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Abstract. The derivative of the log-likelihood function, known as score func-
tion, plays a central role in parametric statistical inference. It can be used to
study the asymptotic behavior of likelihood and pseudo-likelihood estimators.
For instance, one can deduce the local asymptotic normality property which
leads to various asymptotic properties of these estimators. In this article we
apply Malliavin Calculus to obtain the score function as a conditional expec-
tation. We then show, through different examples, how this idea can be useful
for asymptotic inference of stochastic processes. In particular, we consider
situations where there are jumps driving the data process.

Mathematics Subject Classification (2000). Primary 62Mxx, 60Hxx; Secondary
60Fxx, 62Fxx.

Keywords. Diffusion processes, Malliavin calculus, parametric estimation, Cramer-
Rao lower bound, LAN property, LAMN property, jump-diffusion processes,
score function.

1. Introduction

In classical statistical theory, the Cramer-Rao lower bound is obtained
by using two steps: an integration by parts and the Cauchy-Schwarz
inequality. Therefore it seems natural that the integration by parts for-
mulas of Malliavin calculus will play a role in this context. In recent
times, the theory of Malliavin Calculus has attracted attention from
Computational Finance to derive expressions for the calculation of
the greeks which measure the sensitivity of option prices (conditional
expectations) with respect to certain parameters, see e.g. [3],[4]. We
show in this article, that similar techniques can be used to derive ex-
pressions for the score function in a parametric statistical model and
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consequently we obtain the Fisher information and the Cramer-Rao’s
bounds. The advantage of these expressions is that they do not require
the explicit expression of the likelihood function directly and that its
form is appropriate to study asymptotic properties of the model and
some estimators. Gobet [5] was the first contribution in this direction.
He uses the duality property in a Gaussian space to study the local
asymptotic mixed normality of parametric diffusion models when the
observations are discretely observed. Recently, duality properties have
been used to obtain a Stein’s type estimator in the context of a Gauss-
ian space (see [9] and [10]), and in the context of a Poisson process
(see [11]). An interesting discussion of different Cramer-Rao’s bounds
is given in [2].

In this paper we use Malliavin calculus with the aim of giving
alternative expressions for the score function as conditional expecta-
tions of certain expressions involving Skorohod’s integrals and we show
how to use them to study the asymptotic properties of the statistical
model, to derive Cramer-Rao lower bounds and expressions for the
maximum likelihood estimator.

The paper is organized as follows. In the first section we formulate
the statistical model in a way that appears clearly that the Cramer-
Rao lower bound can be obtained after integrating by parts and using
the Cauchy-Schwarz inequality. In the second section, we consider the
parametric models associated with diffusion processes where the driv-
ing process is a Wiener process. In the last section we consider the case
of diffusions with jumps. The basic reference on Malliavin calculus is
[7]. In particular, we refer the reader to this textbook for definitions
and notation.

As our goal is to concentrate in general principles rather than
technical details, we briefly sketch the mathematical framework re-
quired and explain in the examples the procedure.

2. The Cramer-Rao lower bound

A parametric statistical model is defined as the triplet (X ,F , {Pθ, θ ∈
Θ}) where X is the sample space that corresponds to the possible
values of certain n-dimensional random vector X = (X1, X2, ..., Xn),
F is the σ-field of observable events and {Pθ, θ ∈ Θ} is the family
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of possible probability laws of X. However, when the vector X corre-
sponds to observations of a random process where certain parameter
θ is involved, it is better to assume that X itself depends explicitly θ.

Then we define a parametric statistical model as a triplet consist-
ing of a probability space (Ω,F , P ), a parameter space Θ, an open set
in R

d, and a measurable map

X : Ω × Θ → X ⊆R
n

(ω, θ) 7→ X(ω, θ),

where in Θ we consider its Borelian σ-field.
As usual, a statistic is a measurable map

T : X → R
m

x 7→ T (x) = y.

For simplicity, take m = d = 1 and Θ an open interval in R. Let us
denote

g(θ) := Eθ(T ) = E (T (X)) ,

then, under smoothness conditions on g(θ), we can evaluate

∂θE(T (X)),

where we write ∂θ = ∂
∂θ

.

