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Abstract

We obtain lower bounds for densities of solutions of certain hy-
poelliptic two dimensional stochastic differential equations where one
of the components is the Lebesgue integral of the other. These results
are non-trivial extensions of previous work of the authors. In partic-
ular, these type of equations are linked to the so-called Asian option
set-up.

Keywords: lower bounds, density function, asian type sde’s, Malliavin Cal-
culus.

1 Introduction

We consider the bi-dimensional diffusion process solution of the equation

¢ ¢ t
X} :a;l—i—/ a(XS)dWs+/ b (X,)ds, X? :x2+/ bo(X,)ds, t € 10,T].
0 0 0
We assume that the coefficients o, b; and by are five times differentiable and
have bounded derivatives but the functions themselves do not need to be
bounded. Also notice that we have just one Brownian motion W driving the
process X = (X1, X?) so the ellipticity assumption fails at any point, and
the strong Hormander condition (based on the coefficients of the Brownian
motion only) fails as well. But we assume that (z) = (o(z),0) and [7, b](z)
span R? (here [.,.] denotes the Lie bracket) so that the weak Hormander’s



condition holds true. Therefore the law of X (z) is absolutely continuous
with respect to the Lebesgue measure and has a continuous density pr(z,y).

Our aim is to give lower bounds for pr(z,y). Such lower bounds have
already been obtained by C.L.Fefferman, and A.Sanchez-Calle in [13] and
[6], and by S. Kusuoka and D. Stroock in [7]. But the results in those papers
do not cover the case of the weak Hormander’s condition.

On the same theme, S. Polidoro, A. Pascucci and U. Boscain in [12],
[11] and [4] give an analytical approach to the problem discussed here. The
lower bounds in those articles are analogues with the ones obtained here.
Their framework is a little bit more general because they consider a diffusion
process which has the same structure as ours but they work in an arbitrary
dimension (we think that our approach works also in arbitrary dimension
but this would ask some technical effort). On the other hand the framework
here is more general that the analytical approach because in these articles,
the representative example is by(z) = x' (or either a polynomial) with o
bounded.

Our approach is a probabilistic one based on the results in A. Kohatsu-
Higa [8] and V. Bally [2]. Other methods can be found in P. Malliavin and
E. Nualart [9] and F. Delarue and S. Menozzi [5]. We consider here the 2-
dimensional case in order not to obscure the crucial arguments. We believe
that similar arguments should be used in the general d-dimensional case.
Also note that our elliptic hypothesis on ¢ will be only local (see (8)) while
in the other articles mentioned above this is not the case.

Let us consider a fixed control ¢ € L?([0,T]) and define the corresponding
skeleton ¢ = xi(¢)

t t t
rh =t +/ o(xs)psds +/ by(x,)ds, 22 = 22 +/ ba(xs)ds, (1)
0 0 0

where by () = b (z) — 2 (0010) (z). Tt is well known (see [1]) that the support
of the diffusion process X; is concentrated on the curves of the previous form.
So a necessary condition for pr(x,y) > 0 is that there exists a control ¢ such
that z}(¢) = y (this condition is not sufficient: see [1] and [3]). So in a
first stage we assume that such a control exists and we prove that (under
appropriate assumptions on o and by, see (8), (9) and (24)) we have

T
pr(a,y) > Crexp (—02 / ¢§H3dt)
0



where ('] and Cs are constants which depend on the bounds of the coefficients
and H is an explicit function (see Theorem 14 and the comments right before
Lemma 13).

Once this result is proved a second problem appears: how to find the
control ¢ and how to compute fOT ¢?dt. We solve this problem in two specific
situations. First of all we assume that |o(z)| > ¢ > 0 and |01b2(2)| > € > 0.
We call this case the "elliptic” case because the first component satisfies an
ellipticity condition (although the whole diffusion does not). Then we prove
(see Theorem 17) that

2 22 by(2)T)? L_ g1
pT<x,y>zclexp<—cg (T+‘y eI W)

This estimate is in the good range: if we consider the case 0 = 1,b; = 0 and
bo(z) = o' then X7 is a Gaussian vector and the density of the law of this
vector has upper and lower bounds of this form. The estimates in [4], [11] and
[12] are of the same spirit. But in the estimates obtained under the strong
Hormander condition in [6],[7] and [13] the term T3 x |y? — 22 — by(z)T|”
does not appear.

As a representative example, we consider the ”linear case”. That is,

t t t
X} = +/ (X)X dW, +/ bi(X)Xlds, X?= :p2—|—/ bo(X,)ds.
0 0 0

This framework is interesting in mathematical finance because it represents
the model used for Asian type options. Under similar hypothesis we obtain
a lower bound for the density (see Example 20). Note that, one can easily
prove from the results in Yor [14] that in the particular case that 6(z) = 2,
bi(z) = 2 and by(z) = z; then lim,e ., y?log (]y2|2pT(x,y)> < 0. This
result seems to indicate that the bound obtained here, (see Example 20 and
also [12]) for this case, is general. The result of M. Yor is far more exact but
it uses strongly the particular structure of the example while here the spirit
is to develop a somewhat general theory.

Throughout the text we denote by |-| the Euclidean norm on the cor-
responding d-dimensional space R?. Given two positive definite invertible
matrices A and B, we say that A > B if A — B is a positive definite matrix.
B([a, b]) stands for the Borelian sets on the interval [a, b].



We use the following directional derivative notation 0,b = 010,b + g205b
for a 2-dimensional vector function o = (01,02) : R — R? and a function

b:R? — R?. Also we define Lb := Z” L 030;0,0;b+ 37 bidb.

2 Evolution sequences

In this section we recall the framework and some results from [2]. We consider
a probability space (€2, F, P) with a filtration F,¢ > 0 and a one dimensional
Brownian motion W;,t > 0. In order to define an ”elliptic evolution sequence”
we consider the following objects. We give a time grid 0 = tg < t; <

. <ty =T and we define 6, = t, — tx_1. We consider also a space grid
yr € RY k =0,...,N. Moreover, we consider a sequence of positive definite
and invertible deterministic d x d dimensional matrices My, k =1, ..., N. To
these matrices we associate the norms |z|, = ,/<Mk_1x,x>,x € R?* and we

fix a sequence of numbers H, > 1, k =1, ..., N such that for k =2,..., N
|2y, < Hp |zfy_, - (2)

Moreover we fix a sequence of numbers p, € (0,1),k = 1,..., N such that

3)

|yk—yk 1| '0
k=g

We consider now a sequence of random variables Fj, k = 0, ..., N such that
F}, is F;, measurable and for K =1,..., N

ty
lzk = }7k1'+'d/P lzk(s,cu)civvg + }%k- (4)

te—1

Here hy, : [th1,te) X Q@ — R4k =1,...,N are B([ty_1,1;]) X ]'—tk  measurable
andE[ Pu(s, w)|? ds] < 0. So, condltlonally to Fiy_, s ft hi(s,w)dW;

is a Centered Gaussian random variable with covariance matrix
.. tk . .
CY(Jy) :/ hi(s,w)hi(s,w)ds, 1,5 €{1,...,d}.
te—1

Ry, is a remainder which has to be small with respect to the Gaussian
part. In order to express this assumption we need the following norms on
the Wiener space. For a d dimensional functional F' : Q — R which is m
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times differentiable in Malliavin sense (we refer to [10] and [2] for notations
and definitions) we define

Here E;, , designs the conditional expectation with respect to J;, ,. Notice
ngtk H:F! jcmf’ ]\?vas denoted by [|F||,, | 5 m, in [2]. Finally we define the sets
A={weQ:|F—yl <D=k e Ry,

In the following definition we will use two universal constants
pa=22Tp*(d), and Cy = c*(d)p(d + 1)(2m) Y243 (4 4 1)+,

Here p*(d) and c¢*(d) are given in Proposition 3 of [2] and u(d + 1) is given
in equation (2) of [2]. They are universal constants depending on d only. In
particular, that is the case of the constants Cy and p;. We assume without
loss of generality that Cy > 1. We are now able to give our definition.

