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In this article, we consider an unbiased simulation method for multidimensional diffusions based
on the parametrix method for solving partial differential equations with Hölder continuous
coefficients. This Monte Carlo method which is based on an Euler scheme with random time
steps, can be considered as an infinite dimensional extension of the Multilevel Monte Carlo
method for solutions of stochastic differential equations with Hölder continuous coefficients.
In particular, we study the properties of the variance of the proposed method. In most cases,
the method has infinite variance and therefore we propose an importance sampling method to
resolve this issue.
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1. Introduction

Consider the following multidimensional stochastic differential equation (sde)

Xt = X0 +

m∑
j=1

∫ t

0

σj(Xs)dW
j
s +

∫ t

0

b(Xs)ds, t ∈ [0, T ]. (1)

Here W is an m-dimensional Wiener process and σj , b : Rd → Rd are such that there
exists a weak solution to (1). More precise assumptions that we will work under and that
guarantees this will be stated later.

As there are very few situations where one can solve (1) explicitly one has to use
numerical approximations. In such a case the numerical calculation of E [f(XT )] for
f : Rd → Rd, using Monte Carlo simulation has been widely addressed in the literature.
In particular, the Euler-Maruyama scheme is one of the main numerical approximation
schemes studied due to its generality and simplicity of implementation.

Given a time partition π : 0 = t0 < t1... < tN < tN+1 = T , we define the Euler-
Maruyama scheme {Xπ

ti ; i = 0, ..., N + 1} associated with (1) by Xπ
0 = X0,

Xπ
ti+1

= Xπ
ti +

m∑
j=1

σj(X
π
ti)(W

j
ti+1
−W j

ti) + b(Xti)(ti+1 − ti), i = 0, ..., N.
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From this numerical approximation, it is possible to draw Monte Carlo samples and
therefore we can obtain an approximation of E [f(XT )]. This approximation will contain
two types of errors, a statistical error which arises from the fact that we are taking the
average of a finite number of Monte Carlo samples. This error can usually be controlled
by estimating the variance of the sample. Should a smaller error be needed we simply
draw more Monte Carlo samples. The second error is the bias, which comes from the
time discretization π. This error is more difficult to control. There are results on the
asymptotic rate at which this error decreases as the number of steps increases but in
general it is not possible to know (a priori) how large this error is in a specific example.
In cases where the coefficients have some regularity the rate of convergence is known (see
[2]).

Although these convergence rates may be considered to be slow, they have become the
basis of the construction of other more refined numerical schemes. Besides, this compu-
tational application, they also have various theoretical uses and is therefore important.

Many researchers have addressed various of the above issues related to some of the
shortcomings of the Euler-Maruyama scheme. In order to carry out these studies one
needs in general smoothness and uniform ellipticity assumptions on the coefficients of
(1).

In this article, we provide and discuss the properties of a numerical scheme with no
bias and which is also applicable to situations where the coefficients σ or b are bounded
Hölder continuous functions and therefore they may not satisfy smoothness conditions.

For (weak) existence and uniqueness of solutions of sde’s with bounded Hölder con-
tinuous uniformly elliptic coefficients, we refer the reader to [18].

The organization of this paper is as follows. After introducing some definitions and
notations in the next section, we follow in Section 3, introducing the Multilevel Monte
Carlo (MLMC) methods and in particular the parametrix method which can be seen as
a random MLMC method. In Section 4 we derive some bounds that will be useful in
understanding the behavior of the variance of the proposed simulation method. Then in
Sections 5 and 6 we explore some of the properties of the two varieties of the parametrix
method, in particular we find that the simulation methods do not always give a finite
variance.

In Section 7 we show how, using importance sampling on the discretization times of the
Euler-Maruyama scheme, the problem of infinite variance can be solved. The main results
are that, assuming that the coefficient functions are regular, the method achieves finite
variance, and that, assuming only that the coefficient functions are Hölder, the method
achieves finite variance in dimension 1. In Section 8, we find bounds on the variance
of the methods and we are therefore able to state an optimization problem for finding
parameters in the importance sampling method which will improve the performance of the
simulation methods. We also provide some rules of thumb for choosing these parameters.
In Section 9, we exemplify the results obtained in the paper by applying these methods
to some sde’s. We find that our examples behaves as we would expect from the results
developed in this article.
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2. Definitions and Notations

Here we give some of the notations and definitions that will be used throughout the text.
For two symmetric matrices a and b we let a < b mean that b − a is positive definite.
Also let ai,j denote the (i, j)th element of a. Let a be a d × d symmetric non negative
definite matrix, with 0 < aI ≤ a ≤ āI, for a, ā ∈ R, where I is the d × d dimensional
identity matrix. Define ρa := ā/a. The multi-dimensional Gaussian density with mean
zero and covariance matrix a is denoted by

ϕa(x) =
1

(2π)d/2
√

det a
exp

{
−1

2
xTa−1x

}
.

We abuse the notation by using ϕā ≡ ϕāId×d . We let ∂jα be the partial derivative operator
of order j, with respect to the variables

α = (α1, . . . , αj) ∈ Aj =
{
α = (α1, . . . , αj) ∈ {1, . . . , d}j

}
and define the Hermite polynomials associated with the Gaussian density, Hi

a(x) =
−(a−1x)i and Hi,j

a (x) = (a−1x)i(a−1x)j − (a−1)i,j . That is, ∂iϕa(x) = Hi
a(x)ϕa(x) and

∂2
i,jϕa(x) = Hi,j

a (x)ϕa(x). In general, | · | denotes the norm in real vector spaces while

‖ · ‖k denotes the uniform norm in Ckb (Rd,R) ≡ Ckb (Rd), the space of bounded functions
with k bounded derivatives. The norm in this space is defined

||f ||k =

k∑
j=0

∑
α∈Aj

sup
x∈Rd

|∂jαf(x)|.

C∞c (Rd) denotes the space of real valued infinitely differentiable functions with com-
pact support defined on Rd. For a bounded function f , recall that ‖f‖0 = supx∈Rd |f(x)|.
For a Hölder function a : Rd → Rk with index α ∈ (0, 1], we define its Hölder norm as

aH = supx 6=y
|a(x)−a(y)|
|x−y|α . As above, we naturally extend the definition so that Cαb (Rd,R) ≡

Cαb (Rd) denotes the space of bounded α-Hölder functions. δx0
(x) will denote the Dirac’s

delta generalized distribution function.
Throughout the proofs we will use a constant denoted by CT in order to indicate the

dependence on T . This constants may change value from one line to the next. Further-
more, they will always be increasing in T and converge to a finite value as T ↓ 0.

3. Multilevel Monte Carlo Methods

Because of the difficulty to quantify the discretization error, there is an interest in so-
called unbiased simulation methods. We differentiate here between exact methods and
unbiased methods. Exact meaning to sample a path, at a finite set of points, with the dis-
tribution of the sde, while unbiased means that we can, with out bias, estimate E [f(XT )].
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In many applications an unbiased method is however sufficient. An example of an exact
method is given in [4]. This method uses the Lamperti transform of the original sde
and therefore it is limited to the case d = m = 1. Other exact methods have also been
derived for some special cases, e.g. [6] for the SABR model and [5] for the Heston model.
However, these methods can not be easily extended to a general sde.

Now, in order to introduce the Multilevel Monte Carlo method (MLMC), letXn
T denote

an approximation of XT using an Euler method with uniform time steps of length 2−nT ,
n ≥ 0. The MLMC method, introduced in [9], is then to approximate E [f(XT )],

E [f(XT )] ≈ E
[
f(X0

T )
]

+

n̄∑
n=1

E
[
f(Xn

T )− f(Xn−1
T )

]
,

up to some final level n̄. At each level a certain number of Monte Carlo samples are
generated and the sample average then approximates the expectation. Choosing the
number of samples at each level in a good way will improve the convergence rate compared
to the Euler method.

Now, letting n̄→∞ we can write, assuming convergence,

E [f(XT )] = E
[
f(X0

T )
]

+

∞∑
n=1

E
[
f(Xn

T )− f(Xn−1
T )

]
=E

[
f(X0

T )
]

+

∞∑
n=1

pn
E
[
f(Xn

T )− f(Xn−1
T )

]
pn

=
1

p0
E
[
1(N = 0)f(X0

T )
]

+ E

[
1(N ≥ 1)

f(XN
T )− f(XN−1

T )

pN

]
, (2)

where N is a random variable with distribution pn > 0, n ≥ 0. The last expression above
can be simulated unbiasedly using Monte Carlo methods. Now, we would like to discuss
the second moment of the above proposed estimator. A straightforward calculation gives

E

(f(XN
T )− f(XN−1

T )

pN

)2
 ≤ C ∞∑

n=1

rn
pn
,

where rn := E
[(
f(Xn

T )− f(Xn−1
T )

)2]
. As discussed previously, the rate at which this

error goes to to zero is well understood. In fact, under sufficient regularity hypotheses
on b, σ and f one knows that rn = O(2−n). Then the variance of the method will be
finite if we choose pn ∼ 2−nn2. On the other hand, note that the average number of
random number generators used can be considered to be

∑∞
n=1 2npn =∞. Therefore the

procedure is doomed to fail as long as ∞-level Monte Carlo method goes. The choice of
pn may be changed in order to make the average complexity finite but then the variance
of the method will be infinite.