Definition 2.1. A square integrable statistic T ∈ C1 is said to be
regular if

∂θE(T (X)) = E (∂θT (X))

and V ar(T (X)) < ∞.

Suppose that the family of random variables {X(·, θ), θ ∈ Θ} is
also regular in the following sense:

i). X has a density p(·; θ) ∈ C1 for all θ ∈ Θ with support, supp(X),
independent of θ.

ii). X(ω, ·) ∈ C1 as a function of θ, ∀ω ∈ Ω. Furthermore, ∂θXj ∈
L2(Ω) and E(∂θXj|X = x) ∈ C1 as a function of x,∀θ ∈ Θ and
j = 1, ..., n.

iii).
∂xj

(E(∂θXj |X)p(X;θ))

p(X;θ)
∈ L2(Ω), j = 1, . . . , n; where, for any smooth

function h, we denote ∂xj
h(X) := ∂xj

h(x)|x=X

iv). Any statistic T ∈ C1 with compact support in the interior of
supp(X) is regular.
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Remark 2.2. Note that if T ∈ C1 has compact support in the interior
of supp(X) and the family {X(·, θ), θ ∈ Θ} is regular then

∂θE(T (X)) = E(∂θT (X)) = E(
n
∑

j=1

∂xj
T (X)∂θXj)

=

∫

Rn

n
∑

j=1

∂xj
T (x)E(∂θXj|X = x)p(x; θ)dx

= −
∫

Rn

T (x)
n
∑

j=1

∂xj
(E(∂θXj|X = x)p(x; θ)) dx,

since

lim
x→x0

E(∂θXj|X = x)p(x; θ)T (x) = 0, j = 1, ..., n,

∀θ ∈ Θ and ∀x0 ∈ ∂supp(X), where ∂supp(X) is the boundary of the
support of X. So,

∂θE(T (X)) = −E

(

T (X)
n
∑

j=1

∂xj
(E(∂θXj|X)p(X; θ))

p(X; θ)

)

. (2.1)

Here the quotient is defined as 0 if p(X; θ) = 0.

The following result is a statement of Cramer-Rao’s inequality.

Proposition 2.3. Let T be a regular statistic satisfying i)-iii) and

lim
x→x0

E(∂θXj|X = x)p(x; θ) = 0, j = 1, ..., n, (2.2)

∀θ ∈ Θ and ∀x0 ∈ ∂supp(X), including x0 = ∞ in ∂supp(X) if the
supp(X) is not compact, then

Var(T (X)) ≥ (∂θE(T (X)))2

E
(

∑n
j=1

∂xj
(E(∂θXj |X)p(X;θ))

p(X;θ)

)2 , (2.3)

provided that the denominator is not zero.

Proof. By the boundary condition (2.2) we have that

E

(

n
∑

j=1

∂xj
(E(∂θXj|X)p(X; θ))

p(X; θ)

)

= 0.
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Then, by condition iii) and since ∂θXj ∈ L2 and T is regular we also
have that E[|∂θXjT (X)|] < ∞ and therefore

lim
x→x0

E(∂θXj|X = x)p(x; θ)T (x) = 0, j = 1, ..., n,

∀θ ∈ Θ and ∀x0 ∈ ∂supp(X), then

∂θE(T (X)) = −E

(

T (X)
n
∑

j=1

∂xj
(E(∂θXj|X)p(X; θ))

p(X; θ)

)

(2.4)

and we can write

∂θE(T (X)) = E

(

(T (X) − g(θ))
n
∑

j=1

∂xj
(E(∂θXj|X)p(X; θ))

p(X; θ)

)

.

The result follows from the Cauchy-Schwarz inequality. �

In most classical models, the above calculation can be straightfor-
ward, as the explicit form of the density function p is available. This is
carried out in the following examples. Our goal later is to show that in
some cases where the explicit density is not known, the above bound
can also be written without using directly the form of p. This will be
the case of elliptic diffusions.

