satisfy assumption (H) then b € C3(R) and 8 has bounded derivatives up to order 4.
Moreover, we have the following result.

Proposition 3.1. Assume (H).
1. Ifh € A then ho8~ ! € A.
2. If h is a-Hélder continuous then ho 81 is also a-Hoélder continuous.

Therefore, it is enough to prove Theorems 2.3 and 2.4 for the case ¢ = 1. In the case of local times a
similar reduction will be applied.



Proof of Proposition 3.1. The desired results follow from the fact that both 8§, $~! are increasing differentiable
functions and that there exist two positive constants K7, Ky such that Ki|z| < |o(z)| < Ka|z| for o = 8, 8§71
and any = € R. O

This proposition reduces the proof of Theorem 2.3 to the proof of the same statements where h and X
are replaced by ho 8~ ! and Y.
3.1 Malliavin Calculus tools

We refer the reader to [17] for an introduction of Malliavin calculus tools and related definitions and notations.
Let X be the solution of the sde

t
Xt =T +/ b(Xs)dS + Wt, (32)
0
where W is a one dimensional standard Wiener process and b € C3(R).

1. & =exp <f05 b’(Xu)du). Since b € CZ(R) then we have that €, + €;1 < C for a positive constant C
and all (s,w) € [0,T] x Q. Furthermore, we have that d€; = b'(X;)E&sds.
2. For any t > u > 0 and ¢ € C!, the Malliavin derivative of ¢(X;) is given by
Du(p(Xe)) = ¢/ (X)€"

In particular, due to the previous item and the hypothesis (H) there exists a positive constant C' such
that D,b(X;) < C for all u <t and any w € Q.

3. P(A) = P(A|F;) and E;[F] = E[F|JF;]. Conditional LP-norms are denoted by

— k
P12y = B |[FIP+ 301D F||22<[T,T]k>] '
k=1
When the context is clear, we simplify the notation in the case that n = 0 by denoting || |lrp = || [|r.0,p
4. Conditional duality formula:
t+h
]Et DSFUSdS = ]Et [F5t,t+h(u)] s (33)
t

where ¢, is Skorohod integral in the time interval [u, ¢].

5. Some properties of the Skorohod integral: for any random variable F' and a random process u
T
S(Fu) = Fo(u) — / (DyF)ugdt
0
as long as both sides of the equation make sense in L?(P). Furthermore, if u is an adapted process then

6. We will repeatedly use the following integration by parts (IBP) argument:
Let Zy, k < 3, be F;-measurable random variables satisfying E,[|D%Z.|P] < C(k,p) for some posi-
tive deterministic constant C(k,p) and for any multi-index a = (aq, ..., ax) € [r,t]* (DX denotes the
Malliavin k-th order derivative at (aq, ..., ax)). Then we have

Dy f(Xy) = f(X0)&& or f/(X)Z1 = Duf(X)Z1€ €7

for ¢t > u > 0. Furthermore, we have the following integration by parts formula

E,[f' (X)) Z,] = ﬁ]Er [/ Duf(Xt)Zlc‘luEt_ldu]

= LB 10 (2E.87)| = RO H (X, 20)) (3.4)




with H, (X, Z1) = ﬁém (Z18_8t_1) . For higher order derivatives, we define inductively Hﬁt(Xt, ZF) =
Hﬁ;l(Xt, ZpH, (X4, ZF71)) for k = 2,3, with H;y,(Xt7 ) = H,(Xy,) and ZF = (Z1,...,2Z;), we have
the following properties:

E, [Hf (X, Z%)] =0, (3.5)
C(k,p)
(t—r)%

These estimates are obtained by applying the norm properties in Propositions 1.5.6 — 1.5.7 in [17]
together with the explicit expressions above.

1 H (Xe, Z8) g < (3.6)

Remark 3.2. The fact that coefficients are bounded allows us to obtain the property that & is bounded
(property 1.) and also the Gaussian bounds on the density (see (3.6) and (4.1)). In fact, the proofs use
strongly these two facts although one can find other ways to deal with the expressions related to € using the
Malliavin calculus integration by parts formulas even in the case that & is only bounded in LP(P). On the
other hand, the fact that the density estimates are Gaussian is extremely important and it becomes the key
element which forces us to impose the boundedness assumptions on the coefficients of the sde.

A first result related with our problem is the following particular case of weak rate of convergence.
Lemma 3.3 (Theorem 2.5 [10]). Suppose that h is exponentially bounded. Then

< Clog(n).

- n

T T
E / h(Xs)ds — / h(X,, ()ds
0 0

Although the result in [10] uses the Euler scheme as approximating method, the proof is much simpler in
our case and it can also be carried out in the fashion described in [10].

3.2 Preliminary estimations based on the IBP formula

Recall that throughout this section, we suppose that o = 1.