The interpretation of the method is clear. The method has no bias because it relies on
an infinite order expansion. The level used in each simulation is determined by the value
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of the random variable N and the amount of simulation in each level is determined by
the choice of the probability distribution pn, n ≥ 0. Still, as it can not be applied in the
∞-dimensional case, one tries to approximate it by taking a certain number of levels. In
fact, the previous calculation shows that taking too many levels in the MLMC may lead
to the wrong result. One remedy is to use the Milstein scheme which improves on the
order of strong convergence. However this assumes more regularity and is also difficult
to use in multidimensional problems (for more on this, see [10]).

Furthermore, in the case that the coefficients σ, b are Hölder functions and f is not a
regular function it is well known that the rate rn degenerates quickly (see e.g. [14] and
[1]). Therefore the applicability of the MLMC method as understood above is limited.
For this reason, we will propose to use the parametrix method of approximation as one
possible extension of the MLMC method in what follows. This method will allow a more
profound analysis of the differences between approximations showing exactly where the
variance explosion appears. This variance problem will then be solved by an appropriate
time importance sampling. Then an optimization procedure for the efficiency of the
algorithm can be carried out.

The principle of simulation without bias just described can also be found in [15] and
[17] which have already appeared in [16] which cites [12] as a source of this idea. As
explained in Section 3 of [17] one can not apply L2(Ω) criteria to this problem and
even if a criteria in probability is applied as in Section 4 in that same paper then the
computational complexity increases as the strong rate of convergence slows down.

3.1. Parametrix Methods

The unbiased simulation technique for the multidimensional sde (1) which we will propose
here has been introduced in [3]. This technique is based on the parametrix method
introduced by E. Levi more than 100 years ago in order to solve uniformly elliptic partial
differential equations of parabolic type. This method is highly flexible and has been
extended to various other equations. The proposed method is also based on the Euler
scheme although in this new simulation scheme the partition will be random.

We may interpret the method as a randomized MLMC method but where the structure
of the sde is used to rewrite the difference of levels in (2) so that we can eventually handle
Hölder type coefficients. In fact, heuristically speaking, the difference between two levels
in (2), f(XN

T ) − f(XN−1
T ), can be rewritten using the Itô formula. This will generate a

weight which appears due to the derivatives in the Itô formula as well as the difference
of the generators of the two processes XN and XN−1. The differential operators which
appear in the difference of the two generators can be applied to densities directly or
in an adjoint form which therefore does not require differentiation of the coefficients.
This requires a delicate “diagonal” type argument which appears in [3]. Finally, these
arguments lead to two different types of approximations (for more details, see [3]). For
this reason, one is called the forward method which requires smoothness of coefficients
and the backward method which can be applied for Hölder continuous coefficients.

Let us introduce these methods in the following general format:
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Let π : 0 = t0 < t1 < . . . < tN < tN+1 = T and define the following discrete time
process and its associated weight function,

Xπ
0 is random variable with density ν(x),

Xπ
ti+1

= Xπ
ti + µ(Xπ

ti)(ti+1 − ti) + σ(Xπ
ti)
√
ti+1 − tiZi+1, i = 0, 1, . . . , N, (3)

Zi, i = 1, ..., N are independent N(0, Im×m) random vectors,

θt(x, y) =
1

2

d∑
i,j=1

κi,jt (x, y)−
d∑
i=1

ρit(x, y).

We shall abuse this notation slightly and write for example Xπ
si or Xπ

τi with the under-
standing that the time partition π is appropriately defined. That is π : 0 = s0 < s1 <
. . . < sN < sN+1 = T or π : 0 = τ0 < τ1 < . . . < τN < τN+1 = T , which should be
understood from the context.

Here, we define a(x) ≡ σTσ(x) and assume that a is uniformly elliptic. As explained
previously the goal is to give an alternative probabilistic representation for E [f(XT )] for
f : Rd → Rd.

Define Sn = {s = (s1, ..., sn) ∈ Rn|0 < s1 < s2 < . . . < sn < T}. Then, the following
is proved in [3],

E [f(XT )] =

∞∑
n=0

∫
Sn

E

Φ(Xπ
T )

n−1∏
j=0

θsj+1−sj (X
π
sj , X

π
sj+1

)

 ds, (4)

where we define
∫
S0 ds ≡ 1. Now, let N(t) be a Poisson process with intensity parameter

λ > 0 and define N ≡ N(T ). Let τ1, . . . , τN be the event times of the Poisson process
and set τ0 = 0, τN+1 = T . Since, conditional on N , the event times are distributed as a
uniform order statistic, P (N = n, τ1 ∈ ds1, . . . , τn ∈ dsn) = λne−λT , for s ∈ Sn. We may
rewrite the time integral in (4) in a probabilistic way as

E [f(XT )] = eλTE

[
Φ(Xπ

T )

N−1∏
i=0

λ−1θτi+1−τi(X
π
τi , X

π
τi+1

)

]
. (5)

Now, the forward method is defined by

ν(x) = δX0(x),
Φ(x) = f(x),
µ(x) = b(x),

κi,jt (x, y) = ∂2
i,ja

i,j(y) + ∂ja
i,j(y)Hi

ta(x)(y − x− b(x)t)

+∂ia
i,j(y)Hj

ta(x)(y − x− b(x)t) + (ai,j(y)− ai,j(x))Hi,j
ta(x)(y − x− b(x)t)

ρit(x, y) = ∂ib
i(y) + (bi(y)− bi(x))Hi

ta(x)(y − x− b(x)t)


(F)

Here Hi and Hi,j denote the Hermite polynomials of order 1 and 2 which have been
defined in Section 2. Further assuming that f(x) is a density function, the backward



Unbiased simulation of stochastic differential equations using parametrix expansions 7

method is

ν(x) = f(x),
Φ(x) = δX0

(x),
µ(x) = −b(x),

κi,jt (x, y) = (ai,j(y)− ai,j(x))Hi,j
ta(x)(y − x+ b(x)t)

ρit(x, y) = (bi(x)− bi(y))Hi
ta(x)(y − x+ b(x)t)

 (B)

We note here the time directional nature of each scheme from which the names forward
and backward come from. In particular, in the backward method one needs to evaluate
the irregular function Φ(x) = δX0(x). This creates problems in the MC computation
procedure which may be partially solved by either using conditional expectation with
respect to the noises generated up to τN , kernel density estimation methods or integration
by parts formulas.

We will denote the transition densities from x to y associated with the forward and
backward methods respectively by qFt (x, y) and qBt (x, y). That is,

qFt (x, y) = ϕa(x)t(y − x− b(x)t),

qBt (x, y) = ϕa(x)t(y − x+ b(x)t).

For statements that are true for both the forward and backward methods, we will simply
write qt(x, y).

We note that for the backward method a formula better suited for simulation is ob-
tained by conditioning on all the noise up to τN in Equation (5). That is,

E [f(XT )] = eλTE

[
qBT−τN (Xπ

τN , X0)

N−1∏
i=0

λ−1θτi+1−τi(X
π
τi , X

π
τi+1

)

]
. (6)

We will henceforth refer to the MC simulation method based on (6) as the backward
method with exponential sampling.

Now, we can see the connection to the MLMC method of the previous section. Com-
paring the first line of (2) with (4) we see that both sum over the number of discretization
steps so that (4) is in some sense also a MLMC method but where the differences of lev-
els is replaced by the weight function θ and finally we integrate over all possible time
partitions at each level.

Since the right-hand side of (5) can be sampled, this gives us an unbiased simulation
method. Since the time-steps τi+1− τi are exponentially distributed we shall refer to this
as the forward/backward-method with exponential (time) sampling. With the method
being unbiased the only source of error is the statistical error and we shall therefore in
the following sections investigate the variance of the method. The computational work
is governed by the probabilities of N which are parametrized by λ.

We also remark here that the above two methods should be considered as examples of
possible parametrix methods. In fact, many other types of basic approximations may be
used in order to build an expansion similar to (5) (see e.g. [8]). In this sense the above
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expansion is a Taylor like expansion where one can choose a parameter (the so-called
parametrix) in order to obtain the expansion. One of the advantages of the parametrix is
that it does not require the existence of strong solutions of the sde. This is in comparison
to the MLMC which implicitly demands the existence and uniqueness of strong solutions
while the original problem of the calculation of E [f(XT )] only requires weak existence
of solutions to the sde (1) in order to make sense.