Example 1. Assume that X = (X1, X2, ..., Xn) where Xi = Ui

θ
are i.i.d.

r.v. with Ui ∼ exp(1) . This situation corresponds to a usual paramet-
ric model of n independent observations exponentially distributed
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with parameter θ. We have that

∂θXj = −Xj

θ
;

E(∂θXj|X)p(X; θ) = −Xjθ
n−1 exp{−θ

n
∑

j=1

Xj};

∂xj
(E(∂θXj|X)p(X; θ))

p(X; θ)
= −1

θ
+ Xj;

n
∑

j=1

∂xj
(E(∂θXj|X)p(X; θ))

p(X; θ)
=

n
∑

j=1

Xj −
n

θ
;

E

(

n
∑

j=1

∂xj
(E(∂θXj|X)p(X; θ))

p(X; θ)

)2

= V ar(
n
∑

j=1

Xj)

= V ar(∂θ log(p(X; θ)) = I(θ),

where I(θ) is the Fisher information. So we see that, in this case, (2.3)
is the classical Cramer-Rao lower bound.

If we also assume that

v). p(x; θ) is smooth as function of θ, for every fixed x.
vi). For any smooth statistic T with compact support in the interior

of supp(X), ∂θ

∫

Rn T (x)p(x; θ)dx =
∫

Rn T (x)∂θp(x; θ)dx,∀θ ∈ Θ,

we have the following proposition that shows that (2.3) is just the
usual Cramer-Rao inequality.

Proposition 2.4. Assume conditions i)-vi). Then, a.e.

−
n
∑

j=1

∂xj
(E(∂θXj|X = x)p(x; θ))

p(x; θ)
= ∂θ log p(x; θ),∀θ ∈ Θ.

Proof. We have seen in (2.1) that

∂θE(T (X)) = −E

(

T (X)
n
∑

j=1

∂xj
(E(∂θXj|X)p(X; θ))

p(X; θ)

)

.



Inference and Malliavin calculus 7

On the other hand,

∂θE(T (X)) = ∂θ

∫

Rn

T (x)p(x; θ)dx

=

∫

Rn

∂θ log p(x; θ)T (x)p(x; θ)dx

= E(T (X)∂θ log p(X; θ)).

Using a density argument w.r.t. T , we have that

−
n
∑

j=1

∂xj
(E(∂θXj|X = x)p(x; θ))

p(x; θ)
= ∂θ log p(x; θ) a.e.

�

We have assumed in the above proof that the support of X does
not depend on θ. In the following example we suggest a localization
method to treat the case where the support depends on θ.

Example 2. Assume that X = (X1, X2, ..., Xn) where Xi = θUi, with
Ui ∼ Uniform(0, 1) independent r.v.’s for i = 1, ..., n and θ ∈ R.
Consider a function T = T (X) ∈ C1 and function π : [0, 1]n → R also
belonging to C1 in (0, 1)n and continuous in [0, 1]n such that π(U) = 0
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if there exists i = 1, ..., n with Ui ∈ {0, 1}. Then

∂θE(T (X)π(U))

= E(∂θT (X)π(U)) = E(
n
∑

j=1

∂xj
T (X)∂θXjπ(U))

=
n
∑

j=1

E(∂xj
T (X)∂θXjπ(U))

=
n
∑

j=1

1

θn

∫

[0,θ]

...

∫

[0,θ]

∂xj
T (x)E(∂θXj|X = x)π(

x

θ
)dx

= −
n
∑

j=1

1

θn

∫

[0,θ]

...

∫

[0,θ]

T (x)∂xj
(E(∂θXj|X = x)π(

x

θ
))dx

= −E(T (X)
n
∑

j=1

∂xj
(∂θXjπ(

X

θ
)))

= −E((T (X) − E(T (X)))
n
∑

j=1

∂xj
(∂θXjπ(

X

θ
)))

then we have that

V ar(T ) ≥ (∂θE(T (X)π(U)))2

E(
∑n

j=1 ∂xj
(∂θXjπ(X

θ
)))2

where

∂xj
(∂θXjπ(

X

θ
)) =

1

θ
∂uj

(Ujπ(U)).

Note that if π(U) = 1 (and this could be considered as a limit case)
then the Cramer-Rao bound is of order n−2 which corresponds to the
variance of max(X1, X2,..., Xn) (the maximum likelihood estimator of
θ) .