Definition 1 The sequence Fy,k = 0,...,N 1s called an elliptic evolution
sequence if there exists some constants ar, > 1,k = 0,...,N such that for
every k =1,...,N and every w € A one has

D) aMy > C(Jy) > aiMk, (5)
k,d+2,pd
In this case, we define
N N
0 = In(8%(2rd)*/?) Zln a) Zl (Hk) + 8d1N Zak—l- (6)
k;,

A slight modification of the main result from [2] gives the result that we
will use in this paper. For some details of this proof see Appendix 6.

Theorem 2 Let Fy,k = 0,..., N be an elliptic evolution sequence such that
the law of Fi s absolutely continuous with respect to the Lebesque measure
on R? and has a continuous density p. Then

1 —Nxdx6
X . 7
PUN) 2 oy ity ¢ @)

1/p



3 General framework

We consider the two dimensional diffusion process
t t
X; = x+/ o(Xs)dWs +/ b(Xs)ds
0 0

with o,b : R?> — R? five times differentiable functions. And W is an one
dimensional Brownian motion. We denote by b = (ZA)l, Bz) = b— %&,a the
drift in the equation of X when written with a Stratonovich integral and by
L its infinitesimal generator. We will also use the skeleton associated to this
equation. That is, for a control ¢ € L?[0,T] we define z; = z4(¢) = (z}, z?)
as the solution of the equation

t t
T =1+ / o(xs)psds + / b(zs)ds.
0 0

We have to precise our hypothesis. The first one concerns the non degeneracy.
We assume that for a fixed control function ¢,

(H,(¢)) i) o2z)=0,Vzec R (8)
it) There exist a function €, : [0,00) — (0, 00) such that
min {|o1(z)|, |Osb2(z:)|} > €4(t), t>0.

Remark: Under the present setting condition i) is implied by the weak
Hormander condition. From now until Section 4 we assume that the control
function ¢ is fixed.

We also assume that we have the following upper bounds. For a multi-
index o = (v, ..., ) € {1,2}?, p € N, we denote its length by |a| = p and
Oq = Oay---0a,. We assume that for a fixed control function ¢, there exist
a function Cy : [0,00) — (0,00) and a constant C, > 1 such that for any
e €[0,1] and f = 0,b,0,b,0,0,0 + €0,b, Lb we have

(Hy(@)) @) [flz)] < Cy(t), VE=0, (9)
i) |Ouf(x)| < C,, VzeR?* 1<|a| <5

Notice that we assume that the derivatives of the coefficients are bounded but
the coefficients themselves may have linear growth (the bound in (Ha(¢))7)
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concerns z;,t > 0 only). Note that the bounds like in (Hy(¢))i) are also
valid for the functions 0,b and o + €0,b uniformly for € € [0, 1] as well as its
derivatives up to order 5 if we only assume |o(x;)| + |b(z¢)] < Cy(t) . In
fact, we have that

|05b(x:)| < Co(t)C
(0 + €050) ()] < Cy(t)(1 + eC%)
1050 (21)] < Co(t)C.

We have preferred this presentation which may be redundant as far as
bounds are concerned. But this setting avoids writing cumbersome constants.
A similar remark is valid about the hypothesis |0,0,b(x)| < C, in (Hy(¢))id).

3.1 Evolution sequence

We start this section with a description of the main goal in the first part
of the article. We consider a time grid 0 =t =ty < t; < ... < ty with
tgr1 — tr < 1 and we denote for k=1,.... N

6k = tk - tkfl, Ck = sup C¢(t), Er = min{%(tk,l), 8¢(tk,2>}.

t 2 <t<ty

Note that due to (H,(¢)) we have that e, < 1 < Cj. Moreover we consider
a sequence of numbers p, < 1, k =1,..., N such that

Pk = \/max{ék, /tk Gidt}. (10)

Define the following quantities

a, = 196(Crer )%, Hy = 6U>*(Crer ") and Uy, = max{8g, §_1}/ min{éy, §_} for k =1,..., N,

We assume that for pufrrq > fi > p ' fur1 for fr = ex, Cy, and all k. Further-
more,we will prove in Lemma 10 that there exists a constant C' = C(p, T, C,)
such that for v € [ty_1,t;]) and |[Fi_y —y;|; < & fori=1,..k
||Xu - th 1 ||k4p — CCkpk?
||Xu||k,4,p < CCk + |z, |-



Let C* = C*(u) be a positive constant such that

C* (1) < min { <00d196%) e~ B WI0+) /%, 1} RNGEY

. 49 22,2 . . . .
Such a constant exists because z — ze2 147" is an increasing contin-
uous function which is zero at x = 0. Moreover, denote

_ _ 6
o = o(x(te1)), by = O,b(z(ty_y)) and ¢ = o4 + bkf

and we consider the matrices

_ Ce1 bpi- -
Nk—\/(sk(_k’l Bk’l‘éF >, My, = Nj X N,.
Ck,2 k.2 /13

Finally we consider
Fk = X(tk)—l'(tk), l{?zl,,N
and we notice that, if x = X, and y = z(ty) then

Pty (l’, y) = PFn (O)

where pp, is the density of Fy. The goal in the first part of the article is to
prove the following lower bound result for p;, (x,y).

Theorem 3 We suppose that H;(¢),i = 1,2 hold and suppose that we have
Ok S C*(gkcfk—l)148.

Then F, .k = 1,...,N 1is an elliptic evolution sequence with parametrs
My, ay, Hy, pr. and consequently we have

1
« o~ 2N0

> -
Punley) 2 gy
with 0 defined in (6).

The proof is given through a sequence of lemmas. The basic decomposi-
tion that leads to (4) is given by the following lemma.
We take yr = 0. In particular the relation (3) trivially holds true.
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Lemma 4 With the previous definitions, we have that (4) is satisfied with
Fp—Fo1=Jy+ Ry

where
Jp = O'(thq)Ak + aab(thfl)Zlﬁ
Ak = W(tk) — W(tkfl), Ak = / (tk — S)dWs
tr—1
and
6
Rk = Z Rk,i (12)
=1

- / " (0(X.) — (X, )W, + / " (@ob(X.) — B,b(Xey )t — 5)AW,

+/k Lb(X,)(ty — s)ds — / ) (o(zs)ps + %&,g(ms))ds

- / " () — b ))ds + (B(Kiy_,) — blar_))bk.