4. Bounds on θ

In order to analyze the variance of the proposed simulation method (3), we need to find
bounds on the weight function θt(x, y).

We will use the Gaussian inequalities and the constants Ca,p(α) and C ′a,p(α) appearing
in Lemma A.1 as well as the inequality

ϕta(y) ≤ (2ρa)d/2ϕ2tā(y).

Here a is any invertible matrix such that 0 < aI ≤ a ≤ aI.

Lemma 4.1. Assume that there exist a, a ∈ R such that 0 < aI ≤ a(x) ≤ aI, a, b ∈
Cαb (Rd). In the forward method we further assume σj ∈ C2

b (Rd), b ∈ C1
b (Rd). Then for

t ∈ (0, T ], there exists a constant CT > 0 which depends on T , a, a, and the corresponding
norms of a and b in each case such that

|θt(x, y)pqt(x, y)| ≤ CT
tp(1−ζ/2)

ϕ4āt(y − x), (7)

where, in general, for the forward method ζ = 1, for the backward method ζ = α. However
if a is constant, then in the forward case ζ = 2 and in the backward case ζ = 1 + α.

An explicit expression for the constant CT in the above result can be found in the
proof below. The statement of this lemma will be important in what follows and therefore
we will refer to the parameters and hypotheses in each of the four cases above. That is,

Case 1 (Forward case: general) σj ∈ C2
b (Rd), b ∈ C1

b (Rd). ζ = 1
Case 2 (Backward case: general) σj , b ∈ Cαb (Rd). ζ = α.
Case 3 (Forward case: a constant) b ∈ C1

b (Rd). ζ = 2.
Case 4 (Backward: a constant) b ∈ Cαb (Rd). ζ = 1 + α.
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Proof. In case 1,∣∣∣κi,jt (x, y)qFt (x, y)1/p
∣∣∣

=
∣∣∣(∂2

i,ja
i,j(y) + ∂ia

i,j(y)Hj
ta(x)(y − x− b(x)t) + ∂ja

i,j(y)Hi
ta(x)(y − x− b(x)t)

+ (ai,j(y)− ai,j(x))Hi,j
ta(x)(y − x− b(x)t)

)
ϕta(x)(y − x− b(x)t)1/p

∣∣∣
≤
(

(2ρa)d/(2p)||a||2 + 2||a||1
Ca,p(1)

t1/2
+ ||a||1||b||0C ′a,p(0) + ||a||1

C ′a,p(1)

t1/2

)
× ϕ2tā(y − x− b(x)t)1/p

=

(
||a||1
t1/2

(2Ca,p(1) + C ′a,p(1)) + (2ρa)d/(2p)||a||2 + ||a||1||b||0C ′a,p(0)

)
× ϕ2tā(y − x− b(x)t)1/p,

and∣∣∣ρit(x, y)qFt (x, y)1/p
∣∣∣ =

∣∣∣{∂ibi(y) + (bi(y)− bi(x))Hi
ta(x)(y − x− b(x)t)

}∣∣∣
× ϕta(x)(y − x− b(x)t)1/p

≤
(
||b||1(2ρa)d/(2p) + ||b||1Ca,p(2) + ||b|||1||b||0Ca,p(1)t1/2

)
ϕ2tā(y − x− b(x)t)1/p.

Thus, by Lemma A.1(iii),

|θt(x, y)pqFt (x, y)| =

∣∣∣∣∣
1

2

∑
i,j

κi,jt (x, y)−
∑
i

ρit(x, y)

ϕa(x)t(y − x− b(x)t)1/p

∣∣∣∣∣
p

≤ CT
tp(1−ζ/2)

ϕ4āt(y − x).

Here

CT := 2d/2e
1
4‖b‖0Ta

−1

[
d2

2
||a||1(2Ca,p(1) + C ′a,p(1)) + Td||b||0||b||1Ca,p(1)

+ T 1/2d

(
d
(
(2ρa)d/(2p)||a||2 + ||a||1||b||0C ′a,p(0)

)
2

+ ||b||1
(

(2ρa)d/(2p) + Ca,p(2))
))]p

.

In case 2, with aH and bH being the Hölder constants of a and b, similar calculations
give

|θt(x, y)pqBt (x, y)| ≤ ϕ2tā(y − x+ b(y)t)

×
[
d2aH

2

C ′a,p(α)

t1−α/2
+
d2aH

2
||b||α0

C ′a,p(0)

t1−α
+ dbH

Ca,p(α+ 1)

t
1−α

2

+ dbH ||b||α0
Ca,p(1)

t1/2−α

]p
≤ CT
tp(1−ζ/2)

ϕ4āt(y − x),
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where now

CT :=2d/2e
1
4‖b‖0Ta

−1

[
d2aH

2
C ′a,p(α) +

d2aH
2
||b||α0C ′a,p(0)Tα/2

+dbHCa,p(α+ 1)T 1/2 + dbH ||b||α0Ca,p(1)T
1+α

2

]p
.

In cases 3 and 4, that is with constant a, all the above calculations have to be repeated
in a similar way to give the claimed result.

As a corollary of Lemma 4.1 we have the following result.

Corollary 4.2. For n ∈ N,

E

∣∣∣∣∣∣Φ(Xπ
T )

n−1∏
j=0

θsj+1−sj (X
π
sj , X

π
sj+1

)

∣∣∣∣∣∣
p ≤ CT (T − sn)−q

n−1∏
j=0

CT (sj+1 − sj)−p(1−
ζ
2 ),

where q = 0 in the forward case and q = (p− 1)d/2 in the backward case.

Proof. We will do the proof for the backward case. The forward case is similar and left
for the reader. First,

qBt (x, y)p ≤ CT t−(p−1)d/2ϕ 2tā
p

(x− y), (8)

where we used Lemma A.1(iii) and direct calculation on the Gaussian density. Then,

E

∣∣∣∣∣∣Φ(Xπ
T )

n−1∏
j=0

θsj+1−sj (X
π
sj , X

π
sj+1

)

∣∣∣∣∣∣
p

=

∫
f(xs0)dxs0

n−1∏
j=0

{
|θsj+1−sj (xsj , xsj+1

)|pqBsj+1−sj (xsj , xsj+1
)dxsj+1

}
qBT−sn(xsn , X0)p

≤ CT
∫ n−1∏

j=0

{
CT (sj+1 − sj)−p(1−ζ/2)ϕ4ā(sj+1−sj)(xsj+1

− xsj )dxsj
}

× (T − sn)−(p−1)d/2ϕ 2(sj+1−sj)ā

p

(xsn −X0)dxsn

= CT (T − sn)−(p−1)d/2
n−1∏
j=0

CT (sj+1 − sj)−p(1−ζ/2).
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5. The forward simulation method with exponential
time sampling

Let us begin by recalling a basic mathematical result which describes the behavior of the
forward simulation method.

Theorem 5.1 ([3]). Assume that σj ∈ C2
b (Rd), b ∈ C1

b (Rd), j ∈ {1, ..., d} and that
there exist a, a ∈ R such that 0 < aI ≤ a(x) ≤ aI. Also, assume that f ∈ C∞c (Rd). Then

the right side of (4) for (F) converges absolutely at least at the rate
CnTT

n/2

[n/2]! for some

positive constant CT and therefore the equality (4) holds.

Remark 5.2. The assumption f ∈ C∞c (Rd) limits the usefulness of the theorem in
financial applications where it is common to consider non-differentiable functions, e.g. in
option pricing. However it is possible to relax this assumption by using classical limiting
arguments. We do not address this technical issue here. In fact, in the present setting one
can prove that the density of the process XT exists and it has Gaussian upper bounds
(see for example, [8]). Therefore one can consider functions f that have non-compact
support and sub-Gaussian upper bounds.

In the case of non-bounded coefficient functions, one can perform some smooth bounded
approximation of the coefficients in order to apply the parametrix method. In general,
applying the parametrix directly, introduces large variations in the method. For more
details, see [19].

While Theorem 5.1 guarantees that the simulation method will converge to the correct
value, in order to achieve a statistical error of the order M−1/2, where M is the number
of MC sample paths used for the simulation, we need the variance to be finite. The
following two results show that this is not always the case.

Lemma 5.3. In addition to the assumptions in Theorem 5.1, assume that a(x) ≡ a > 0.
Then the forward method with exponential sampling has finite variance.