3. Statistical Inference in Gaussian spaces

In this section, we give an alternative derivation of the Cramer-Rao
bound using the integration by parts formula of Malliavin Calculus.
We start explaining some of the basic concepts of Malliavin Calculus.
Consider a probability space (Ω,F , P ) and a Gaussian subspace H of
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L2(Ω,F , P ) whose elements are zero-mean Gaussian random variables.
Let H be a separable Hilbert space with scalar product denoted by
〈·, ·〉H and norm || · ||H , we will assume that there exists an isometry

W : H → H
h 7→ W (h)

in the sense that

E(W (h1)W (h2)) = 〈h1, h2〉H .

Let S be the class of smooth random variables T (W (h1),W (h2), ...,W (hn))
such that T and all its derivatives have polynomial growth. Given
T ∈ S we can define its differential as

DT =
n
∑

i=1

∂iT (W (h1),W (h2), ...,W (hn))hi.

DT can be seen as a random variable with values in H. Then we can
define the stochastic derivative operator as

D : D
1,2 ⊆ L2(Ω, R) −→ L2(Ω, H)

T 7→ DT.

where D
1,2 is the closure of the class of smooth random variables with

respect to the norm

||T ||1,2 =
(

E(|T |2) + E(||DT ||2H)
)1/2

Let u be an element of L2(Ω, H) and assume there is an element δ(u)
belonging to L2(Ω) and such that

E(〈DT, u〉H) = E(Tδ(u))

for any T ∈ D
1,2, then we say that u belongs to the domain of δ

(denoted by dom(δ)) and that δ is the adjoint operator of D.

Proposition 3.1. Let h be an element of H, then

δ(h) = W (h).

Proof. Without loss of generality we can assume that ||h|| = 1 and
that T = T (W (h),W (h2), ...,W (hn)) is in S with hi , i = 2, ..., n
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orthogonal to h. Then

E(〈DT, h〉H)

= E(∂1T ) = E(

∫

R

∂1T (x1,W (h2), ...,W (hn))
1√
2π

e−
1

2
x2
1dx1

= E(

∫

R

x1T (x1,W (h2), ...,W (hn))
1√
2π

e−
1

2
x2
1dx1

= E(TW (h)).

�

Proposition 3.2. If

u =
n
∑

i=1

Fjhj

where Fj ∈ S and hj are elements of H then

δ(u) =
n
∑

j=1

FjW (hj) −
n
∑

j=1

〈DFj, hj〉H .

Proof.

E(Tδ(u))

=
n
∑

j=1

E(TFjW (hj)) −
n
∑

j=1

E(T 〈DFj, hj〉H)

=
n
∑

j=1

E(〈D(TFj), hj〉) −
n
∑

j=1

E(T 〈DFj, hj〉H

=
n
∑

j=1

E(〈D(TFj) − TDFj, hj〉H)

=
n
∑

j=1

E(Fj〈DT, hj〉H)

= E(〈DT,
n
∑

j=1

Fjhj〉H)

= E(〈DT, u〉H).

�
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In the following results we assume that our observations are ex-
pressed as the measurable map

X : Ω × Θ → R
n

(ω, θ) 7→ x = X(ω, θ),

Θ an open subset of R with the Borelian σ-field and the σ-field in Ω
is the σ-field generated by H.

Theorem 3.3. Let Xj ∈ D
1,2, j = 1, ..., n and Z be a random variable

with values in H, in the domain of δ, such that

〈Z,DXj〉H = ∂θXj. (3.1)

If T is a regular unbiased estimator of g(θ) then

V ar(T (X))V ar(E(δ(Z)|X)) ≥ g′(θ)2. (3.2)

Furthermore, assume that

i) X has density p(x; θ) ∈ C1 as function of θ with support, supp(X),
independent of θ,

ii) Any smooth statistic with compact support in the interior of supp(X)
is regular and ∂θ

∫

Rn T (x)p(x; θ)dx =
∫

Rn T (x)∂θp(x; θ)dx, for all
θ ∈ Θ,

then
E(δ(Z)|X) = ∂θ log p(X; θ), a.s. and for all θ ∈ Θ.