Proof. It is enough to note that

/ "X

te—1

=00 ok [ (B0%) b0 s

te—1

= b(X;, )6 + / " ( / T Bb(X, )W, + /tk Lb(XT)dr> ds

b(th15k+/ O,b(X,)(ty, — 7)dW, —1—/8 Lb(X,)(ty — r)dr,

te—1

/ 8 b tk - T)dW
tg—

ti

= aab(th_l) /tk (tk - T’)dWT + / (8ab<Xr) - @,b(th_l)) (tk — T)dWT.

te—1 te—1



Furthermore,

tg

s, =Yoot [ (oo 500 w))dst [ (b -ban )

te—1 th—1
(13)
So we have the above decomposition if we note that

Fk - Fk—l = (th - thq) - (xtk - 'Ttk—l)'

O

3.2 Covariance matrices

For z,y € R? we define

[%y] = <$,yL> = T1Y2 — T2Y1-

Notice that [z,y] = 0, y # 0 implies that x and y are colinear. Also one has
that

[z, y]] < =/ [yl
We denote for k=1,..., N

0
O = U(th,l)a by = (%b(th,l), Cr, = Of + bkEk

di = [k, bi] = [0k, bk).

The context will determine the difference between the vector valued random
variables b, and o, as defined above and the functions b, and oy, kK = 1,2
used in (1). We will denote the components of the above random vector by
fr = (fea, fro) for f =b,c,d, 0. We compute for k =1,..., N:

52
B, [Ji:] = 6k (ci + bié) S i=1,2,

62
Etkﬂ [Jk,l X Jk,Q] = b (Ck,lck,2 + bk,lbk,Qé) .

So the conditional covariance matrix of the random vector Jj, is

C(Jk) = Nk X N]:

10



where
Ok

Ny = \/5_k< Gt D \é? )
Ck,2 bk,2 X WD)
and N} denotes the transpose of Nj. We define now the deterministic matrix
M, which will control the covariance matrix C'(.Jy). The idea is to we replace
the random variable X;, |, by the corresponding deterministic point z;, _,.
We denote for k=1,.... N

dy, = [ex, by] = [Ok, by
Notice that if dj, # 0 then Ny, is invertible and we have

N—l \ 12 ( l_)k72 X j—% _Bk,l X j—% ) .

L8,

—Ck,2 Cp1

Note that under hypotheses (8) and (9), we have bx| < Ch, |5k < C,

3.3 Properties of the norm |- |

As stated in Section 2, we define for k =1,..., N

2

z|2 = (M v, z) = ‘N;lx

Therefore
12

1 _
2 = 1 ([m,bkF " —[as,eﬁ) |

LS 5,
Similarly

(C(Jy) 'z, z) = ﬁld,% <[w,bk]2 + }S—g[ar,ckF) .

We will use the following two inequalities of norms.

Lemma 5 We have fork=1,.... N

5 _ 2
ol < (5 il + ) [of (11

11



and for x = (x1,xs)

2
(5. v)
83d,

|2 < 2407 (15)

Proof. Let a, 3 € R% We solve the system of equations y; = [z, a],yo =
[z, ] and we obtain

1

T = m(ylﬂl — Y1, Y132 — Yora) = [5,—2[](915 — 10).

It follows that

18,02 2> = [118> + [yaa|® — 2u112 (@, B) < |11 BI° + |yar® + 2 18] |y201]
= (|ly18] + ly2))® < [yl* (18] + |e])*.

So we have

[z, a” + [z, B)*
6, af?

Using (16) with o = by, and 3 = %Ek we obtain

2
i (o] + [l 2
2 (m k k - 12, _ o _ 9
lz|” < Ez ([a:,bk]Q + 6_,%[I’Ck]2> — (_\/ﬁ |bk} + [l | |z} Ok

|z|* <

(18] + la))*. (16)

Now we proceed with the proof of (15). Let v} = <5k,¢,5k,¢j—'{—2) , 1= 1,2.
Then clearly,

]a:\z = 126,;33,;2 (xf ‘U%‘Q — 2212 <vi,vi> + 13 |v,ﬂ2) )

Then the result follows because (here, we use that g = 0)

U
2
[0 [? < 202

i < ¢}

And this yields the result.[]

12



3.4 Proof of the property (2)

We start this section establishing a general matrix inequality that will help
us prove the property (2). First, we give a preparatory lemma from linear
algebra. Its proof is left to the reader.

Lemma 6 Assume that for positive definite, symmetric and invertible d x d
matrices A and B we have that x' Ax < ' Bz for all x € R?. Then 2'A™ 'z >
2’ Bz for all x € RY.

Qi Vi

0 5 )’
exists positive constants 8 > 0, v > 0 such that the following inequalities are
satisfied

Lemma 7 Assume that for the matrices I; = 1 = 1,2, there

| < Oaz|, [B1] < 0|6
| < v, |l <vifl.

Then |Liz| < 0(1 + 2v) | x| for all x € R,

Proof. We consider the auxiliary matrices

() k(G d)

and we notice that
|Kqz| = |yime| < v0|Gaxs| < v x| and |Kex| = |yoxe| < v|fazs| < v|lszl.
Then

|Lix| < ||+ Kiz] < 0 |Jex|+| Kz < 0(| La|+|Kyz|)+| Kz < 0(142v) [Tz .

OJ
Now we apply the above Lemma to our particular case to obtain the

property (2).
Lemma 8 Assume hypotheses (Hy(¢)) and (Hy(¢)). Furthermore assume

2¢e
2 < k

Pr = 9c.C,

(17)
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where py, is given by (10). Then
@y < Hila],_y (18)
with

Hy, = 6UY*(Crer V),
Uk = max{ék, 6k—1}/ min{ék, 6k_1}.

Proof. First note that Lemma 6 gives us the following sequence of state-
ments

|Nio1z| < Hy |[Nyz| = (Mo, 2) < Hf (Myz, ) = ||, < Hg|z],_, -

Furthermore, note that o B
Ny = o 11 Q

where (here we use that oo = 0)

 _( Oka Ek,lék .
I’“'_( 0 bk725,€)’ Q‘(

Therefore (18) will follow if we prove that

CJ[E=
= o
=)~
(V)
N———

To obtain this result, we will apply Lemma 7 with oy = 411, i =
bi—120k-1, 11 = brk—110k—1 and oy = Tp1, B2 = br20k, 72 = br16g. To
prove the required inequalities in Lemma 7, we need to consider

1. From (13), we have |£L’tk — thk_1| < 2Cyp}. In fact,

}J%k _-a%k—l‘

ty

b o+ [ (0126, ~ s0uo(e)ds + [ () = blay, ))ds

te—1 te—1

7 b 7
< Cy <§5k +/ | D] dS) < Cy <§5k + v 5kﬂk> -
tr—1

14



2. Using (H(¢)) we have that for f. = &.;,b.;, i = 1,2 then

9
|fr — fra] < iC*Csz-

3. Similarly, from (H;(¢)) and (Hy(¢)), we have for f = &.1,b.5, that
|fk| Z €k and

Ji—

9 _
§C*Ckpi€k 1.