Proof. By applying Corollary 4.2, with p = 2, ζ = 2 and q = 0 we get that the variance
of the method based on (5) has as leading constant term,

e2λTE

[
f(Xπ

T )2
N−1∏
i=0

λ−2θ2
τi+1−τi(X

π
τi , X

π
τi+1

)

]

=e2λT
∞∑
n=0

λ−2n

∫
Sn

E

f(Xπ
T )2

n−1∏
j=0

θ2
sj+1−sj (X

π
sj , X

π
sj+1

)

 ds
≤CT e2λT

∞∑
n=0

λ−2n(CTT )n

n!
= CT e

2λT+CTT/λ
2

. (9)
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The above result thus shows that in the case of a constant diffusion term, the forward
method with exponential sampling will have finite variance. For future reference we note
that the bound in (9) can be written in terms of the Mittag-Leffler function, see Appendix
B, as

CT e
2λTE1,1(λ−2CTT ).

A negative result is the following. This issue will be solved in Section 7 by using
importance sampling on the jump times.

Lemma 5.4. There are choices of a, b and f , such that the forward simulation method
(5) has infinite variance.

Proof. Without loss of generality, we assume that d = m = 1, b(x) ≡ 0 and a ∈ C2
b (R)

and assume that a′ 6= 0, ν-a.e. and that f is not zero on a set of positive Lebesgue
measure. Then for π̄ = {0, s, T},

E

[
f2(Xπ

T )

N∏
i=1

θ2
τi+1−τi(X

π
τi−1

, Xπ
τi)

]
≥ E

[
I(N = 1)f2(Xπ

T )θ2
τ1(Xπ

0 , X
π
τ1)
]

=

∫ T

0

E
[
f2(X π̄

T )θ2
s(X

π̄
0 , X

π̄
s )
]
ds.

Define X π̄
s = X π̄

0 + σ(X π̄
0 )
√
sZ1 and X π̄

T = X π̄
s + σ(X π̄

s )
√
T − sZ2. We then get for some

X∗ ∈ [X π̄
0 ∧X π̄

s , X
π̄
0 ∨X π̄

s ]

θs(X
π̄
0 , X

π̄
s )

=
1

2
a′′(X π̄

s )− a′(X π̄
s )
X π̄
s −X π̄

0

a(X π̄
0 )s

+
1

2
(a(X π̄

s )− a(X π̄
0 ))

((
X π̄
s −X π̄

0

a(X π̄
0 )s

)2

− 1

a(X π̄
0 )s

)

=
1

2
a′′(X π̄

s ) + a′(X π̄
s )

Z1

σ(X π̄
0 )
√
s

+
1

2

(
a′(X π̄

s )σ(X π̄
0 )
√
sZ1 −

a′′(X∗)a(X π̄
0 )sZ2

1

2

)(
Z2

1 − 1

a(X π̄
0 )s

)
=

1√
s

a′(X π̄
s )

σ(X π̄
0 )

Z1 + Z3
1

2
+

1

2
a′′(X π̄

s )− a′′(X∗)Z2
1 (Z2

1 − 1)

4
.

Now,

lim inf
s→0

sE
[
f2(X π̄

T )θ2
s(X

π̄
0 , X

π̄
s )
]
≥ C lim inf

s→0
E
[
f2(X π̄

T )a′(X π̄
s )2(Z1 + Z3

1 )2
]

≥ CE
[
f2(X π̄

0 + σ(X π̄
0 )
√
TZ2)a′(X π̄

0 )2(Z1 + Z3
1 )2
]
≥ C.

Therefore, we can find δ > 0 such that∫ T

0

E
[
f2(X π̄

T )θ2
s(X

π̄
0 , X

π̄
s )
]
ds ≥

∫ δ

0

C

2s
ds =∞.
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Remark 5.5. We should remark here that the fact that the variance is not finite
is more a practical issue than a theoretical problem. In fact, the strong law of large
numbers still applies even if the variance does not exist. Therefore the convergence of the
method is still assured. The fact that the variance is infinite implies that the convergence
will exhibit large deviations from the expectation. The amount and the height of these
oscillations will depend on the behavior of moments of order less than 2 as determined by
the Marcinkiewicz-Zygmund strong law. In fact, in the case exhibited above all moments
of order less than 2 are finite and therefore the deviations from the mean are somewhat
limited. However, from a practical point of view, having finite variance is convenient
when obtaining confidence intervals for the estimated values.

6. The backward simulation method with exponential
time sampling

The backward simulation method is based on the following result.

Theorem 6.1 ([3]). Assume that there are a, a ∈ R such that 0 < aI ≤ a(x) ≤ aI,
a, b ∈ Cαb (Rd) and f ∈ C∞c (Rd) is a density function. Then (4) holds for the backward

method where the sum converges absolutely at a rate of at least
CnTT

nα/2

[nα2 ]! for some positive

constant CT .

The following result shows that the backward method can be expected to perform
poorly in dimensions higher than 1.

Lemma 6.2. In addition to the assumptions in Theorem 6.1, assume that a(x) ≡ a > 0
and b ∈ Cαb (Rd). Then the backward method with exponential sampling, (6), has finite p

moment, where 0 < p < min
{

2
1−α ,

2
d + 1

}
.

Proof. We apply Corollary 4.2, with ζ = 1 + α and q = (p− 1)d/2 and get,

E

∣∣∣∣∣∣qBT−sn(Xπ
sn , X0)

n−1∏
j=0

θsj+1−sj (X
π
sj , X

π
sj+1

)

∣∣∣∣∣∣
p

≤CT (T − sn)−(p−1)d/2
n−1∏
j=0

CT (sj+1 − sj)−p(1−α)/2,

This is integrable over Sn when p < min
{

2
1−α ,

2
d + 1

}
. Thus for the p-moment we have
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that

epλTE

[
qBT−sn(Xπ

sn , X0)p
N−1∏
i=0

λ−p
∣∣∣θτi+1−τi(X

π
τi , X

π
τi+1

)
∣∣∣p]

≤CT epλT
∞∑
n=0

λ−pn
∫
Sn
CnT (T − sn)−(p−1)d/2

n−1∏
j=0

(sj+1 − sj)−p(1−α)/2ds

=CT e
pλTT−(p−1)d/2Γ(1− (p− 1)d/2) (10)

×E1−p(1−α)/2,1−(p−1)d/2(λ−pCTT
1−p(1−α)/2Γ(1− p(1− α)/2)), (11)

where in the last equality we used the definition of the Mittag-Leffler function in Ap-
pendix B.

In the backward case we thus get a weaker result than in the forward case. In particular
for dimensions 2 or greater, the result does not guarantee that the variance of (B) will
be finite. In the important special case p = 2 and d = 1, (11) simplifies to

CT e
2λTT−1/2Γ(1/2)Eα, 12 (λ−2CTT

αΓ(α)).

We remark that the second condition p < 2
d + 1 appears due to the variance of

qBT−τN (XB
τN , X0) in (6) which converges to the Dirac delta distribution as T − τN → 0.

This will imply that the variance is finite for d = 1. In higher dimensions, one solution
to the problem is to approximate this distribution by replacing T − τN by T − τN + ε for
some small ε > 0. This of course introduces a bias and one would have to find an optimal
ε that balances variance and bias. This can be done using the well known kernel density
estimation techniques.

If we consider the rate of degeneration of the variance, this problem may be improved
in polynomial orders by using the Malliavin-Thalmaier integration by parts formula. In
particular one needs to use the Malliavin-Thalmaier type formula which also implies some

kernel density type approximation. This will change the bound p < min
{

2
1−α ,

2
d + 1

}
into p < 2(1− ε) for any ε > 0 and d > 1. This method which requires an approximation
of the Poisson kernel will also introduce bias in the estimation which is controlled by the
value of ε.

A solution that retains the unbiasedness is based on importance sampling where the
direction of simulation is changed again. Therefore qT−τN (Xπ

τN , X0) is replaced by f(Xπ
T ),

for f ∈ Cc(Rd) as in Theorem 5.1. We however choose not to treat this problem in more
detail here and leave as a possible topic for future research

We also remark that the variance explosion due to the intermediate time discretization
points which appeared in Lemma 5.4 also appears here and it gives as a result the above
restriction p < 2

1−α
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7. Achieving finite variance by importance sampling
on discretization time points

In examining the proof of Lemma 5.4 we see that the infinite variance is a consequence
of the fact that θ2

s(·, ·) increases at the rate 1/s as s → 0. Conditional on N = n the
discretization times used in the non-uniform Euler-Maruyama scheme are distributed as
the order statistics of a sequence of n i.i.d uniformly distributed random variables on
[0, T ]. Then the integral on the last line of the proof of Lemma 5.4 diverges not only in
the first level but on all levels.

We aim to change the sampling distribution of the discretization times, thereby moving
some of the singularity of θ at s = 0 from the integrand to the sampling distribution. An
example should help to illustrate the idea.