Proof.

∂θEθ(T (X)) =
n
∑

k=1

E(∂xk
T (X)∂θXk).

If we have Z with
〈Z,DXj〉H = ∂θXj

then
∂θE(T (X)) = E(∂xk

T (X)〈Z,DXk〉H).

By the chain rule for the derivative operator D,

DT (X) = ∂xk
T (X)DXk,

then

∂θE(T (X)) = E(〈Z,DT (X)〉H)

= E(T (X)δ(Z)).
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Finally, by the Cauchy-Schwarz inequality

(∂θE(T (X)))2 ≤ V ar(T (X))V ar(E(δ(Z)|X)).

Next, we have

E(T (X)δ(Z)) = ∂θE(T (X))

= ∂θ

∫

Rn

T (x)p(x; θ)dx

=

∫

Rn

T (x)∂θp(x; θ)dx

=

∫

Rn

T (x)∂θ log p(x; θ)p(x; θ)dx

= E(T (X)∂θ log p(X; θ)).

Therefore the result follows from a density argument. �

Remark 3.4. The next goal is to provide a somewhat standard way
of finding Z. For example, if there exists U, an n-dimensional random
vector with values on H such that

〈Uk, DXj〉H = δkj

where δkj is Kronecker’s delta then

Z =
n
∑

k=1

Uk∂θXk

verifies condition (3.1) if Z ∈ dom(δ). In particular, if

(Akj) = (〈DXk, DXj〉H)−1

is well defined then we can take

Uk =
n
∑

j=1

AkjDXj.

The matrix A is called the Malliavin covariance matrix and the prop-
erty that its inverse is well defined implies (see Theorem 2.1.2 in [7])
that the random vector X has a density function p(x; θ).

In order to understand the role of each of the elements in Theorem
3.3, we treat some classical examples from time series analysis in the
present framework.
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Example 3. Let Xj = εj + θ, 1 ≤ j ≤ n, where εj are independent
standard normally distributed random variables for j = 1, ..., n. Let
H be the linear space generated by the sequence ε1, ε2, ..., then

DXj = ej

where W (ej) = εj, and 〈ej, ek〉H = E(εjεk) = δjk , so Akj = δkj, and

Z =
n
∑

j,k=1

∂θXkAkjDXj =
n
∑

j=1

ej,

since ∂θXk = 1. Then

δ(Z) =
n
∑

j=1

W (ej) =
n
∑

j=1

εj =
n
∑

j=1

Xj − nθ.

Therefore we obtain the classical Cramer-Rao lower bound

V arθ(T ) ≥ (∂θEθ(T ))2

n
.

Example 4. Let Xj = θεj where εj are independent standard normally
distributed r.v. Let H be again the linear space generated by the
sequence ε1, ε2, ..., then

DXj = θej

where W (ej) = εj, Ajk = 1
θ2 δjk, and ∂θXk = εj, so we can take

Z =
n
∑

j,k=1

∂θXkAkjDXj =
n
∑

j=1

1

θ
εjej.

then using Proposition 3.2,

δ(Z) =
n
∑

j=1

1

θ
ε2

j −
n
∑

j=1

1

θ
〈ej, ej〉H =

n
∑

j=1

X2
j

θ3
− n

θ
.

Therefore we also obtain the classical Cramer-Rao lower bound

V ar(T ) ≥ θ2 (∂θEθ(T ))2

2n

As we mention in remark 3.4, the problem is how to find Z. The
following elementary proposition can be useful in this sense.
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Proposition 3.5. Let X = (X1, X2, ..., Xn)T and Y = (Y1, Y2, ..., Yn)T

be two random vectors with components in D
1,2, where Y = h(θ,X)

with h ∈ C1,1 and h(θ, ·) one to one for all θ. Assume that

〈Z,DYj〉H = ∂θYj.

Then,

〈Z,DXj〉H = ∂θXj.