_ 1' <
Using (17), we obtain that

9
| fra| < (1 + §C*Ckpié?k1) el < 2[fl-

Therefore, this yields

Tr-11] < 2|Tka],

‘Bk—l,Qék—ll < 2Uy |l_7k,25k| .
Since |l_)k_172| A |l_)k72| > g1, and ‘Bk_u‘ A ‘5;@1} < ()} we also obtain

|br—1,16k-1| < Crey " |br-1,266-1] »
|bk,16k| < Creg, [br26s] -

Therefore we apply Lemma 7 with 6 = 2U;, and v = C’kg,gl. This gives
‘jk_ll‘} < 2U4 (1 + 20]@6];1) |jk$| .

From here (19) follows and therefore we obtain (18).0]

3.5 Proof of property (5)

In a similar fashion we now prove that (5), axM; > C(Jx) > iMk’ is
satisfied. We recall that

Ak = {CU S Q: ‘Xti—l — xti—l}i S %,'L = ]_, ,kf}

Lemma 9 Assume hypotheses (Hy(¢)) and (Hay(¢)) and (17). Then the
matriz inequality ap My > C(Jy) > iM’“’ k=1,...,N is satisfied on A}, with

ar = 196(Cre; )2

15



Proof. In order to prove that C(Jy) < apMjy, it is enough to prove that
‘Nkl" S v/ A |]\_]kl" .

As in the proof of Lemma 8, we will apply Lemma 7 with oy = oy 1, ag = 0.1,
Bi = bia, B2 = bk 92,71 = b1 and 7y, = bk 1. In order to prove the inequalities
required in Lemma 7, we prove the following properties.

1. We prove first that ’th ) :Izt,ﬁl’ < Cypi for w € Ay,. As w € Ay we
know that | Xy, , — @y, 1‘k |F—1], < % and using (14) and (9) we have
that

Or |b
‘th—l _mtk—l‘ < ( ’:/|1—k} +| |> 9 6}1/27 (21)

2. Using (9), we have that |f, — fi| < — mtk71| < C,Crp, for
f.=b.,0., 1=1,2. Furthermore, |fi| < Cx(1+ C.Cyp3).
3. On Aj, we have that

_ €k
k1| > |Gk1| — CuCrpi > ex — CLCrpi > =

Since |bk72| > g5, we obtain

1
|bo| > ep — C.Crpi > §5k-
3. Let f =0.1, b.72, then
2
i 1‘ < C.Crpier' < 5
k

or equivalently
_ 11, -
il < (14 C.Crpier ) | fi] < n | x|

Using (17) and Cye; ' > 1, we have that the inequalities in Lemma 7 are
satisfied with § = 2 and v = 3Cje; *. Finally one has that

[ Ipz| < 2(1 4 6Cke;, ") | Iz

Although the constants change slightly, the other inequality is obtained
exactly in the same way. We still have 6 = 2 and v = 3Ck5,;1.D
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3.6 The Remainder

We will now give estimations for the remainder. Before doing so we give
some estimates needed in the next lemma. The proofs are standard and can
be obtained by suitable modifications of similar statements in [2] or [§]. In
this section, C' = C(p, T, C,) denotes a constant bigger than C, that depends
exclusively on T, C, and an integer p > 2 chosen independently of the other
parameters.

Lemma 10 Suppose that the hypotheses (Hy(¢)) and (Ha (o)) hold true. For
u € [tg_1,tx] and w € Ay, there exists a positive deterministic constant C =
C(p,T,C.), which is increasing in T, such that

||XU — X, ||k74,p < CCrpr,
HXUHkA,p < CCy + ‘xtk,1|-

Proof. It is enough to consider the following decomposition

5
Xy —ay =Xy, —xy, + Y Li(t)

i=1

with

B = [ @06) = aaWe, b0 = [ 60) - be)ds,

tr tr

I3(t):/ o(xs)dWs, I4(t):/ b(xs)ds, ]5(t):—/(U(xs)gbs—i-g(xs))ds.

ty tg tg

We have the following estimates

|mmmw<0fp(/wx 2l ds ),

118, < Co01 (/HX ralL o ds )

and || I;(t)]0, < 20k(Vok + pi),i = 3,4,5. Since w € A; we also have
| Xt , — @4, | < Crpi (see 1. in the proof of Lemma 9). We conclude that

1%~ s, < 0 { QB+ o+ O [ 1= 0l 05}

17



with C' an universal constant which depends on p only. Then using Gronwall’s
lemma we obtain || X; — z[[}, o, < CCY(V8+ pi)? where C'is a constant that
only depends on p, C, and (increasingly in ) 7.

Using (21) and (20), we obtain

HXU - thq < ||Xu - %”k,o,p + ‘xu - $tk71} + Ckpza

H/’c,O,p -

11
< COW(V/bk+ pr) + 701@027
< CCkpy.- (22)
Similarly,
[Xu = Xo,, ||k,4,p < CCupr

||Xu||k,4,p < CCk + |z, |-
OJ

Lemma 11 Suppose that the hypothesis (H1(¢)) and (Hy(¢)) hold true. For
any integer p > 2 there exists some universal constant C = C(C,, T, p), which
is increasing in T, such that for w € Ay

C/?Pk

5
€k

e, <€

Proof. We use the definition for Ry in (12) and also Lemma 5 together
with estimates of the conditional Sobolev norms of Ry ;. Recall that dy, > EZ
and Gy o = l_)k’z%’“ (because gy = 0). So for every random vector V = (V1,V?)
which is four times differentiable in Malliavin sense we have

_ 44/3C; 1
HMk UQVHWLP < 6;/265(’“/1”,&4@ + E HV2||k,4,p)'

Using Lemma 10, (10), (20), (21) and (14), we obtain

[Rallap + Bl < CCL",
2

Y UIRkally gy + 1 Rislla, + 1 Bisll,,) < COE",
=1
| Ry < CCi&;

3 Hk,4,p

18



Since 0, = 0 we have R} | = Rj , = 0 and so the result follows.[]

The actual value of the constant C' = C(C,,T,p) > 1 appearing in the
Lemma 11 may change from one line to the next, but it always remains a
constant that depends only on C,, T" and p. Due to the increasing property
of C(C,,T,p) in T, we will consider in what follows a time 7" > T'. So that,
our estimates are not valid for times 7' going to infinity. Now we verify that
condition ii) in Definition 1 is satisfied. That is, we prove Theorem 3. For
the reader’s convenience, we restate it here.