Lemma 3.4. Suppose that ( € ngp(R)‘ Then there exists a constant C' depending on X such that the
estimate
C
v—r

holds for any 0 < r < v < T. Furthermore if |¢(x)| < KeXI*! for some K > 0, then there exists a constant
C depending on K and the coefficients of X such that ||((X,)]|r2 < CefIXrl,

B, [(C'D) (Xu)&] | <

I605) ~ B lCCX e <~ C(Xls

Proof. For the first part, it follows from the IBP formula (3.4), the definition of CZ, (R) and the estimates
in (3.6) with Z; = &, and Z3 = b(X,) so that
B [(¢'0) (X0) €] = [Er [C'0(X0) Hyo (X, €0)]|
= |E; [C(Xo) Hrw (Xo, b(Xo) Hr,o (X, €0))]|
= [E, [(((Xo) = Er(C(X0))) Hr o (Xo, 0(Xo) Hr o (X, €0))],

where we have used, in the last equality, the zero-mean property (3.5) of H. Then, by using the moment
estimate (3.6), we get

B [(C'B) (X2l < CIICXe) — B¢ (X0l 2 € 20X ~ B CX) o

H’?‘,U(X'U’ Z2)

Furthermore, if |¢(z)| < KeX1*| for some K > 0 then the fact that ((X,) < KeXIXe=Xr[eKIXr| together with
(4.1) gives the desired property. O

n fact, [10] claims that the error is bounded by % However the proof given in [10] only gives the slightly bigger bound

Clog(n)  The authors provided us with an alternative proof which gives the correct bound. For our results, either bound give

n
the same final rate.



Lemma 3.5. (i) Assume that ¢ € Cg,,(R). For any v > r > 0, there exists a constant C' such that

cxp (

B (0% ~ Bk < o [icem (- CE=20) ey

v—r

(ii) Assume that ¢ € exp( ) for some « € (0,1]. Then there exists a constant C' (depending on X and «)
such that

E, [(C(Xv) - ET[C(XU)])Q] < C(U - r)a-

The nature of the above estimates (i) and (ii) are the same. In the above statements, this is not so explicit
because the derivative of ( is not necessarily bounded. Later, we will see that after taking expectations this
term is of order y/v — r. The same remark can be made about Lemma 3.6.

Proof. (i) Fix r < v, and for each s € [r,v], we denote
u(s, z) = E[((Xy)|Xs = z].

Then u € CH2([0,v] x R,R), u(v,X,) = ((X,) and u(r, X,) = E,[¢(X,)]. Furthermore, since ((X,) is
integrable and u(s, X;) = IE[(:(XU)|XS]7 (u(s, Xs))se[r,0] is a martingale. Hence, it follows from It6’s formula
that

C(Xv) - ]ETK(XU)] = u('Uva) - u(r, Xr) = /U axU(S,XS)dWS.

Therefore, ,
E, [I(X,) — E[C(X))12] = E. [ [ 10.uts, Xs>|2ds] . (3.7)

Then we have

- m/|§’(z)|(ET {eXp (—W)} )1/2dz.

In the above, we have used that
e 8,E1<C
e The Gaussian bound on the transition density of X in Lemma 4.1.

e The generalized Minkowski inequality.

H/F(azl,xg)ul(dml)

< [ 1@ () a2 1 (38)
L9 (p2)

applied with pq(dxy) = day, pe(des) = Pr(das), F(xy,z2) = % exp (—C(z_vxfss(”))?) and q = 2.

Then, we get using Lemma 4.2

v—r

- X,)? 2
E.[|0su(s, Xs)[?] < /|¢ exp Oz = X%,) )dz) . (3.9)
(U —s)(v—r)
Plugging (3.9) into (3.7) we obtain

E/{JC(X.,) - exp (- CE=X )02y

<) m (fice v
<c /|<'<z>|exp(—w)dz)27

v—r



which completes the proof of Lemma 3.5-().
(ii) If we suppose that ¢ € eXp( ) for some « € (0, 1], then

Er [(C(X0) = Er[¢(X0)])*] < Er [(C(X0) = ¢(X2))?]
< CE,[|X, — X, *].

Writing X, — X, f b(X;)dt + f (X:)dW; and using the boundedness of b and o yields

E, [(C(Xv) - ETK(XU)])Q] <C(v—r)*

O
Lemma 3.6. (i) Assume that ¢ € C3_(R). For u € (0,1,(s)), it holds that
(I Clz = Xu)*
e o 3 (SES T |
Eu [¢"(X6)€s = (' (X (6))€na(s)] ‘ = C/nn(s) < v—u u)? & exp v—u )dz dv

(it) Furthermore, assume that ¢ € C3_(R)N ngp( ) for some « € (0,1]. Then, for u € (0,7,(s))

E. [C/(XS)ES — C/(Xnn(s))gﬂn(s)} ’ < C/ (U — ’u,)aTigd’U

n(s)
Proof. (i) Using Itd’s formula, we have
8 1
]Eu [C/(Xg)gs — C/(Xnn(s))gnn(s)] - / ( )Eu |:(C’b)/(X,U)(QJ,U —+ §C/,/(Xy)8v dU.
N (s
Then Lemma 3.4 yields
C
E, [(Clb)/(Xv)gv] < mHC(Xv)”u,Q

For 0 <r <wv <T, we have for Z; = &, and Z2 = Z35 =1 in (3.5) and (3.6) together with Lemma 3.5

|Eu[CW(Xv)8v]| = |Eu[C(Xv)HS,v(Xva Z3)]|
= [Eu[(¢(Xy) — Eu[¢(X )]) (Xv, ZB)]I

B 2
< (_Cu) [ic@es (- %)da

(ii) The estimate when ¢ € C3,,(R) N ngp( ) readily follows from the above proof and Lemma 3.5-(ii). O

Uy

We are now in a position to prove all the results mentioned in Section 2. Recall that due to Proposition
3.1, we may assume without loss of generality that ¢ = 1 in the proof of Theorems 2.3 and 2.4.