7.1. Toy example

Consider the problem of calculating
∫ 1

0
tρdt, for ρ > −1. For us, this serves as a much

simplified version of (4). As we did with (4) we may rewrite by exchanging the integral
for an expectation as follows∫ 1

0

tρdt = E [Xρ] , X ∼ U(0, 1),

which can be calculated using simulation of n i.i.d. copies of Xρ with X ∼ U(0, 1). The
above expression corresponds to (5).

Now, if ρ ∈ (−1,−1/2], the second moment of the random variable Xρ is

E
[
X2ρ

]
=

∫ 1

0

t2ρdt =∞,

and thus our simulation will have an exploding variance. This means that the Monte Carlo
simulation will exhibit (high) oscillations although there is almost sure convergence. One
solution is to use importance sampling. That is, let p > 1 and Y be a random variable
with density function t−γ(1− γ), for 0 < t < 1 and −pρ+1

p−1 < γ < 1. We then have∫ 1

0

tρdt =

∫ 1

0

tρ+γ

(1− γ)

(1− γ)

tγ
dt =

1

1− γ
E
[
Y ρ+γ

]
.

And furthermore, the p-moment of the above random variable is always finite as

1

(1− γ)p
E
[
Y p(ρ+γ)

]
=

1

(1− γ)p

∫ 1

0

tp(ρ+γ) (1− γ)

tγ
dt =

1

(1− γ)p−1(pρ+ (p− 1)γ + 1)
.

Similarly, consider the problem of calculating the infinite sum
∑∞
n=0 an, for an ≥ 0

for all n. We could formulate this in a probabilistic way by introducing a probability
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function pn > 0, n ≥ 0 and writing

∞∑
n=0

an =

∞∑
n=0

pn
an
pn

= E

[
aN
pN

]
,

where the random variable N is distributed according to pn. It is easily seen that the
variance minimizing choice of sampling distribution is pn = an/

∑∞
n=0 an. Although this

choice is in practice not available since we do not know
∑∞
n=0 an we may use the general

heuristic of sampling those n for which an is large.

7.2. Importance sampling of discretization time points

We saw in the previous section that by passing some of the singularity of the random
variable of interest at 0 to the sampling density, i.e. by using importance sampling, we
are able to reduce the variance. The following result sets up the importance sampling
that we will use in our simulation method.

Lemma 7.1. Let {pn(s1, . . . , sn)}n≥0 be a family of strictly positive functions, pn :
Sn → R+. Suppose that there exists a discrete non-negative random variable N , such
that

P(N = n) =

∫
Sn
pn(s1, . . . , sn)ds > 0, n ≥ 1. (12)

Also, suppose that there exists a family {τi}i∈N of strictly increasing positive random
variables with density conditional on N = n, given by pn(s1, . . . , sn)/P(N = n). Then,
for any gn ∈ L1(Sn), n = 1, . . ., the following probabilistic representation holds∫

Sn
gn(s1, . . . , sn)ds = E

[
gN (τ1, . . . , τN )

pN (τ1, . . . , τN )
1(N = n)

]
.

Proof. We have that

E

[
gN (τ1, . . . , τN )

pN (τ1, . . . , τN )
1(N = n)

]
= P(N = n)E

[
gn(τ1, . . . , τn)

pn(τ1, . . . , τn)
|N = n

]
= P(N = n)

∫
Sn

gn(s1, . . . , sn)

pn(s1, . . . , sn)

pn(s1, . . . , sn)

P(N = n)
ds

=

∫
Sn
gn(s1, . . . , sn)ds.
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The functions pn in the previous lemma can be chosen rather arbitrarily. However,
firstly, we wish to apply importance sampling to (5) which involves a product. Secondly,
an arbitrary choice of pn could be hard to sample from. Therefore we consider multi-
plicative pn, corresponding to independent increments.

Lemma 7.2. Let {ξi; i ∈ N} be a sequence of i.i.d. random variables with support on
[0, T + ε], ε > 0, and common strictly positive density fξ(x), x ∈ [0, T + ε]. Also, let

τ0 = 0 , τi ≡
∑i
j=1 ξj, i ≥ 1 and let N := inf{n; τn < T ≤ τn+1}. Then, N , τi and the

functions

pn(s1, . . . , sn) =

∫ T+ε

T−sn
fξ(x)dx

n−1∏
i=0

fξ(si+1 − si), s0 = 0, (s1, . . . , sn) ∈ Sn,

satisfy the assumptions in Lemma 7.1.

Proof. First note that the positivity of pn is clearly satisfied. Furthermore,

P(N = n|τn = sn) =

∫ T+ε

T−sn
fξ(x)dx,

and therefore

P(N = n, (τ1, ..., τn) ∈ A) =

∫
A∩Sn

P(N = n|τn = sn)

n−1∏
i=0

fξ(si+1 − si)ds.

In particular,
∫
Sn
pn(s1, ..., sn)ds = P(N = n). Also, the density of τ1, τ2, . . . , τn condi-

tioned on N = n is given by

P(N = n|τn = sn)
∏n−1
i=0 fξ(si+1 − si)

P(N = n)
=
pn(s1, . . . , sn)

P(N = n)
.

We may now formulate two explicit examples of importance sampling for the time
discretization points. These methods will then have improved moment properties.

Proposition 7.3 (Beta sampling). Let {ξj ; j ∈ N} be a sequence of i.i.d. random

variables with common density fξ(x) = (1−γ)
xγ τ̄1−γ , 0 < x < τ̄ , τ̄ > T , γ ∈ (0, 1) and let N

and τi be defined as in Lemma 7.2. Then, under the same assumptions as in Theorem
5.1 for the forward and Theorem 6.1 for the backward, the following representation holds

E [f(XT )] = E

 Φ(Xπ
T )

pN (τ1, . . . , τN )

N−1∏
j=0

θτj+1−τj (X
π
τj , X

π
τj+1

)

 , (13)
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with

pn(s1, . . . , sn) =

(
1−

(
T − sn
τ̄

)1−γ
)(

1− γ
τ̄1−γ

)n n−1∏
i=0

1

(si+1 − si)γ
, n ≥ 0.

Also, for the forward method, the p moment of the r.v. inside the expectation of (13)
is finite for p(1 − ζ

2 − γ) < 1 − γ. In the backward method we additionally need that
p < 2/d+ 1, thus the variance is only finite in dimension 1. The values of ζ are given in
Lemma 4.1. In particular, if 1 − ζ < γ < 1 then the variance of the random variable in
(13) is finite and if we choose γ = 1− ζ

2 then all moments are finite.

Proof. Set

gn(s1, . . . , sn) ≡ E

Φ(Xπ
T )

n−1∏
j=0

θsj+1−sj (X
π
sj , X

π
sj+1

)

 .
Note that under Theorem 5.1 for the forward and Theorem 6.1 for the backward, we
have that∑∞

n=0

∣∣∫
Sn
gn(s1, ..., sn)ds

∣∣ <∞ and

E [f(XT )] = g0 +

∞∑
n=1

∫
Sn
gn(s1, . . . , sn)ds.

The cumulative distribution function of ξ can be found to be Fξ(x) = (xτ̄ )1−γ . Using
Lemma 7.2, pn satisfies the assumption in Lemma 7.1 with

pn(s1, . . . , sn) = P(ξ > T − sn)

n−1∏
i=0

(1− γ)

(si+1 − si)γ τ̄1−γ

=

(
1−

(
T − sn
τ̄

)1−γ
)(

1− γ
τ̄1−γ

)n n−1∏
i=0

1

(si+1 − si)γ
. (14)

Thus,

E [f(XT )] = E

[
gN (τ1, . . . , τN )

pN (τ1, . . . , τN )

]
= E

 Φ(Xπ
T )

pN (τ1, . . . , τN )

N−1∏
j=0

θτj+1−τj (X
π
τj , X

π
τj+1

)

 ,
and we also note that

pn(s1, . . . , sn) ≥

(
1−

(
T

τ̄

)1−γ
)(

1− γ
τ̄1−γ

)n n−1∏
i=0

1

(si+1 − si)γ
.
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Using Corollary 4.2 we get

E

[∣∣∣∣∣ Φ(Xπ
T )

pN (τ1, . . . , τN )

N−1∏
i=0

θτi+1−τi(X
π
τi , X

π
τi+1

)

∣∣∣∣∣
p]

=

∞∑
n=0

∫
Sn

E

[∣∣∣∣∣ Φ(Xπ
T )

pn(s1, . . . , sn)

n−1∏
i=0

θsi+1−si(X
π
si , X

π
si+1

)

∣∣∣∣∣
p]
pn(s1, . . . , sn)ds

≤CT
∞∑
n=0

∫
Sn

(T − sn)−q
n−1∏
j=0

CT (sj+1 − sj)−p(1−
ζ
2 ) 1

pn(s1, . . . , sn)p−1
ds

≤CT
∞∑
n=0

CnT

∫
Sn

(T − sn)−q
n−1∏
j=0

(sj+1 − sj)−(p(1− ζ2 )−γ(p−1))ds. (15)

the above quantity is finite if q < 1 and p(1− ζ
2 − γ) < 1− γ.