Theorem 12 Suppose that (Hy(¢)) and (Hz(¢)). Furthermore, assume that
there exists a constant p > 1, independent of k such that pfri1 > fr >
w foy1 for fr = ex, Cr and all k. There exists a positive constant C*(u) such

-1
that C*(p) < min { (C’C’d196%> e~ 2 (C WP (W +1) %, 1} for which we

assume
N
m o () (23)
k
then F,,,n < N is an elliptic evolution sequence with
ar, = 196(Crert)?

and

Hk = 6U5/2(Ck€];1)
with Uy, = max{dg, 6x_1}/ min{dy, 6x_1} for k =1,..., N where 0 is defined as

in (6). Furthermore, we obtain

—2N6

1
> X
pr(,y) 2 8m/dot My

Proof: The existence of the constant C*(u) follows from the increas-
ing property of the function f(z) = ze!?W+17* for 2 > 0. Then for p =
148.Then we have
1 2

gak—1(Pk + pr—-1)

N

49
8 2
49 ) ) o
5 O W’ (Cliana )™ + (G ) )

4
< 790*(#)2 (1+ ,u2)2 .

1 1 _ _
= _(akfyok + aﬁflpk—1)2 < (Ck—lgk,llpk—l + N2Ck5k lpk)Q

IN
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Furthermore using Lemma 11, we have

3 s
MR < kPR < oo (2
S T W\ = 12\ 99 (0o () (122
AP K k Cq (196(Cre, 1)) 2 e= (@)t

—1
145 ap_q(pptrp_1)2
< (Cdak2 e 8 ) )

and therefore condition ii) in Definition 1 is satisfied and furthermore due
to the choice of C*(u), we also have that Lemma 8 and Theorem 2 can be
applied.[]

4 Construction of an evolution sequence as-

sociated to a given skeleton

Up to now we supposed that the time grid t;, k € N was given. Now we will
give a specific construction of the skeleton ¢ and the associated time grid.
We introduce the following class of functions. For y > 1 and h, > 0, define
the set of functions A, 5, as the functions f : (0,00) — R which verify

[fOI<ulf@ if |t —s] <ha

The control ¢ to be used in the examples will belong to this class. This class
is useful in order to simplify the lower bounds for the density of X. We make
the following supplementary assumption.

(Hs(¢)) We assume that e4, Cy,4C; " € Ay, for some p > 1 and h, > 0.
Moreover we assume that there exists a control ¢ such that |E| > |¢¢| and
¢ € App, for some 7z > 1.

We define s
ho(t) := min {h*, C* () (éi((?)) } . (24)

where C* is the universal constant given in (Hs(¢))ii) and C, is given in (9).
Note that under hypothesis (H3(¢)) , hg € A, . for p* = p?® and that due
to (23) we have that hy(¢) < 1. This function will serve to define the grid.
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We construct now the time grid: we put to, = 0 and if ¢; is given we
denote hy = hy(tx) and we define ¢4 by

t
tht1 = (tk + hk) A\ inf{t >t / Eids > hk}
tk

Notice that &6 := tpy1 — tx < hx and fti’““ p?ds < ft’““ gbids < hy, therefore
pr = hi (see (10)) which together with (24) will allow the application of
Theorem 3.

Notice also that we may choose ¢ = ¢ and this seems to be the natural
choice, but in some cases it may be simpler to choose another ¢ for which
is simpler to compute. For example if we know that |¢(f)| < @ then we may
take ¢(t) = Q and then i = 1.

Lemma 13 Suppose that (Hi(¢)), (Ha(¢)) and (Hs(¢)) hold true. Then
(Fx)ren is an elliptic evolution sequence. We define Ny := sup{k : t;, < T'}.
Then

L [T1t4,
Nr < p /0 ot )t dt. (25)

Then for all non-negative integers a, b and ¢ and any strictly increasing
positive function f, we have

Ngf <E§£k> <u /OT 1,;:—551” <u“+” (1) %) dt.  (26)

Furthermore, Uy, < p*u?.

Proof. Using the definition of Ny, we have that

1+¢t t 1+¢t
/0 dt > Z / dt. (27)

Since hy € Ays p, and t, — ty—1 < hx—y < h, we have

o4 g ) " - . ,
/ 0> / (14 6,)dt > By = —.
tp—1 h¢>(t) :u*hkfl th_1 ,u*hk,l w*
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Appling this to (27), it follows that

T4 -2
o he(t) W

and (25) is proved. The proof of (26) is analogue. From here, it follows in
particular that Nr is finite.

The estimate for Uy is a consequence of the following inequality: 6, <
w*i*é_1. In order to prove it, we assume first that 81 = hg_; = hy(tr_1).
Since hg(tr1) > (%) he(ts) = () hy > (u*) "' 6, our inequality is

proved. Assume now by contradiction that 6,_1 < hy_; and u*u*6p_1 < k.
Then fti’il aids = hy—1 = hy(tr—1). Furthermore,

te—1+6k—1

S T T TN _2 - ) . 9
/ Gyds > i P(tr)” X P Op—1 > #*/ ¢yds = pi*hg(tr—1)
t t

k k—1

This leads to a contradiction and therefore it proves that p*mu*éy_1 > 0.
For the reverse inequality note that if 6, = hi then we have as before that
Op—1 < hg_1 < pw*hg = p* 6. Then assume by contradiction that 6, < hy and

8p—1 > p*to, then f;’““ g_bids = h; and

thHH O _ teton
/ Gods > T2 P(tr)® X oy, > M*/ ¢ ds = p*hy > hy_y
t

te—1 k

which again leads to a contradiction. [J

Theorem 14 Suppose that the hypothesis (Hy(¢)), (Ha(¢)) and (Hs(¢))
hold true (see (8),(9) and (24)). Let y = xp, where x4, t > 0 is the skeleton
associated to the control ¢. Then

pr(a,) > Kl i) (C¢(T>)220 xp (—m(u,u*) / (143 (C¢—@) dt) |

eo(T) £4(1)
where
. V3
Ki(p, ") = W;
. 2 5/2 el
Kalio i) = 3= e (1n(2? x 202 ()2 o (o A C* (1)) ") + 150 + 491 )
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Proof. We have using the properties of the functions in the class A that
det MNT < 6?\7T ‘ENT|2 |Z_)NT|2 /12
< () p'h3(T)CH(T) /12.

Furthermore using the definitions for Hy, a; and py together with (6) and
(7) as well as from Theorem 12 and Lemma 13, we obtain that

Nt al 2Hk Np—1
Nr |6 < NpIn(277V%) +) " In(-2— a
710] < NrIn( ) ; p + 35 Z .
Nt (Ck-[‘: ) 3/2 Nr—1
= NyIn(2° x 217Y/%) + Zln I + 49 Z Crer
k=1

T144, Cy(t) Cy(t)?
g;ﬁ/ t<<01—+1n<¢—>>—|—494 ? )dt
o ho(t) e e4(t)?he (1) £q(t)?
with C = In(27 x 217'/2 (u* )*/2 1814, From here it follows that for Cr =
2 + 49

V3
am (p7)*? p2h* (T)C3(T)

o 355 (et ) 540))

Furthermore if we define C(u) = h, A C*(u) < 1, we have that

holt) > i) (%“))Ms

t) > C(p .
v Cy(1)
Therefore we have that

\/30220( )
Am (p7)*? 1222 (T)