3.3 Proof of Theorem 2.3(i)

As h € A, there exists a sequence of smooth functions {hx}nen converging to h with the properties stated
in the definition of the space A. Define

T
Su= [ () = 10X, ).

T
Sun :/O (v (Xs) — by (X, (o)) ds.

Before continuing, we provide as a guide a brief description of the line of proof. We will first prove the
convergence of the regularizing sequence E|S,, y|?? to E|S,,|?".
Then, we write S, n as the sum of the centered term (S, v — E[S, n]) and the expectation E[S, n]. The



latter is easier to handle due to Lemma 3.3. The former can be written, thanks to the Clark-Ocone formula,
as an Itd integral of E,[D, S, n]-

This term will be a time integral of the conditional expectation of (hfy(X,) — hiy(X,, (5))). We control
this term (uniformly in N) through conditional IBP thanks to Lemma 3.6.

In other words, the way to understand and solve this problem is to observe that the derivatives of hy
explode and that the conditional expectation E, (combined with the time integral) will play the role of
smoothing D, S, n uniformly in N finally controlling the error.

In particular, we have to estimate multiple time-integrals of negative powers of the time-variables, which
finally will give the rate of convergence.

Now, let us go into the details of the proof. We first show that

lim E[|S, v|?] = E[|S.|*"]. (3.10)
N—o00

Indeed, we have using Holder’s inequality, Fubini’s theorem and (4.1)

E U [ ) - nxopas|”

< c/o E [[hw (X,) — h(X,)[?"] ds

Ca?

< C/OTds/hN(x)h(x)F”e\/;d:c.

Recall that as h € A, then for any € > 0 there exists a compact set K, such that

T
/ ds [ hn(a) - <>\2p iz < C / ds / el € g
0 Ke c

Therefore, since hy — h in LZOC(R)7 applying Lebesgue dominated convergence theorem, we get

] -
]:o.

Therefore limy o E [|Sn N—=5Sn \2”] = 0 and therefore the triangle inequality for L?(P) gives the convergence
of 2p moments.
Next, it follows from Clark-Ocone formula that

lim E

[t - nxpas

A similar argument shows

N—oc0

T
lim E U/O (AN (X, (s) — WXy, (s)))ds

<CE

E [|Sn.n — E[Su n][*] = U/ W[D anqu ‘/ u[DuSn. ]| du‘ ] (3.11)

where the last inequality follows from the BDG (Burkholder-Davis-Gundy) inequality. Using the chain rule
property of the Malliavin derivative and the fact that & and &1 are uniformly bounded, we have
p]

2
/ 1E / h/ s)E slo>u — hEV(Xnn(S))gnn(S)I ,,L(S)>ud8] ) du

< Cnp_l(Tn,N + TE,N%

Tl EE [ / ([ B ds)2du ] |
T2\ = ZE /W (/t+ o [P (X0)Ex — W (X () o)) ds>2du

E [|Sn.y — E[Sn.n]I*] =E[

where

p
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Here we have used that [0,7) = U,?;Ol [t;,ti+1) and Holder’s inequality for sums. We will show that there
exists a positive constant independent of N and n such that

Ty 4+ T2y < COn~2P+1/2,
Therefore the proof finishes by noting that
EHSn,N|2p] <C (‘E[Sn,NHQp +E [|Sn’N - E[Sn,N“Qp]) .

Therefore we finish using Lemma 3.3 to estimate E[S, y] in (3.11) and noting that limy_ E[|S, n|?"] =
E[|S,|?P] which gives the estimate for E[|S,,|??].

3.3.1 Estimate for TiN

First we write

B [y (X)) = / W (2)| P X 2)da

<c [ Iny(a

This estimate together with Holder and generalized Minkowski inequality (3.8) with p(ds,dx) = dsdz,
=P and ¢ = 2p yields

70(96 — Xu)Q)dm.

1
V4 _uexp(— s—u

n—1

tit1 tit1 C(l‘ - X )2 2P
1 < / _ u
T,y<C g E /t du(/u ds/|hN(x) exp( P )dm)
t1+1 tit1 C(.’E - X )2 2p
< Cn'7P E / ds/|h§v(x) exp(f - )dx du
w s—u

scnl—PZ/M {/tm ds/(E Dl/zpdx}zpdu
=o' pZ / s [ (2 [ (W)])/d;ﬂ}du

Since h satisfies A(ii), we obtain after using (4.2),

2) xlﬁ exp (_C(”” - X“)Q) ”

S—U S—U

tit1 tita
nn < CK(h)*n'~ pZ/ : (/ : (s—u)(l_Qp)/4ps_1/4pds)2pdu
t; u
< CK(h)?Pp=2r+1/2,

In this last estimate, we have used in the above integral that s~1/4 < 4~1/P direct integration and then
(ti — ’LL) S %