Remark 7.4. In the above lemma, ξj
d
= τ̄B, where B is a random variable with a

Beta(1 − γ, 1) distribution. This is equivalent to ξj
d
= τ̄ e−(1−γ)E , if E has an Exp(1)

distribution. We could instead consider a Beta(1− γ, 1− γ̃) distribution thereby gaining
an extra degree of freedom when choosing parameters. However, our main concern is
the singularity close to zero which we control by choosing γ appropriately. Adding a
parameter γ̃ allows us to shift probability mass to the right, but this can also be achieved
by choosing τ̄ large. Also, since the shape of the distribution to the right of T is not
important we chose not to include a γ̃ in our calculations.

Interpretation of the importance sampling method on discretization time points: Note
that in the extreme case that γ = 0 then ξj has a U(0, τ̄) distribution. Choosing a
parameter γ > 0 means that the algorithm is likely to take more and smaller time
discretization steps on average. It thus means that the algorithm will be sampling farther
into the sum in (4). If we consider p = 2 in (15) we can see this clearly. The integral
behaves asymptotically as CnTT

n(α+γ−1)/Γ(1+n(α+γ−1)) when n→∞, and therefore,
CT , T and α + γ will determine how far into the sum we need to sample to get a good
estimate.

Similarly, a large τ̄ means that the algorithm is likely to take larger and fewer time
discretization steps. We must have τ̄ > T since otherwise the algorithm will never sample
the term corresponding to n = 0 in (4), i.e. the case with no intermediate time steps
between 0 and T . In many cases it could be possible to calculate this term exactly, as
it is an integral w.r.t. the Gaussian measure. In these cases we may set τ̄ = T , thereby
possibly gaining efficiency. In this light, one may also propose other alternative impor-
tance sampling methods. As an example, we also briefly discuss the following importance
sampling method based on Gamma distributions.

Proposition 7.5 (Gamma sampling). Let {ξi; i ∈ N} be a sequence of i.i.d. r.v.’s with
common Gamma(1 − γ, ϑ) distribution. That is their common density function is given
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by fξ(x) = 1
Γ(1−γ)ϑ1−γ

1
xγ e
−x/ϑ, x > 0, 1− α < γ < 1, ϑ > 0 and let N and τi be defined

as in Lemma 7.2. Then the conclusions in Lemma 7.3 holds with

pn(s1, . . . , sn) =
Γ(1− γ, (T − sn)/ϑ)

Γ(1− γ)

(
1

Γ(1− γ)ϑ1−γ

)n
e−sn/ϑ

n−1∏
i=0

1

(si+1 − si)γ
,

where

Γ(s, x) =

∫ ∞
x

ts−1e−tdt,

is the upper incomplete gamma function.

Proof. It is enough to note that

pn(s1, . . . , sn) ≥ Γ(1− γ, T/ϑ)

Γ(1− γ)

(
1

Γ(1− γ)ϑ1−γ

)n
e−T/ϑ

n−1∏
i=0

1

(si − si−1)γ
,

and then the arguments in the proof of Lemma 7.3 applies.

The parameter ϑ in the Gamma distribution roughly corresponds to the τ̄ in the Beta
distribution. However, the Gamma distribution has the advantage that ϑ is allowed to
take any positive value while τ̄ > T . Thus the Gamma sampling may have an advantage
of being more flexible. On the other hand, while we can use the inverse method to generate
Beta random variables, generating Gamma random variables is more complicated.

Another way of interpreting the importance sampling procedure is to see that the
procedure above chooses a sampling density for the time steps that is similar to θt(x, y),
thereby shifting the singularity of θt(x, y) to the sampling density and therefore reducing
the variance. This choice also implies a choice of the distribution of N , i.e. which levels
of the infinite sum we tend to sample from. As we saw in Section 7.1 we should sample
those levels in (4) for which the summand is large. But for which levels the summand is
large is determined by θt(x, y) and therefore a good choice of sampling density for the
time steps will lead to a good choice of levels for which we are sampling frequently.

We also remark that choosing a distribution for the time steps is equivalent to choosing
an intensity function, or hazard rate, for the Poisson process for which the time until the
first event is the time step. That is, let λ(t) be the time-varying intensity of a Poisson
process. Then this relates to the density function of the time until the first event, ξ, as,

λ(t) =
fξ(t)

1− Fξ(t)
,

fξ(x) = λ(x)e−
∫ x
0
λ(t)dt.

For example λ(t) = (1−γ)t−γ

τ̄1−γ−t1−γ , t ∈ (0, τ̄), implies a Beta distribution,

λ(t) =
β1−γt−γ

Γ(1− γ)Γ(1− γ, βt)
e−βt, t > 0,
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implies a Gamma distribution and λ(t) = αt−γ t > 0, implies a Weibull distribution. We
however feel that in the importance sampling context it is more natural to specify the
distribution of time steps and not the intensity function.

8. Optimal parameters

After introducing the importance sampling methods proposed in the previous sections,
we will now discuss how to choose the parameters of the method in order to maximize
the efficiency.

8.1. Complexity and Parameter Optimization

The complexity of our algorithm depends on the choice of the importance sampling
parameters. This is because they affect the number of time steps that the simulation will
take on average.

Define the process Nt = sup {n|
∑n
i=1 τi ≤ t} + 1. Nt − 1 is thus a renewal process

and N ≡ NT is the number of time steps in our algorithm. One can expect the running
time of the algorithm to be approximately proportional to E [N ] and we thus take this
to be the complexity. In general it is difficult to calculate E [N ] and to the best of our
knowledge there are no closed formulas for the case of Beta and Gamma distributed
inter-arrival times. In the Gamma case we may use that the sum of Gamma distributed
random variables is again Gamma and we then have that

E [N ] =

∞∑
n=1

P (N ≥ n) =

∞∑
n=1

P

(
n∑
i=1

τi ≤ T

)
=

∞∑
n=1

(
1− Γ(n(1− γ), T/θ)

Γ (n(1− γ))

)
.

From renewal theory we however know that E [N ] < ∞ and the elementary renewal
theorem tells us that limt→∞ E [Nt − 1] /t = 1/E [τi]. We use it to motivate the following
approximations,

Exp(λ) : E [N ] = Tλ+ 1,

τ̄Beta(1− γ, 1) : E [N ] ≈ T

E [τi]
+ 1 =

T

τ̄

2− γ
(1− γ)

+ 1,

Gamma(1− γ, ϑ) : E [N ] ≈ T

E [τi]
=
T

ϑ

1

(1− γ)
+ 1.

Comparing the above with Remark 7.4 , we see that γ small will imply lower complexity
of the simulation scheme. On the other hand, values of γ close to 1 imply that we will
be examining higher order terms in (4).

Let V (p) be the variance of a single sample from the simulation algorithm which
depends on a parameter p for the importance sampling procedure. We will define the
efficiency of the algorithm to be the inverse of the product of the the computational
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work and V (p). We will define the computational work to be the average number of time
steps in the method, i.e. E [N ]. That this is a good measure of efficiency is rigorously
motivated using limit theorems in [13]. Thus, our optimization problem is

min
p
E [N ]V (p). (16)

In general, it will be difficult to find the exact theoretical value of the quantity V (p). For
this reason, we will address a minimization problem for an upper bound of E [N ]V (p).
It thus remains to find an upper bound of V (p) in order to be able to carry out the
minimization procedure.

8.2. Optimal parameters with exponential sampling in the
constant diffusion case

The purpose of this section is to give a benchmark in the case where the time sampling
is done using the exponential distribution and the diffusion coefficient is constant. This
will be used later when comparing with other time sampling schemes. The parameter
that we optimize over here is λ, corresponding to p in the previous section.

The bound on the variance in the forward and backward method with exponential
sampling of the time steps can be summarized as

CT e
2λTT−qΓ(1− q)Eα,1−q(λ−2CTT

αΓ(α)),

where in the forward method q = 0 and in the backward q = 1/2. Thus the optimization
problem (16) becomes,

min
λ

(λT + 1)e2λTT−qΓ(1− q)Eα,1−q(λ−2CTT
αΓ(α)).

From the definition of the Mittag-Leffler function we can see that Eα,β(z) is convex,
increasing and non-negative for z ∈ R+, thus the above objective function is convex and
therefore its minimum exists uniquely and is finite.