Also we have that

n
∑

r,l=1

DYrBrl(dθYl − (∂θhl)(θ,X)) =
n
∑

r,l=1

DXrArl∂θXl

where Bkj = (〈DYj, DYk〉H)−1, Akj = (〈DXj, DXk〉H)−1 and dθ means
total derivative with respect to θ. That is, dθYl = ∂θ(h(θ,X)).

Proof. It is straightforward �

Next, we give an application of the above proposition.

Example 5. Let Xj = θXj−1 + εj, j = 1, ..., n where X0 is a constant
and εj are independent standard normal distributed. Let H be the lin-
ear space generated by the sequence ε1, ε2, ..., then define Y = h(θ,X),
where hj(θ, x) = xj − θxj−1 with x0 = X0. Therefore Yj = εj and

dθYj = dθεj = 0, (∂θhj)(θ,X) = −Xj−1,

so we have that

n
∑

r,l=1

DYrArl(dθYl − (∂θhl)(θ,X)) =
n
∑

r,l=1

erδrlXl−1.
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As W (ej) = εj, then
n
∑

r,l=1

δ(DYrArl(dθYl − (∂θhl)(θ,X)))

=
n
∑

r,l=1

δ(erδrlXl−1)

=
n
∑

l=1

W (el)Xl−1 −
n
∑

l=1

〈DXl−1, el〉H .

=
n
∑

l=1

εlXl−1 =
n
∑

l=1

(Xl − θXl−1)Xl−1

and we obtain the score function. Another way to obtain Z in Theorem
3.3 would be to use the relation

∂θXj = Xj−1 + θ∂θXj−1

DXj = ej + θDXj−1

so that

〈
n
∑

l=1

elXl−1, DXj〉 = Xj−1 + θ〈
n
∑

l=1

elXl−1, DXj−1〉

and therefore by uniqueness of solutions for difference equations, we
have that

∂θXj = 〈
n
∑

l=1

elXl−1, DXj〉.

So, if we define

Z =
n
∑

l=1

elXl−1,

then

δ(Z) =
n
∑

l=1

εlXl−1 =
n
∑

l=1

(Xl − θXl−1)Xl−1.

And consequently

∂θ log p(X; θ) =
n
∑

l=1

(Xl − θXl−1)Xl−1.
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The continuous version of the previous example is given by the
following one.

Example 6. Let X(n) = (Xt1 , Xt2 , ..., Xtn), 0 < t1 < t2... < tn, be
observations of the Ornstein-Uhlenbeck process

dXt = −θXtdt + dBt, t ≥ 0, X0 = 0.

Or, by integrating,

Xt =

∫ t

0

e−θ(t−s)dBs.

Here {Bt, t ≥ 0} is a standard one dimensional Brownian motion.
Let H be the closed linear space generated by the random variables
{Bt, 0 ≤ t ≤ T} and H = L2([0, T ], dx). Then the map

W : H → H

1[0,t](·) 7→ W (1[0,t]) ≡
∫ T

0

1[0,t](s)dBs = Bt

defines a linear isometry, and W (h) is the stochastic integral of the
function h. Consequently DXt = e−θ(t−·)

1[0,t](·). We have

d∂θXt = −Xtdt − θ∂θXtdt, t ≥ 0, ∂θX0 = 0,

so

∂θXt = −
∫ t

0

e−θ(t−s)Xsds

= −
∫ T

0

XsDsXtds = −〈X,DXt〉H ,

where we write DXt(s) = DsXt. Then

∂θ log p(X(n); θ) = −E(δ(X)|X(n)) = −E(

∫ T

0

XsdBs|X(n))

= −E(

∫ T

0

XsdXs + θ

∫ T

0

X2
s ds|X(n)).

In particular the maximum likelihood estimator of θ is given by

θ̂ = −E(
∫ T

0
XsdXs|X(n))

E(
∫ T

0
X2

s ds|X(n))
.
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Take now ∆ti = ∆n and n observations in such a way that ∆n → 0
and n∆n → ∞ when n goes to infinity. Then

1√
n∆n

∂θ log p(X(n); θ) = −E

(

1√
n∆n

∫ n∆n

0

XsdBs

∣

∣

∣

∣

X(n)

)

.