3.3.2 Estimate for T}, y

Thanks to Lemma 3.6(i), we have T;? v < C(Up n,1 + Un,n,2) where

r p

2
n—1 tit1 tj+1 S 1A X
Un,N,l _ ZE / / / ” N v ”u 2dv du ’
iz0 t v—u

i j=i+1

2 p

n-1 tiy1 J+1 Clz — X,)2?
Unn2 = ZE / / / — /|h'N(z)| exp ( - %)dzdv du
i=0 t )2 -

i j=i+1

(3.12)

11



For the first term, using Fubini’s theorem, (¢;11 —v) < %

and Holder’s inequality, we estimate

p
n—1 tig1 n—1 i1 ‘s B b (X )
Unna = E / (> / S “)||“’2dv) du
i=0 ti j=it17t v—u

n—1 tit1 T h X 9 p
< Cn~2 Z E / (/ Mdv) du
t tire v—u
nl—3p Z /t?+1 /T 1A (Xo) [lu,2 dU)Qp du.
t; tit1 v—U

Using generalized Minkowski inequality (3.8) with pq(dv) = dv, us = P and ¢ = 2p, we get

Upni<Cn'™ dpz/ o {/M <]E {(|th()EvI)LHu?)%])1/2pdy}2pdu.

From Assumption A(i7) and Lemma 4.1 we deduce that supg<,, <, <7 supy E[[[An (Xy) ||ip2] < C'supyeo,n E[e2PKzl1Xul] <
00. Then Lemma 4.5(i) gives

it1 2 1 2p
Upni < Cnl=% Z/ log 7“) Tdu < Cofi(n). (3.13)

7.+1*7-L

We now turn to the evaluation of U, y2. From (3.12), integrating with respect to s and using that
tiv1 —v < L we obtain

o] C—x)%
Tnason 3w || </ oot [ eten (- S50 )is )
) i+1

=0 i

p

Applying generalized Minkowski inequality (3.8) three times (with different definitions for pq, e, ¢ and F)
and Lemma 4.2, we have

2
tiy1 T B )
/ </ divé/m/]v(z)‘exp(f C(Z_Xu))dz> "
’ e o Lr(P)
2p]] ¥
fe T dv Clz—X )2
s B / /h’ 2)exp | — w“ Vg4 du
/ti tin (V—u)? [ (2)] ( v —u )
1 2
tit1 T 1 C(Z Xu)g 2p br
< J—
‘/ti /tpr1 <]E ’( - %/|h1\/(z)\exp< — )dz dv | du

V]

tit1 2 - X 2 ﬁ
:/ (/ — /|h’ ( {exp(— pC(zu))}) dzdv) du
t; tit1 E v—Uu
2
tiy1 T 1 6p N 2
§C’/ (/ (vu)‘lpv_‘w/|h'N(z)|exp(CZ)dzdv) du
t; tig1 v
tit1 T 2
<CK(h)? / ( / (v — ) T dv) du.
t; tit1

where the last inequality follows from the property A(iii). A direct computation shows

tiy1 T 2 tit1
/ / (v — u) o tl_ff’ dv | du<C (tiy1 — u) % tH_f’ du=Cn"2% tz+1 .
t tit1

i t;

12



Therefore, we obtain

n—1 T
_ dt
Un.va < CK(R)*n= 3 7?0712 < OK (h)*n~20+1/ 7
i=0 0

This concludes the proof of Theorem 2.3. O

3.4 Proof of Theorem 2.3(ii)

The structure of the proof of Theorem 2.3(ii) is similar to that of Theorem 2.3(i) except that we will use
Lemma 3.5(ii) and Lemma 3.6(ii) instead of Lemma 3.5(i) and Lemma 3.6(i).
For each N > 0, denote

hy(z) /h(y)\/J;%exp( W)dy/h(er;)\/lz?ezjdz.

We note that for fixed N, hy € C¥

exp

(R) for any k € N and if h € C2_(R) then

exp
—z /2
2

—Zz
<ch/|a:—y\@ s — Cul — gl

(@) = @) < [ e+ 5) = by + 3)[ =

Proof. We use similar ideas as in the proof of Theorem 2.3(i) and therefore we also borrow the notations
from that proof. First, note that

1 22
h — ‘/ (z+N"12)—h e*?dz‘ < CN-°.
|hn( T)| = (z ))\/ﬂ <

Therefore, we have

E[|S, — Spn|?] =E

T 2
(/0 (hN(B ) hN( M ( s)) h(Bs)+h(Bnn(s)))d5) ]

<cE|( / (hw(By) = h(B))ds) " | +CE |( / (v (B, () = 1By, (5)))ds)
< CN722,
Then as in the proof of Theorem 2.3(i), we have
lim E[|S, ~[*] = E[|S.|*"]. (3.14)
N —o0

Next, in a similar way as in the proof of Theorem 2.3(i) we have that

E [|Snn — ]E[Sn,Nng] < Cnp_l(T;,N + Tg,N%

~ n—1 tit1 tit1 2 P
Tﬁ,NZZEl/ (/ Ey [y (Xs)E.] ds) du ]
; t; u

R n—1 tit1 T 2
2y=YE / (/ E, [h’N(XS)eS—h;V(X%(S))enn(s)]ds> du

tit1
We remark here that h does not necessarily belong to A. Instead, the upper estimate will be obtained using
Lemma 3.5(ii) and Lemma 3.6(ii).

where

p
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a) Here, we estimate T1 - From the proof of Lemma 3.4, Lemma 3.5(ii) and the above estimate, the
following inequalities are stralghforward

C

(s — u)% 1N (Xs) = Bu(hn (Xo))[lu2 < C(s — u)%.