After a careful calculation, we may conclude that in the forward case, the optimal λ is
increasing in CT and T . Thus, a sde with less regular coefficients will require a simulation
method that on average uses more time steps. Note that the actual value of CT can be
obtained from the proof of Lemma 5.3 and therefore we see that the constant CT may
be small in particular cases. This seems to be the case in many financial models.

In the backward case, it is more difficult to make the analogous conclusions. However,
our numerical results indicate that the above conclusions in the forward method are also
valid in the backward method.

8.3. Optimal parameters with Beta importance sampling

In this section, we will derive an upper bound on the variance of our estimator in the
case of Beta sampling, the case of Gamma sampling is analogous. Then we will study
the minimization problem as in Section 8.1 for this upper bound.
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We now again apply Corollary 4.2 and make the parameter change β = ζ + γ − 1,
noting that 0 < β < ζ. We call β the distance to non-integrability. In fact, ζ measures
coefficient regularity, γ measures the importance sampling index and −1 comes from the
degeneration of the corresponding Hermite polynomials from θ. We will optimize over β
and τ̄ , corresponding to the p in (16).

Letting Eα,β denote the Mittag-Leffler function (see Appendix B), we have for CT
τ̄ζ−β

ζ−β T
βΓ(β)

large enough and β ∈ (0, 2)

E

( Φ(Xπ
T )

pN (τ1, . . . , τN )

N−1∏
i=0

θτi+1−τi(X
π
τi , X

π
τi+1

)

)2


≤ CT
∞∑
n=0

∫
Sn
CnT (T − sn)−q

n−1∏
i=0

(si+1 − si)−(2−ζ) 1

pn(s1, . . . , sn)
ds

≤ CT

(
1−

(
T

τ̄

)ζ−β)−1 [ ∞∑
n=0

CnT

(
τ̄ ζ−β

ζ − β

)n ∫
Sn

(T − sn)−q
n−1∏
i=0

(si+1 − si)−(1−β)ds

]
(17)

= CT

(
1−

(
T

τ̄

)ζ−β)−1

T−qΓ(1− q)Eβ,1−q
(
CT

τ̄ ζ−β

ζ − β
T βΓ(β)

)

≈ CT

(
1−

(
T

τ̄

)ζ−β)−1
1

β
Γ(1− q)

(
CT

τ̄ ζ−β

ζ − β
Γ(β)

)q/β
exp

(
T

(
CT

τ̄ ζ−β

ζ − β
Γ(β)

) 1
β

)
≡ V (β, τ̄). (18)

The approximation in the last step is exact for β = 1, q = 0 and performs well when

z = CT
τ̄ζ−β

ζ−β T
βΓ(β) > 1 (see Figure 1). However, in situations where this is less than 1,

the variance will be relatively small and there is less need to choose simulation parameters
optimally. Also note that, in our application β ∈ (0, 2) is fulfilled.

0 0.5 1 1.5 2 2.5 3
z

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e 

er
ro

r

q=0, β=0.5
q=0, β=1.5
q=0.5, β=0.5
q=0.5, β=1.5

Figure 1: Relative error of exponential approximation of Eβ(z).
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Here we also see that β measures, in some sense, the distance to non-integrability of
the integral in (17). That is, for 0 ≤ β < 1, the integrand of (17) is Lp integrable in
(s1, ..., sn−1) for p < 1

1−β .

We have from (18) that

lim
β→0

E [N ]V (β, τ̄) = lim
β→ζ

E [N ]V (β, τ̄) = lim
τ̄→T

E [N ]V (β, τ̄) = lim
τ̄→∞

E [N ]V (β, τ̄) =∞.

So, by continuity, E [N ]V (β, τ̄) achieves its absolute minimum in 0 < β < ζ, T < τ̄ <∞.
Defining F (τ̄ , CT ) ≡ ∂τ̄ log (E [N ]V (β?, τ̄)), a strict optimal τ̄ solves F (τ̄ , CT ) = 0,

with ∂τ̄F (τ̄ , CT ) ≥ 0. Now, assuming that β? remains locally constant as a function of
CT (see figure 2 (a)) since

∂CTF (τ̄ , CT ) =
T (ζ − β?)

(
CTΓ(β?)τ̄ ζ−β

?) 1
β?

CTβ?
2 τ̄

> 0,

we get by implicit differentiation that ∂τ̄
∂CT
≤ 0. Thus as general rule we should choose τ̄

relatively large, thus sampling the lower levels often, when CT is small, and vice versa.
Note that this is the same heuristic conclusion as in Section 8.2.

As the minimization problem can not be solved exactly, we solve it numerically in
some cases and plot the result in Figure 2. We see that as ζ increases, τ̄ increases. Also
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Figure 2: Optimal parameters in the backward method.

ζ − β increases, implying that the optimal importance sampling index γ is decreasing.
Values of ζ closer to 1 corresponds to Lipschitz regularity of the coefficients of the sde.
Thus for a sde in such a case the algorithm can take larger time steps. In Figure 2b
we see that τ̄ is decreasing in CT . This situation is analogous to the dependence on ζ.
Small CT corresponds to a regular SDE, in a different sense than for ζ. Thus when CT
is small it is possible to take large time steps. The dependence of β on CT is not as
strong. This can be understood if we remember that β has the purpose of taking care
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of the integrability, which is not affected by CT . It is also worth noting that although
the optimal τ̄ increases fast for large ζ and small CT the actual difference in the Beta
distribution and the variance bounds may not be that large.

In summary, these results confirm the heuristics that a non-regular sde requires smaller
time steps, by choosing a small β and τ̄ . We also remark that this is analogous to the
conclusions regarding the dependence of the optimal λ on CT in Section 8.2.

For Gamma sampling the bound becomes

E

( Φ(Xπ
T )

pN (τ1, . . . , τN )

N−1∏
i=0

θτi+1−τi(X
π
τi , X

π
τi+1

)

)2


≤ CT eT/ϑ
Γ(ζ − β)

Γ(ζ − β, T/ϑ)
T−qΓ(1− q)Eβ,1−q

(
CTϑ

ζ−βT βΓ(ζ − β)Γ(β)
)

≈ CT
Γ(ζ − β)Γ(1− q)

Γ(ζ − β, T/ϑ)

eT/ϑ

β

(
CTΓ(ζ − β)θζ−βΓ(β)

)q/β
exp

(
T
(
CTϑ

α−βΓ(ζ − β)Γ(β)
) 1
β

)
.

Note also that as the above minimization results will differ from every actual applica-
tion. We can only interpret the results as classes. That is, for any class of functions f , a
and b such that the constant CT is smaller than a certain value the above minimization
problem result can be applied. In that sense the stability properties in the figures are of
interest.

9. Simulations

In this section, we apply the simulation methods on two test cases. We begin by treating
an sde which is expected to show the difference between sampling the random time steps
from an Exponential distribution and a Beta distribution and to confirm our general
rules on how to choose the simulation parameters.

Further we treat a model that shows that in the case of a Hölder continuous diffusion
part, choosing γ large enough will give a finite variance and thus a fast rate of convergence.

We note, as in Remark 5.2, that although in the examples below f(x) /∈ C∞c (Rd), the
results from the previous sections could be extended to the examples considered here.

9.1. Choosing simulation parameters

We shall in this section consider the solution of the sde

dXt = σ (sin(ωXt) + 2) dWt,

for σ > 0. Also note that the assumptions of Theorems 5.1 and 6.1 are fulfilled and we
thus expect both the forward and backward method to converge. For both the forward
and backward method ζ = 1, thus β = γ − 1.
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We choose to simulate P (X0−I < XT < X0 +I), where I is such that the probability
is approximately 0.5, respectively for each parameter choice. Throughout, T = 1 and
X0 = 0.

We examine how the performance of the forward and backward methods depends on
the choice of simulation parameters, i.e. in Exponential time sampling with parameter
λ and in Beta time sampling with parameters γ and τ̄ . We measure the performance of
the method using work × variance, where we measure work as the total number of time
steps used in the algorithm. In terms of the optimization problem (16), E [N ] is replaced
by the actual work needed to achieve the variance V (p). We should note here that since
the variance is not finite in the case of Exponential time sampling, the sample variance
is not a good measure of performance. We include it here however as a comparison to
the performance obtained using Beta sampling.

We use three different parameter sets, σ = ω = 0.2, 0.3 and 0.4. The results are given
in Figure 3. We see that for γ, τ̄ and λ the curve appears convex and so there is an
optimal choice. All three parameters also appear to follow the general heuristics. That
is, the parameter σ = ω becomes larger, it is necessary to take smaller time steps, i.e.
choose larger γ and λ or smaller τ̄ . Although not illustrated in the figures, it should also
be mentioned here that since γ and τ̄ have opposite effects on the distribution of the
time steps, i.e. increasing γ or decreasing τ̄ gives smaller time steps and vice versa, an
increase in γ can somewhat be canceled by a decrease in τ . Thus the optimal value of
one parameter will depend on the choice of the other.