. T4 _1_52 C.(4)\ 150 ~
X exp (—2,u i C’(,u)t (55((75))) (Ci,ﬁ —InC(p) + 148 + Cﬁ) dt | .

p(yn) >

p(yn) >

Therefore the result follows.[]
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5 Construction of skeletons

In this section we consider the construction of skeletons satisfying the equa-
tion

xi =z' + /t(a<xs)¢s + b1<x5))d37 JJ? =2’ + /t b2(a75)ds' (28)
0 0

We fix 2,y € R?, T > 0 and we want to construct control functions ¢
that generate solutions to the above ordinary differential equation (28) z; =
z(¢), with zo(¢) = x = (2%, 2?),27(¢) = y = (y',y?). First, consider any
differentiable function z;, 0 < ¢t < T which verifies

T
20 = ba(x), zr = ba(y), / zdt = y* — 1% (29)
0

Then we define .
r? = 2? +/ 25ds (30)
0

and we denote f(t,a) = by(a,x?). We suppose that by is once differentiable
and

i inf inf > ) 1
min {;élw O1bo (), nf a(x)} >¢e0>0 (31)

Although this restriction is stronger than (8), we will relax it in the next
subsection.

By (31) we have 0,f(t,a) = 01ba(a,z?) > 9 > 0 so the function a —
f(t,a) is invertible for every t > 0. We denote by g(t,a) = f~!(t,a) the corre-
sponding inverse function. Therefore, we have that f(t, g(t,a)) = g(t, f(t,a)) =
a. Then we define

xtl = g<t7 Zt)> (32)
. Ozt — (ba0ab2) () — (b101b2) () . Orzy — Opba(wy)
b= (00nbs) (@) = o) 3

We sometimes denote by z,(2), ¢;(z) the functions constructed in this way.

Lemma 15 We suppose that (31) holds and that z satisfies (29) for some
fived z = (2',2%),y = (y',y?) € R?> and T > 0. Then the function z; =
(z},2?) defined by (30) and (52) satisfies that vg = v = (z',2?), 27 =y =
(y',y?) and equation (28) holds with the control ¢, = ¢;(z) defined by (33).
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Proof. First, it is clear that

Lo = (f_l(ova(x))vxz) =z and zr= (f_l(T7 b2(y))ax%) =Y.

Next, we have 0,f(t,a) = Oibs(a,x?) and O, f(t,a) = Osbo(a,x?)0iw? =
Daby(a, x?)2;. Taking derivatives with respect to ¢ in the equality f (¢, g(t,a)) =
a we obtain

0= at(f(ta g(tv a))) = (atf)(ta g(tv a)) + (aaf)(t7 g(t, a’))atg(ta a)
which gives

 ODbe(ha)  Babalelt )5
A9(-2) = = D tglta)) ~  Oubalglta).a?)

And by the inverse function theorem, we have that

1 B 1
(0af)(t g(t,a)) — Oiba(g(t,a),x7)’

0a9(t,a) =

We compute now

8@% = 0i(g(t, z)) = (Oig) (¢, 2t) + (9ug)(t, 2) 02
_ 8t2t — 82b2(g(t, Zt), x?)zt _ atzt — (bgagbg)(l't)

O1ba(g(t, 2:), v7) O1ba ()

the last equality being a consequence of g(t, z;) = z} and z; = by(z).
The equation (28) reads diz} = ¢i0(x;) + by(x;) which, in view of the
previous equality, amounts to

atzt - (b2azb2)($t)

Oro(zy) + by () = Bt ()

And this is true by the definition of ¢. [

From now on, we assume global ellipticity and boundedness (that is, (31)
and (34) below). Nevertheless, we will see later, that the core of the argument
in the general case is in the following proof.

Lemma 16 Assume (31) and for e € (0,1)

i) |0uf(x)| < C, Vz €R? for f =0,b,0,b,04bs,050,0+c0,b, Lb and |a| <5 .
(34)
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Then there exists a function z* generating a control ¢ = ¢(z*) which gives a
solution z; = (z},2?) of (30) and (32) which satisfies that xo = x = (x', 2?),
rr =y = (y',y?) and holds equation (28) with

T 64 y2 — 22— by(2)T]>  |ba(y) — bo(z)|?
0 €o

[ s (5w [ o

for any increasing positive function f.

Proof. We construct now a function z which verifies (29) and which is
linear on [0,7'/2] and on [T'/2,T]. We fix ¢ € R and we ask that 27/, = q.
Since zo = bo(z) and zr = by(y) we have

/O = Tiq 4 2@+ 00,

We solve the equation 3% — 22 = fOT 2 dt and we find

_ y? —a® _ ba(w) + bz(Z/>.

1=/ 2
And we denote by z; the function corresponding to this value of ¢q. Further-
more,
q — by(z) ba(y) — g
Oz = ———=1 t —1 t).
2 T/2 (0,/2)(t) + T/2 (r/2,7)(t)
Therefore

4 |?J2 —z?— ba(z)T| 4 3 [b2(y) — b2($)|.

|8t2:| < T2 T

From here it follows that
N atZ: — be2(a:t)
’¢t(z )| - 8Ubg($t)
L (A= b, Slt) bt )

< —
= T2 T

The second estimate follows by noting that e4(t) = eo, Cy(t) = C, and
he(t) = C(1,C,).0

Therefore we obtain the following result by direct application of Lemma
16 to Theorem 14.
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Theorem 17 Assume the conditions (31) and (34) then the density of X is
bounded below as follows:

T3 T

pT(%fU) > mexp <_C(C*750) <T+ |y2 — % - bg(l’)T‘ + ’b2<y) - b2($)’

*

The above result may seem restrictive due to condition (31). Nevertheless
we claim that this assumption is needed just to define the path z*. Finding
a similar path in non-uniform elliptic cases is possible. Similarly, one could
replace condition (34) by a localized version on the range of x(¢(z*)). This
is in part the objective of the next section.

5.1 An optimal version of the lower bound result

So far, we have only used a particular skeleton in order to obtain the lower
bounds for the densities of X. One could decide to optimize over the possible
paths satisfying certain conditions. This is, in general, a procedure that will
not lead to explicit results and can only be treated on a case by case basis.
Nevertheless one can leave the optimization procedure unsolved and obtain
a lower bound. This is done in this section.

For this, we consider as before the equations (28).We fix z = (2!, z%) and
we assume that

lo(x)| A |01ba(z)| > 0. (35)

The component z}(z) is constructed in the following Lemma.

Lemma 18 Assume (35). Let z : [0,00) — R be a deterministic differen-
tiable function such that zg = by(x). Let 22(z) € R?,t € [0,00) be defined as
22(z) = 2 + [} z,ds. Then we have

A. There exists an unique time T € (0,00] and a unique continuous curve
z; € Rt €[0,7) such that § = z' and

i) by(zy,a}(2))
i7) |81b2(mg,xt2(z))|>

i17) ltlTI_Irl Ovby(zf, 27 (2))

zz 0t <,
0 0<t<m,
0 if 7<o0.