[y [Aly (Xs)Es]| <

Thus
N < C’Z ’ / " / IH (s — u)%d5>2du‘p < COnlmPE+a),
b) Now, we estimate TgN Thanks to Lemma 3.6(ii), we have integrating with respect to s,
T2N <CZ‘/I+1 S /tHl ds/s(vfu)aTigdv)Qdu‘p
~ Ji ¢;
<Cn~ 2‘”2‘/1“ / v—u)aT_sdvfdu‘p.
tit1

i) If « € (0,1), we have
n—1 ti+1 »
LxsCn™) ‘/ (tig1 — U)Mldu’ < Oplmrte),
i=0 Yt

ii) If @ = 1, we have by Lemma 4.5(i)

T2y <Cn2 Z ‘ / - log <_u> )2du

2p
P _ log™(n)

1,+1 —Uu n3p71 .
Therefore,
log?? (n) . _
EHS’!L,N — E(SmN)‘zp] < ¢ CnZP lf a=1
e ifae(0,1),

where C' is a constant which is independent of the values of N and n. This fact together with Lemma 3.3
and equation (3.14) yields the desired result. O

3.5 Proof of Theorem 2.4

Once the hard work of proving the strong rate of convergence has been achieved, we use this result and the
method of proof in order to obtain the weak error of convergence. First, we apply a Taylor expansion of order
two and then we apply the strong rate result on the second order term. For the first order term, we have
to proceed as before using Clark-Ocone’s formula. This will lead to a double explosion terms (see (3.16)) as
the derivatives of hy will appear twice. But time integrals and iterated conditional expectations appear as
in the proof of Theorem 2.3(i) except that now they appear twice. So that a similar argument gives the rate
of convergence.
Using Taylor’s expansion, we define the bounded random variable A,

F)—f(I)—f (I)(I—-1I, .
0 (D <(I>_In)(2>( ) i T4T,
f(I) ifI=1,.

where [ = fo s)ds, I, = fo X, (s))ds. Then we have

T

[7( / " nxds)] [ / Xy, 0)d5)]

_ ]E[f,(/OT h(X.)ds) /OT(h(XS) — h(X,,n(s)))ds} +E |4, </OT(h(XS) _ h(Xnn(S)))ds>

14



Since Aj is bounded, then from Theorem 2.3(i), the second term is bounded as follows

T 2 T 2
’E[AQ (/0 (h(Xs)h(X%(s)))ds> ”gCE (/0 (h(XS)h(X,]n(s)))ds> ]

< Cn=%.

Since f” is bounded, there is a constant C' such that |f/(z)| < C(|z| + 1) for all z € R. Thus, for any 8 > 1,

'(/OT hN(Xs)ds) ’

This estimate is also valid for h instead of hy. Therefore, by following a similar argument as in the beginning
of the proof of Theorem 2.3(i), we obtain

T n—l oty
E lf’(/0 h(Xs)ds)Z/ (h(Xs)—h(XwS)))dS]
i=0 7t

B T
SupE[ } +C< C’/ EleX2A1X:lds 4 C < 00.  (3.15)
N

] < C’supEH/T hv(Xs)ds
N 0 0

T n=1 ity
= Jim E | f( /0 (X)) 3 /t (hN<XS>—hN(Xti>)dsl.

Using Clark-Ocone formula, we write

n—1 i+l
E [f/(/o hn(Xs)ds) Z/ti (hn(X hN(Xti))dS]

T n—1 tiv1
T n—1 .t;11 ps
+E f/(/o h (Xs)ds) ( / /0 E,[D,(hy(Xs) — hN(Xti))}dWmﬂ
i=0 Yt
=SpN 4 5N

It follows from Lemma 3.3 and the estimate (3.15) that

1 PN =0m™.
i [y =0(n7)

Using the chain rule for Malliavin derivatives, we write the second term as follows
N _ — [T
Sy / hy (X ds Z/ / $)Es — My (Xy, )St]gr—ldWTds)}
=0
n— i+l
+]E[f’(/ ds Z/ / E, [l ( ]8;1dWrd5)}
0

_ aon,N n,N
=S T5) -

We estimate first S; (fv It follows from interchanging integrals, Fubini’s theorem and the duality formula
(3.3) with F = f' (fOT hN(XS)ds) and u, = E, [Wy (X,)€,] €51 that

- Z [l mram [ e e iz i

t1+1 i T T
/ / 7 / By (X)) / Wi (X)) w2, By (X2)Es — Wi (X, )€, Jdudr | ds.
t; 0 r
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We deduce from the boundedness of €, €~! and f” that

S”N|<cnzl/l+l/ / (1A (Xu)[[Er [Py (

Tt follows from Lemma 3.6(i) that

i+1
SnN| < C’Z/ / / [|h/ / ”hN X” ”TQ ] dudrds
” 1t ti X
B e i [ (-2
ti t; (v—r)2 v—r

:U{‘N+U2

Now, for any v > r > 0, consider

E, [ (Xo)|] < C/|h’ exp(—

B [exp (- CEZED Yy (0,)na] < 8 [ep (- S

u —

and, using Lemma 3.4,

u—r

< Cexp(K|z|)E {exp ( -

< Cexp(K|z|)E {exp ( -

from which, and from inequalities (4.2) and (3.17), we get

E [Ihy (Xu)[[[hn (Xo) 2] = B [Er [|hy (Xu)] 12y (X0)

<C [ Ihy(e) explrcfa) “E

Then, we have, using A(4i4) and Lemma 4.5(ii)

v ]
(

E) expelx,))]

X)&s — by (Xt,)E4+,] |] dudrds.