In Figure 3d we see the performance of the different methods, for close to optimal
choices of simulation parameters, as σ = ω varies. Most notably, the performance of the
method deteriorates quickly as σ increases. In fact, for larger values, the variance becomes
difficult to estimate from the simulations and the estimates become unreliable. We also
see that the Beta sampling method outperforms the Exponential sampling method, at
least for larger σ, while it is difficult to draw any general conclusions about the difference
in performance between the backward and the forward method.

Also in Figure 3d, we compare the forward and backward method to the unbiased
randomized multilevel Monte Carlo method (RMLMC) described in [17]. We have imple-
mented what is referred to in [17] as the single-term estimator and we find the optimal
sampling distribution by estimating the variance of the 10 first terms, using 104 samples,
and assuming geometrically declining variances after that. Note that to implement the
RMLMC one needs to know the strong order of convergence of the Milstein scheme,
which is used in the method. However in our case, where f is not Lipschitz, the order
is not known and so it is not clear exactly how the implement the method. We however
implement it as if f was Lipschitz, with the understanding that the theorems in [17] do
not apply. There is however a method described in [11], where the pay-off function is
smoothed using conditional expectations, which could be applied here.

We see that the parametrix methods seem to outperform the RMLMC for smaller σ
will the opposite seems to hold for larger σ. Of course, these results may depend on the
particular implementation of the methods.
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Figure 3: Work × Variance from simulations. Error bars represent 1 standard deviation.
(Some error bars are too small to be seen.)

9.2. Convergence rate

In this section we consider

dXt = k(X0 −Xt)dt+ σ
√
|X0 −Xt|1/4 + 1dWt,

where k = 1.5, X0 = 1, σ = 0.01. As in the previous section we wish to simulate
P (X0− I < XT < X0 + I), where I is such that the probability is approximately 0.5 and
T = 1.

We first note that the diffusion part is not differentiable so that the forward method
is not applicable. Also, the drift and diffusion is not bounded, so Theorem 6.1 does not
apply. Nonetheless, this is an interesting case since the diffusion is only Hölder continuous
and our results in Section 7 suggests that choosing γ large enough in the Beta sampling
should produce a finite variance. Secondly the process is mean-reverting towards the
point where the diffusion is Hölder. This is necessary since to see the effect of the Hölder
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continuity we need the process to visit this point frequently. We should also remark that
this is also the reason that we have chosen σ quite small.

We use the Backward method with Beta sampling for γ = 0.1 and 0.9. For increasing
sample sizes we calculate the mean absolute error. We also calculate the rate of con-
vergence as the slope of the error on the log-scale. The result can be seen in Figure 4.
We see that the larger γ gives a smaller absolute error for all sample sizes and more
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Figure 4: Absolute error and convergence rate with for different γ. Error bars for the
absolute error represent 1 standard deviation. (Most error bars are too small to be seen.)

importantly that the rate of convergence is faster. While theory implies that in the finite
variance case we should get a convergence rate of 0.5, we get a slightly slower rate at the
largest sample size. We believe this to be a finite sample size effect. I.e. that if we were
able to make the sample size larger we would approach the rate 0.5. On the other hand,
the smaller γ gives a convergence rate well below 0.5, indicating that the variance is not
finite.

10. Conclusion

The main goal of the present paper is to analyze the performance of the simulation
method which stems from (4). We found that the forward method works well in particular
cases. For example, if the diffusion coefficient is a constant matrix then the variance of
the method is finite. In other cases the variance may be infinite and the simulation
method will then suffer from a poor convergence rate. In these situations, we propose
an importance sampling method on the time steps, using a beta or gamma distribution.
This will improve the performance of the method if the parameters of the importance
sampling method are chosen correctly.

As it is usually done in MLMC, we also study the minimization of variance given a
restriction on computational time or vice-versa. This gives us the tools needed to find
good parameters for the importance sampling distribution. We also find certain heuristic
guidelines, such as that irregular sde’s need parameters that takes more and therefore
smaller time steps. Thus the importance sampling distribution needs to have more mass
closer to 0.
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Finally, we provide some simulations to demonstrate the performance of the method.
The simulations confirm the theoretical findings. We also find that the simulation method
works well when parameters are not too large. For larger parameters the variance becomes
large. This problem may be solved using some importance sampling methods also on the
space variables.

There are many issues that have to be studied in the future. In particular, to study
by simulation higher dimensional examples, the implementation of a deterministic time
partition in order to reduce variance, space importance sampling methods, parametrix
methods based on fixed discrete time grids and applications to various other stochastic
equations remain as some of the subjects to be studied. This gives a glimpse of the
flexibility and the applicability of the method.

Still the problem of the explosion of variance remains an important issue. One solution
is proposed here. There are various other possibilities that one may also entertain if one
is willing to accept again some bias in the method. Such is the case of the localization of
weight functions θ between others.

Appendix A: Gaussian inequalities

In order to explicitly state the bounds for the variances we define the constant Ca,p(α) :=

(2ρa)
d
2p (4āp)

α
2 a−1.

Lemma A.1. For α ∈ [0, 1], p > 0, y ∈ Rd, a ∈ Rd×d such that 0 < aId×d ≤ a ≤ āId×d
and t > 0,

• (i)

|y|α|Hi
ta(y)|ϕta(y)1/p ≤ Ca,p(α+ 1)

t
1−α

2

ϕ2tā(y)1/p,

• (ii) Define C ′a,p(α) := Ca,p(2 + α)a−1 + Ca,p(α) then

|y|α|Hij
ta(y)|ϕta(y)1/p ≤

C ′a,p(α)

t1−α/2
ϕ2tā(y)1/p,

• (iii) There exists a constant CT = 2d/2e
1
4‖b‖0Ta

−1

such that

ϕ2ta(y − x− b(x)t) ≤ CTϕ4ta(y − x).

Proof. First note that

|Hi
ta(y)| ≤ |y|

ta
, |Hi,j

ta (y)| ≤ |y|
2

t2a2
+

1

ta
,

ϕta(y) ≤ ρd/2a ϕtā(y) = (2ρa)
d
2 exp

{
− 1

4tā
|y|2
}
ϕ2tā(y).
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For the proof of (i) we have that,

|y|α|Hi
ta(y)|ϕta(y)1/p ≤ |y|

α+1

ta
(2ρa)

d
2p exp

{
− 1

4tāp
|y|2
}
ϕ2tā(y)1/p

We shall also use that vre−v ≤ 1 for v ≥ 0 and 0 ≤ r ≤ 1. Here, take v = 1
4tāp |y|

2 and

r = α+1
2 and the inequality follows.

For the proof of inequality (ii), we have that

|y|α|Hij
ta(y)|ϕta(y)1/p ≤ |y|

α

ta

(
|y|2

ta
+ 1

)
(2ρa)

d
2p exp

{
− 1

4tā
|y|2
}
ϕ2ta(y)1/p.

Now, repeating the same argument as in the proof of (i) with v = |y|2
4tā , r = α/2 and

r = 2+α
2 , we get (ii).

The proof of (iii) follows by direct calculation. In fact, using Young’s inequality |(y −
x)b(x)| ≤ |y−x|

2

2 + |b(x)|2
2 , we obtain the result.

Appendix B: Mittag-Leffler functions

We need that for ρ, η < 1,

∞∑
n=0

Cn
∫
Sn

(T − sn)−η
n−1∏
i=0

(si+1 − si)−ρds = T−ηΓ(1− η)

×
∞∑
n=0

CnTn(1−ρ) Γn(1− ρ)

Γ(1− η + n(1− ρ))

=T−ηΓ(1− η)E1−ρ,1−η(CT 1−ρΓ(1− ρ)),

where

Eα,β(z) =

∞∑
k=0

zk

Γ(β + αk)
, z ∈ C, α, β > 0,

is the Mittag-Leffler function, see e.g. [7]. Some special cases are

E0,1(z) =
1

1− z
, |z| < 1,

E 1
2 ,1

(±z 1
2 ) = ezerfc(∓z 1

2 ),

E1,1(z) = ez.

We also have that

Eα,β(z) = α−1z(1−β)/α exp
(
z1/α

)
+O

(
|z|−1

)
, 0 < α < 2, |argz| < π/2, |z| → ∞.

Later we will use the approximation Eα,β(z) ≈ α−1z(1−β)/α exp
(
z1/α

)
, somewhat abus-

ing the above limit approximation.
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