By ergodicity

1

n∆n

∫ n∆n

0

X2
s ds

P→ 1

2θ
,

then we have that 1√
n∆n

δ(X)
L→ N(0, 1

2θ
) (see Theorem 1.19 in [6]).

On the other hand

δ(X) =

∫ n∆n

0

XsdBs =

∫ n∆n

0

XsdXs + θ

∫ n∆n

0

X2
s ds

=
n
∑

i=1

Xti−1
∆Xti + θ

n
∑

i=1

X2
ti−1

∆n +
n
∑

i=1

Ri,

where

Ri =

∫ ti

ti−1

(Xs − Xti−1
)dBs + θ

∫ ti

ti−1

Xti−1
(Xs − Xti−1

)ds.

By straightforward calculations one can see that 1√
n∆n

∑n
i=1 Ri

L2

→ 0,
so

1√
n∆n

δ(X) − 1√
n∆n

(

n
∑

i=1

Xti−1
∆Xti + θ

n
∑

i=1

X2
ti−1

∆n

)

L2

→ 0,

and, since the second term is X(n) measurable, we have that

1√
n∆n

δ(X) − E

(

1√
n∆n

δ(X)

∣

∣

∣

∣

X(n)

)

L2

→ 0,

so finally

E

(

1√
n∆n

δ(X)

∣

∣

∣

∣

X(n)

)

L→ N(0,
1

2θ
).

Note that the asymptotic Fisher information is given by 1
2θ

. Also if we
consider

Zn(θ, θ +
u√
n∆n

) := log p(X(n); θ +
u√
n∆n

) − log p(X(n); θ),
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we have

Zn(θ, θ +
u√
n∆n

) = −
∫ θ+ u√

n∆n

θ

E(δ(X)|X(n)
θ′ = X

(n)
θ )dθ′

= −
∫ θ+ u√

n∆n

θ

(

n
∑

i=1

Xti−1
∆Xti + θ′

n
∑

i=1

X2
ti−1

∆n

)

dθ′

−Mn

where

Mn =

∫ θ+ u√
n∆n

θ

E

(

n
∑

i=1

Ri|X(n)
θ′ = X

(n)
θ

)

dθ′.

We can show that Mn
L2

→ 0. In fact

E(M2
n) =

n
∑

i=1

E

(

∫ θ+ u√
n∆n

θ

E(Ri|X(n)
θ′ = X

(n)
θ )dθ′

)2

(3.3)

+2
n
∑

i<j

E

(

∫ θ+ u√
n∆n

θ

E(Ri|X(n)
θ′ = X

(n)
θ )dθ′

∫ θ+ u√
n∆n

θ

E(Rj|X(n)

θ′′
= X

(n)
θ )dθ′′

)

,

and

E

(

∫ θ+ u√
n∆n

θ

E(Ri|X(n)
θ′ = X

(n)
θ )dθ′

)2

≤ u√
n∆n

∫ θ+ u√
n∆n

θ

E(E(R2
i |X

(n)
θ′ = X

(n)
θ ))dθ′

=
u√
n∆n

∫ θ+ u√
n∆n

θ

E

(

E(R2
i |X

(n)
θ′ )

pi(θ)

pi(θ′)

)

dθ′,

where pi(θ) is the joint density of
(

(Xθ)ti−1
, (Xθ)ti

)

evaluated at X
(n)
θ′ .

Then, since

E

(

E(R2
i |X

(n)
θ′ )

pi(θ)

pi(θ′)

)

≤
(

E(E(R2
i |X

(n)
θ′ )2)

)1/2
(

E

(

pi(θ)

pi(θ′)

)2
)1/2

≤ C
(

E(E(R2
i |X

(n)
θ′ )2)

)1/2

≤ C
(

E(R4
i )
)1/2

≤ C∆2
n
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we have that

E

(

∫ θ+ u√
n∆n

θ

E(Ri|X(n)
θ′ = X

(n)
θ )dθ′

)2

≤ C
u2

n
∆n.