)dz] dudrds

AP explacle - )
C(x — XT)Q)} 7

log(n)

n—1 .ty tq —7‘70
o <oy Wy (z eXp )dxdvdudrds < CK(h)28".
1 v—r n
i=0 tri 0 T t1

Next we evaluate U™, Applying (3.17) and Lemma 4.4 on [r, T]? with a;(v) =

and as(u) = 1(r < u < T)(u— )2 and A(iii), we get from Lemma 4.5(iii)

n—1 tit1 ti T s
U < CK(h)2Z/ ds/o dr/ du/ (v—r)""
i=0 t; r ti

1

We estimate Sg’bN. Again, thanks to the duality formula (3.3), we have

TL

n,N 1+1
T 3 A T e

/ B, [y (X,)E.E-11dW, | ds

(u— T)fﬁvfédv < CK(h)

1(t; <v<s)(v—r)"2

ylog(n

~—

tl+1 S T
/ / f( / hN(Xu)du)/ Pl (X)) E W& B (W (X ) E € | dudr | ds.
t; 0 T

Thanks to the boundedness of f” and &, we have

i+1
155" | <CZ/ ds/ dr/ IRy (X
tit1 ,
:CZ/t ds/t dr/ 1R (

16

o) [ [[Aly (X

Xo)]

E, A (

sl dv

X)) dv.

(3.16)

(3.17)

o



Using (3.17) and Lemma 4.4 on [r,T)? with ai(s) = 1(r < s < t;41)(s — r)’% and as(v) = 1(r < v <
T)(v —r)~2 and Lemma 4.5(iv), we have that

CK(h)?

N o 1
1S3, | < CK(h) Z/ ds/ dr/ — v <
Vs(v—r) n

1=0

This concludes the proof of Theorem 2.4. o

3.6 Proof of Theorem 2.6

The proof is divided into two parts. We first consider the error of the continuous approximation Ly (0) ~

fo ¢e(Xs)ds. The error of the discrete approximation fo de(Xs)ds = fOT ®e(Xy, (s))ds is considered in the
second part

For the moment, we deal with the case of general o, although in Lemma 3.9 we will make the assumption
that o = 1. Later, we will see that after applying Lamperti’s transformation we can reduce our study to this
case.

Lemma 3.7. There exists a constant C' > 0 such that the inequality

(LT(O)— /0 QSC(XS)ds) < Ce/?|log(e)]. (3.18)

holds for any € € (0,1).

Proof. Denote by p:(xg,x) the transition density of X;. Since

=2 [ [ a0, O o(0.0)duts,
5[2r0) [ ocxis] = [ as [ au [ 6miten (o0
w [ as [Can [owmten om0
([ ¢6<Xs>ds)2] =2 s [ au [ [o0roomten oz

we decompose the left hand side of (3.18) as 257 + 2S5 where
T s
_/ dS/ dU/pu($0,0)¢e(.’L') (ps—u(07$) _psfu(070))d'r7
0 0
T T
so= [ s [ du [ ([ 0wpaso )y~ pues(,0)) (e (a0, 2)do
0 s

We first rewrite S; as follows
/ s / du [ pulo.0)6.a / Op:- = (0,3)dyd.

Using the estimate (4.1) and the definition of ¢., we have

T s _ Ca? |z| _oy?
1 e "« e s-u
< — < e/
|51|_c/O ds/o du/ﬁ T | Sduts < e nog),

where the last estimate follows from Lemma 4.5(vi). To estimate Sy, we write

Sy /UTds/sTdu///Oy ¢e(y)algz_s(z,z)qﬁe(x)ps(zg,x)dzdydx.
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Thus, as in the estimation of S7, we have

T T o y o Ce=2) JRRCIES Vi
[S2| < C’/ ds/ du/ dyqbe(y)/ dz/ P oe(x) 7 dx
C((E*;EQ)2

+C’/ ds/ du/ dyoe(y /dz/ )e_\/sj dx

<C/ ds/ du/dya;e 0|y \/su—s)(u—s+e)dz'

Using Lemma 4.5(v) we obtain

|2l < Ce2|log(e)]-
This finishes the proof of Lemma 3.7. 0

Lemma 3.8. Suppose that ¢, € CY(R,R,) such that there exists € > 0 satisfying

|Be(@)] + Veldl(x)] < \[ (3.19)
Then
‘ [ 0 (;56 / 3e(X, (5)) s” < Olong&?. (3.20)
Moreover, if xg # 0 then
E[ /0 ' &E(Xs)ds} fIE[ /O ' gzse(xm(s))ds” < cﬁiﬁ:ﬁ, (3.21)

Proof. The estimate (3.20) is deduced as in Theorem 2.5 in [10], using the uniform estimate |, (z)| < \%
We need only to show (3.21) for zg # 0,

[ [ deas] B[ [ 8]

< /0; E[ée(Xs) + (ﬁe(Xnn(s))]dS + /Z:T ‘E[ée(XS) - ée(Xnn(S))}‘dS

< /0Z (/qge(x)ps(x(),x)dx+<5e(xo))ds—|—/;ds/dyq;e(y) /ni(s) |0upu (@0, y)|du.