We denote by 7,(z) the above time and by x}(z) the above curve. We also
denote 7,(z) = inf {t < 7,(2) : |o(z;(2))| = 0} and 7(2) = 1(2) A 7(2).
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B. Moreover the unique curve x}(z),t € [0,7) constructed in A. together with
22(2), t € [0,7) is the unique solution of (28) with the control ¢ given by

Op2y — 6)bbz(-Tt( ))
Opbo(me(2))

di(2) =

Proof. A. Step 1. We prove that there exists 7/ > 0 and a continuous
curve z; € R,t € [0,7') such that 7) and 1) hold true.

Define f(t,a) := by(a, #7(2)) and & := 5 |O1ba(z)| . By assumption (35), we
have that |0,f(0,z')| = |8;b2(z)| > 0. Therefore by a continuity argument,
there exists n > 0 such that for 0 < t < n and |a —2'| < 1 we have
0, f(t,a)| > 6. Therefore for each 0 < ¢t < ), the function f(¢,.) : B,(z') —
Uy =: f(t, By(x')) is a bijection.

Moreover, since |0,f(t,a)] > 6 for a € B,(z'), we may find r(§) > 0
(which depends on § but not on t) such that B, (f(t,2')) C U;. Next, we
define 7/ = n Ainf{t : |f(¢,2') — 2] > r(6)}. We have zq = by(z) = f(0, ')
and by continuity 7/ > 0. For every ¢ < 7/, we have that z, € B, (f(t,z'))
so we may define

z = g(t, z)
where ¢(t, ) B (f(t,z')) — By(x') is the inverse of f(t,.). By the de-
finition of x] we have bQ(mi,xf(z)) = f(t,z}) = f(t,g(t,z)) = 2. And for
t < 7 < n we have z; € B,(z') so that |0,f(t,x{)] > & > 0. There-
fore, the properties i) and ii) are satisfied. Finally, for £ = 0 we have

g = 9(0,20) = g(0, f(0,21)) = =",

Step 2. In this step we prove the uniqueness of x} for t < 7/ satlsfymg
i) and 7i) above. For this, consider another continuous curve y;,t < 7' such
that yo = z! and bg(yt,l'%(2>> = z and |01b2(ys, 2} (2))] > 0 hold for ¢ < 7'.
Let 6 = inf{t : y; # z;}.

As before, note that there exists 7 > 0 such that for all ¢t < n and for all
a such that |a — x| < n we have that |0, f(¢,a)| > 6. Define ux := inf{t; z; ¢
B,(zh)} and similarly py = inf{t;y; ¢ B,(z')}. If px < 6 then due to the
bijection property of f then it follows that x; = y; up to 7. Otherwise, assume
that px > 0 then py > 6 and then there e > 0 such that y;,z; € By(z!)
for § <t <6 +e. And using i) we have f(t,y;) = f(t,x}) = 2. Since f(¢,.)
is injective on B,(z') we get y, = x{, which is in contradiction with the
definition of 6.

Step 3. Let 7 = sup{7’ : Jz},t < 7’ which satisfies 7),i7)}. Using the
uniqueness property proved at Step 2 we may construct a path {z},t < 7}
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which satisfies 7) and ). Suppose that 7 < oo and let us prove by contra-
diction that lim, 01ba (7, 22(2)) = 0.

In fact, otherwise there exists 6 > 0 and a sequence t,, T 7 such that
|01b5(z,, x? (2))| > 6. We fix n and we come back to the reasoning from Step
1 with z replaced by =, = (z; ,z7 (z)). Since |01bs(2,)| > 6, we may find
n > 0such that for ¢, < ¢ < t,+nand |a — z}| < n we have |91bs(a, z2)| > 16.
Notice that n depends on the Lipschitz constant of d,b; and on sup,.. ||
but not on n. We recall that f(t,a) = by(a,2?(2)) and the function f(t,.) :
B,(zl) — Uy =: f(t, By(x})),tn <t <t,+nis a bijection.

Moreover, since |9,f(t,a)| > §/2 for a € B,(z;) and t, < ¢t < t, +
n, we may find r(6) > 0 (which depends on § but not on t) such that
B (f(t,z.)) C Up. Then we define 7, = n Ainf{t > ¢, : |f(t,z;) — 2| >
r(6)}. We have z;, = by(z,) = f(tn,z.) so 7, > 0. Furthermore, for every
t, <t < T, we have z € B,5)(f(t,2})) so we may define z; = g(t, z;) where
g is the inverse of f. Notice that 7,, — t,, does not depend on n. It depends
on the modulus of continuity of z;, on the Lipschitz continuity constant of
O1bs and on sup,.. |z| but not on n. So we have obtained an extension of
x; on (t,, Tl Since 7, — t,, does not depend on n and ¢, T 7 we obtain an
extension of x; beyond 7. And this is in contradiction with the definiton of
7. So ii7) is proved.

Suppose now that there exists 7 and Ty, t < 7 which satisfy i), i), ii). By
the uniqueness argument given in step 1, for every t < 7 AT we have T; = z;.
In particular, limg, 7 |0102(7;)| = 0. And then i) implies that T = 7. So we
have uniqueness of the pair (7, {z},t < 7}).

B. We recall that f(t,a) = by(a,2?(2)) and z}(2) = g(t, z;) where g(t,-)
is the inverse of f(t,-). Fix ty < 7(z), and we know that |0, f(to, z} (2))| =
|01b (24, (2))] = 6 for some 6 > 0. So there exists » > 0 such that for every
t € (to — 7 to + r) the function f(t,.) : By(xy,(2)) — Uy = f(t, Br(2f(2)))
is invertible and g(¢,.) : Uy — By(x{ (z)) is its inverse. So for every ¢ €
(to — ryto +7) and a € Uy we have f(t,g(t,a)) = a and for every a €
B, (z,(z)) we have g(t, f(t,a)) = a. Finally, 0,f(t,a) = Oibs(a,27(2)) and
Oif(t,a) = Daby(a, x3(2))0sx?(2) = Daba(a, z2(2)) 2.

From here, the exact argument (in localized version) that was used in the
proof of Lemma 15 applies. [

So far, we have constructed z and then defined x. We now prove that the
reverse procedure is also possible. For this, we define the following sets. For
z,y € R?and T > 0 and we define Cr(z, y) to be the class of the differentiable
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functions z : [0, 00) such that 7(z) > T and

T
20 = by(x), 21 = ba(y) and / zdt = y? — 2%
0

Let Ar(x,y) be the set of derivatives d;2%(¢), t € [0,T] such that there

exists z}(4) so that for z(¢) = (x'(¢), 22(¢)) satisfies xo(¢) = x, zr(¢) =y
and it solves Egs. (28).

Lemma 19 Ar(z,y) = Cr(x,y)

Proof. Let z € Cr(x,y). As in the previous Lemma define z? = z? +
f(f zsds and using z; as in the statement of the previous lemma we obtain
that =, = (z},2?) € Ar(x,y). Similarly, if z € Ar(z,y) then one defines
2 = 0422 (¢) and all the needed properties follow straightforwardly. [J
Using the previous results we can study the following examples.