Using the Gaussian bound for the transition density p (Lemma 4.1), hypothesis (3.19) and the Chapman-
Kolmogorov property for Gaussian kernels, we get

/¢e s] [ [ 8% co0)

< il Td)e Zo) / / 76 = duds
—Jo \/s—l—e T (s) UVU+ €

n

SC( T —&-—/ ds/ 1du)
nlzol  |xol z (s) U

n

1
clos(n)
n|ol
:t2
where the second inequality follows from the estimate: e~ w < |£ for any w > 0 and the last estimate from
Fubini’s Theorem. O
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Lemma 3.9. Let ¢ : R — R satisfying (5.19). Assume that 0 = 1. For any p > 1

T T 2p
R . C
(/0 ¢6(X8)d3_/0 ¢€(Xnn(8))ds> = 617712717—%.
T T
Su= [ deXods = [ bl )is

As in the proof of Theorem 2.3(i), using the Clark-Ocone formula and the BDG inequality, we have

Proof. Denote

E [|S, — E[S.]|?] < OnP~Y(TL, + T2,),

where

2 p
i+1 N N
/ (/ |:¢/€(X5)85 o (Xnn(s))g’ﬂn(s)] d ) du
ity
Next, we will show that
T +72.< CePp~2F3,
Therefore the proof of the Lemma finishes by using Lemma 3.8. The estimate of T}, . is similar to the one in

the proof of Theorem 2.3 (Section 3.3.1). In fact, due to condition (3.19), we obtam that [ |0 () |da <

Therefore K (¢.) < % and hence,

\[

C

T < _
€Pn2P—3

n

cx2

To estimate T2 ., we notice that since ||¢¢(X,)|lu.2 < Ce 5 (v—u+e) e 7-wte and proceeding as in Section

n,e?

3.3.2, applying Lemma 3.6 for { = ¢€ yields T;f N < C(Upe1+ Upe2) where

~ 2 p
i1 41

Uy = ZE / / ds/ =) b (Xo)luzdv | du| |,

j=i+1 i

- 9 P

Uneo = ZE /7“ /t”lds/ 3/2/\¢ exp ( X) )dzdv du

The proof continues along the same lines of (3.13) in Section 3.3.2 after noticing that E[Hg?)e(XU)Hin] <
ng

) 1-p o7 vFe
Cem2(v—u-+e)z NCE

Jj=i+1

in order to obtain

c ol T 1 —1/4 1 4 1/4 Cx(z) v
Un7e,1§WZ/t /t'+1(v_U)_ e/ (v—u+e)( /AP (y 4 €)” /peXp(— )dv du

i=0 v ti v+ e
—1 t. T 2p
C n / it+1 /
< — E (v—u)"tdvy du.
— 3p—1
ernsp i=0 “ti tit1

We have using Lemma 4.5(i) that
e 2 log™ (n)
Une1 < G 1Z/t k’g(m_u)) du<C o
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The evaluation of U, .2 is also done similarly, to obtain

O n—1 . C
Une2 <———7 Ztifl T

epn2p+% N
This concludes the proof of Lemma 3.9. O

Lemma 3.10. For anyp >1

T T 2p C
E </ ¢6(X5)d5 - / ¢6(Xnn(5))d5> < Y op_1°
0 0 PP

Proof. Denote (/BE = ¢. 087! where § is defined at the beginning of Section 3. It is straightforward to verify
that ¢, satisfies condition (3.19). Applying Lemma 3.9 for the diffusion process Y, defined by (3.1), we obtain
the desired result. O

Choosing the optimal value for e, i.e., ¢ = n~! in Lemmas 3.7, 3.8 and 3.10, we conclude the proof of
Theorem 2.6.

Conclusion

Considering the weak and strong rate for multidimensional occupation time remains an open and difficult
problem because, in the technique presented in this paper, it is essential that the same process X is con-
sidered in Lemma 3.6 at different times s and 7,,(s). In the general multidimensional case, if one considers
Eu[¢'(Xs)€s — ¢'(X,;,,(5))€nn(s)] Where the bars denote (Euler-Maruyama) approximation process, then the
estimates are not easy to obtain. This topic as well as possible extensions to Multilevel Monte Carlo (MLMC)
methods will be treated in future research. In particular, the fact that the strong rates obtained here for the
approximation of local times are slower than the classical rates for smooth functionals imply that the MLMC
methods have to be implemented taking into account both strong and weak rates of convergence.

In the case of general weak approximation problem for local times (i.e. non polynomial function f), one
may find ways of obtaining non-optimal rates using the strong rate obtained in Theorem 2.6.

Another aspect of interest is the non-uniform elliptic case. For example in the hypoelliptic case. the
estimates in time that appear in Lemma 4.1 are not valid. In fact, the terms ¢ — s are affected by higher
powers which make the problem difficult to handle.
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4 Appendix

4.1 Some simple inequalities related to Gaussian densities

We first recall the following well-known Gaussian estimate for the transition probability density of diffusion
X.

Lemma 4.1. (/6/, Chapter 9) Let X be defined by (1.1). Under the condition (H), the Markov process X
admits a transition probability density p(s,z;t,y) = pi—s(x,y) satisfying

)2
OO a2, 3)] < (t_s)c"”* exp (- g(t—?s)) (4.1)

for allm,n >0, m+n <2 and for some positive constant C' which does not depend on s,t.

The following inequality can be easily obtained from a Gaussian bound on the transition density of X,
and the fact that a convolution of Gaussian densities is still a Gaussian density.

Lemma 4.2.

- X 2 foy - X 2
E, {exp(—C(Z s) )} <coMt Sexp(—w). (4.2)
v—8 Vo—r v—r
Lemma 4.3. Suppose that w > v >r >0 and x,y € R, then
2 2_9 2 2
uxr® + vy rxy>ac +vy (4'3)

uv — r? ~ u+v

Proof. The proof of the following Lemma is algebraic and straightforward. In fact, multiply both sides of the
inequality by (uv—7r?)(u+v) and then simplify in order to obtain the inequality (uz—ry)?+(vy—rz)? > 0. O
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Lemma 4.4. Suppose that ¢ € CXP(R), Let a; : (u,v) = Ry, i = 1,2 be two integrable functions. Define

fori=1,2
I—/al /|§ exp Oz X))dds

— )m) 2 dsdt.

Proof. Expanding the square and Fubini’s theorem, (4.1), straightforward calculations with Gaussian kernels
and (4.3) it is enough to note that there exists a positive constant C such that

B| [ 1C@lclew (- Lm0 o (- CU=Xel 0]
< / ¢ @) ) exp ( S T O ey

S—u t—u
)¢ (y)] sy? + tx? — 2uxy
= /(s g \/W exp (= O Y dady
I¢"(@)¢ ()] z® +y
< - - .
/(5 g \/W exp( ot )dxdy

Finally one uses the inequality st — u? > s(t — u) to finish the proof. O

E[L L] <C a1(s)a; (/|C eXp

[u,v]?

4.2 Some error estimates for Riemman sums

In this section we give various estimates for error terms that appear in various Riemann like sums throughout
the article.

Lemma 4.5. We have the following estimates for a positive constant C independent of n and €,

2 P
(1) fttiiﬂ (log (t::fu) ) pdu < Cloff%’ for any p > 1.
(it) ft o fo f ft =) dvdudrds < CIOg

(i) >, ft“’ld fo drf du [ (v —r) 1(u—r)_%v_%dv§0%,

. n—1 rt; s T
() > o ftiﬂ ds fti dr f,. \/s(ii_r)dv < %
v) [} ds du dyde(y ‘y‘ —1 4z < Ce? log(e)|.
0 (u—s)(u—ste)

(vi) fo ds [ du [ u~ %e\/ flt‘essu“dydx<052\1og()|

Proof. All the proofs follow by explicit integration when possible and then bounding the terms either by T’
or % We only remark explicit points where the calculation has to be carefully done.

Proof of (i). Using a change of variable z = %

tit1 T_ 2p T i1 oo 1 2p
/ (log <u> ) du = M/ 2 1og? (x + 1)dx < CM,
t; tig1 —u n n—i—1 n

we write

where the last inequality is obtained by applying integration by parts formula [2p] + 1 times and the trivial
inequality %ﬂ < % for z > 0.

Proof of (ii). One integrates directly wrt u. The result is bounded by VT. Then by Fubini’s theorem
one carries out the integral wrt s first and then wrt r and v respectively. This gives the estimate.
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Proof of (iii). Integrate first wrt u. Secondly, by Fubini integrate wrt s and bound the result by n~!
Integrate wrt r to obtain the function
)dv

1 n—1 tit1 1
— E log(
i/ \F

S*Z\/»/ ')dv
< C’lo;;g fo tiv1log(tiv1) — t;log(t:)).

The Proof of (iv) is straightforward.
Proof of (v). Integrating with dz and dy, we obtain

[yl
/ds/ du/dye Te 5 L dz
0o s(u—s)(u—s-+e)

=Ce2 ds du
/ / Vs(u — s)( u—s+e)

u—s

=

By using a change of variables © = we obtain

/sT \/(u—s)(lu—s+e)du/oTes mdxgc<l+log <T€_s>>’

hence
T
/ ds/ du<C/ 1+log (S) )dsgcuog(e)|.
\/s u—s u—s—i—e €
Proof of (vi).
T s L |z| eiﬁ
/ ds/ du/u_2 \[ / S_udydx
s—e)VO0 ,C’i |z _%
/ ds/ du/ -3¢ ¢ dydzx
0 0 Ve Jo s—u
s o g S
e e e 5w
+/ ds/ du/u_% / dydz
0 (s—€)VO Ve Jo s—u
=J1 + Js.
We have
s—e)VO0 18_032
J1 <C’/ ds/ du/u_ﬁ 7 |lz|(s — u) " da
) (s—e)VvO L
E/ / u"2(s—u)” 1du<Ce?|log( ),
and
7C1‘2
veeflufl | mf i e
< / / u%s—u) éduﬁCe%.
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