Example 20 1. The Asian case. Let o(x) = x1,b1(x) = z1 and be(z) = 0
for x = (x1,25). In this case, note that 01bs = 1 therefore 7 = oo. As in
the previous section we consider as z*, a linear funcion on [0,T/2] joining
x' and q and then joining q and y* on [T/2,T]. Note that the path z* stays
away from zero. To make the arguments simple, assume that

_y2—x2_ac1+y1

72 > max{z',y'} > 0.

q

Then we have that

1

" g—z' q—y'| _ -
o) < max { 1 2 <6

Therefore in order to apply Theorem 14, note that 4(t) = min{z!',y'}, C, =
1, Cy(t) = 2q so that we obtain

y - B % 150
pr(z,y) = Ky <m> eXp <_K2T (1 +é ) <m> > .
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where

Kl = E?
4
_ 2 9 1/2 * -1
K, = TACTD (In(2? x 2172 (T A C*(1)) ™) + 199)

-1 * 2
C* < min { (C’Cd196&25> 6—49(0 )2’ \/g} '

From here one can obtain the following result

(A P erley) L
lim inf =3 > —C(z,y,2°,T)
- )

where C(x,y', 2%, T) is a positive constant. Similar results can be easily
obtained. For example, the above result is also valid for the case y*> = ay?
for a > T.J

Example 21 Consider the case 0 = 1,b; = 0 and by(x) is a smooth function

such that by(x) = \/z1 for x1 > 1. In this case, O1by(x) = %mflm. As before

we consider the path z : [0,T] — (1, 400) to be a piecewise linear function as
in the proof of Lemma 16 such that zo = Va', zp = \/y', zr/2 = ¢ > 1 with

T
/ zdt = y? — 22
0

Therefore T = oo. For the sake of the argument we assume that min{z', y*} >

Valy/y!
1 <y2 _ 332) _ 2\/y_

773 > 1. In this case, we have

1 and q =

pr(z,y) > Ki(p) (2_1,2;2)220 exp (—Kg(,u)/o (1+ (2zt8tzt)2) (2_1zt_2)150 dt) :

where
V3
Ki(p) = W’
Ko(p) = 2 (In(2 x 217 2™ G8 (T A C* () ™) + 150 + 49%) .
T AC*(p)
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Vat| eyt
max{ qT/2 | T T2 }
s : q—\/ﬁ q—\/?ﬁ
min T2 || T2

_ max{\/ﬁ, \/?,q}.
min{\/ﬁ, \/?,q}

Note that for |z1| > 1, we have 0,by(z) = (2 |IL’|)

at infinity. Therefore x} = (zt)Z, b1 = 22:0,2¢ and xo(t) = 1% + fot zsds . We
then have that

1
so we have a degeneracy

eo(t) = (22) 7",
C¢(t) = Zt,

he(t) = min {h*, C*(p) (2_1zt_2)148}
where we have that z, z; > € Ayn, for hy = T. Furthermore we also set

Pt = [22:0,2¢] = ¢ € App,. As before, one can use the lower bound for the
density to prove that

21446
lim inf In((y*) Zit(may)) > —C(a!, 4, 2%, T).
yioo (¥?)

(]

Remark: A variety of similar situations can be treated with the above
arguments. For example, in the case that o = 1,b; = 0 and by(z) is a smooth
function such that for |z;| big enough by(z) = e 1®l. It is clear from the
above argument that if we assume that min{z',y'} > 1, a similar argument
as the one above can be used to obtain a lower bound for the density in this
case.

We now give a lower bound in optimal form. For z € Cr(z,y) we denote

£x(t) = [01b2(we(2))| A lo(z4(2))| A1 >0,
C.(t) = (1 + |o| + |b| + |0,0] + |0sb] + | Lb])(x4(2)),

We also fix > 1 > h and we define the class

CT,u,h(xay) = {Z € CT(a:,y);sz, CZ75ZCZ_1 € Au,h}-
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Following (24), we define

om0 (55)

Oz — Opba(24(2))
P(z) = B, b2 (7:(2))

So, for z € Crn(7,y), the hypothesis Hy(¢)i) holds with ¢ = ¢(z), Hi(¢)
holds with e, = £(z) and H3(¢) holds with ¢ = ¢, p and h, = 1.
Then as an immediate consequence of Theorem 14 we obtain:

Q

Theorem 22 Suppose that the (Hy(9)) i) (see (9)) is satisfied and Cr(z,y) #
0 for some > 1> h. Then

CZ T 220
pr(z,y) > sup sup Ki(p) (L) X
p>1>h zeCr(z,y) €z (T)

o (i [+ (P )} (G0Y" )

Here,
V3
Ky(p) = 87
247 9 1/2 -6, 744 1 4
Ky(p) = (In(2° x 217" 2E0 ™ C () ™) + 150 + 49p*) .

O ()

In this Theorem one may use fi = maxcjo,r] [¢(2)|-
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6 Appendix A: Proof of Theorem 2

We recall the reader that the notation appearing in this proof corresponds
~ - 1/2
to the one in [2]. We use that framework with M; = iMk, H, = %

Gp—1

)

ar = a3 with the set A redefined as
i _ : Pi . _
Ak = {w e |E_1 - y1|i < 572 = 1,,]{?}

- 1/2
Here the norm |z|, = <M[1x,x> and p; = a;/Z

pi- Then the proofs in
2] apply exactly changing the constant 1 which appears in the definition of
the hypothesis (Hi,a, A, z) by p and n € (0,¢é,/Ay;) which gives the same

5452
result except that e? is changed by ¢™5 . This factor is not considered in

the definition of C,; above as it was the case in [2]. Therefore in this setting
the constant e® in [2] starts to depend on j and ¢. Similarly, the condition
(Hy,a, A, z) is changed to

1
<
t,6,d+2,pq GA(d+1)? Cy

i

(5+8)2 °
(& 2

Proposition 8 becomes

1
B pa— N
45" (2ma)4/2\/ det M
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forwe A C {w: ||[V(w)—z||y-1 < p} and some n € (0,éy/A;;). Then
section 2.3 applies exactly with the following changes:
1. The estimate in Corollary 9 becomes (where ¢, = )
k
. P(Ap_1)p
P<Ak) Z ~ (5k+ﬁ(kf/2)12)pk
8H1Hde ™ 2 (2daj_qm)%?

under the condition that

< 1
Spd+2,pa A(d+1)2 Crtpr—1/2)?
tk—1,0k,d+2,pq Od& ( + ) e~ 2
K

HMl;lmRk

2. This estimate naturally leads to the estimate in Theorem 15 with

edeO

pry(TN) > =
" A(2m)4/2+/det My

with
N N N N

1 5 1 H 1 - Pk—1
_ 2 1/2 . 1 - 1 HE - 2
0 = In(8%(2md)"?) + 5N 321 n(ag) + N 522 n( A )+ SN kZQ(Ck + 5 )

Finally replacing all the above parameters changes and the inequality

Pk—1
2

1/2

_ Pk—1 Pk
=0p_

2 +8Hk

1/2

Pk—1 T Pk
S g |75

Cr + 5

one obtains the result. [J

36