Here we have used Burkholder’s inequality and, in order to prove that

E
(

pi(θ)
pi(θ′)

)2

is uniformly bounded, we used the explicit form of the

Gaussian density of
(

(Xθ)ti−1
, (Xθ)ti

)

. Finally the term (3.3) goes to
zero since the covariance function of X goes to zero exponentially.
Then

Zn(θ, θ +
u√
n∆n

) = − u√
n∆n

(

n
∑

i=1

Xti−1
∆Xti + θ

n
∑

i=1

X2
ti−1

∆n

)

−1

2

u2

n∆n

n
∑

i=1

X2
tin

∆n − Mn.

and, since X is ergodic, we have that

Zn(θ, θ +
u√
n∆n

)
L→ uN(0,

1

2θ
) − u2

4θ
.

That is, the model satisfies the LAN (Local Asymptotic Normality)
property.

3.1. Elliptic diffusions

Let X(n) = (Xt1 , Xt2 , ..., Xtn) be the vector of observations. Here, ti =
i∆n, with n = ∆−1

n where we omit the dependence of the partition on
n. X is defined as the solution to

Xt = x +

∫ t

0

bs(θ,Xs)ds +

∫ t

0

σs(θ,Xs)dBs.

and B is a standard Brownian motion. Assume that bs, σs and their
derivatives with respect to θ and x are C1.3

b (as functions of t and
x) and that σs is uniformly bounded and uniformly elliptic. Some-
times, when the arguments are clear, we will write σs and bs instead
of σs(θ,Xs) and bs(θ,Xs) respectively. Note that the setting here is
different from the previous example where the time frame for the
data satisfied that n∆n → ∞ while in this subsection we have that
n∆n = 1.
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It can be shown that (see [7])

DXt = ∂xXt (∂xX·)
−1 σ·(θ,X·)1[0,t](·).

Define
βt = (∂xXt)

−1 ∂θXt

and

β̃t = ∂xXt (σt(θ,Xt))
−1

n
∑

i=1

a(t)(βti − βti−1
)1{ti−1≤t<ti},

where

a ∈ L2([0, T ]),

∫ ti

ti−1

a(t)dt = 1, i = 1, ..., n.

Then, it is easy to see that

∂θXti = 〈β̃, DXti〉H .

In fact

〈β̃, DXti〉H = ∂xXti

∫ ti

0

n
∑

j=1

a(t)(βtj − βtj−1
)1{tj−1≤t<tj}dt

= ∂xXti

i
∑

j=1

(βtj − βtj−1
)

∫ tj

tj−1

a(t)dt

= ∂xXti

i
∑

j=1

(βtj − βtj−1
) = ∂xXti(βti − βt0)

= ∂xXtiβti = ∂θXti .

By the assumption of uniform ellipticity and smoothness of the coeffi-
cients, we have that β̃ is in the domain of δ and that the score function
is given by

E(δ(β̃)|X(n)),

where we have for a(t) = n,

1

n
δ(β̃) =

n
∑

i=1

(βti − βti−1
)

∫ ti

ti−1

∂xXt (σt(θ,Xt))
−1 dBt

−
n
∑

i=1

∫ ti

ti−1

Dtβti∂xXt (σt(θ,Xt))
−1 dt.
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Conditions i) and ii) of Theorem 3.3 are fulfilled since supp(X) is R
n

and ∂θp(x; θ) is uniformly bounded with respect to θ by an integrable
function. In addition,

∂xXt = 1 +

∫ t

0

∂xbs∂xXsds +

∫ t

0

∂xσs∂xXsdBs,

and

∂θXt =

∫ t

0

(∂θbs + ∂xbs∂θXs) ds +

∫ t

0

(∂θσs + ∂xσs∂θXs) dBs,

so, by applying the Itô formula we have that

βt =
∂θXt

∂xXt

=

∫ t

0

µsds +

∫ t

0

∂θσs

∂xXs

dBs, (3.4)

for a certain adapted process µ that can be explicitly calculated. Then,
by Theorem 2.1 in [1] and the polarization identity, we have that

√
n

(

n
∑

i=1

(βti − βti−1
)

∫ ti

ti−1

∂xXtσ
−1
t dBt

−
n
∑

i=1

∫ ti

ti−1

∂θσt

σt

dt

)

L→
√

2

∫ 1

0

(

∂θσs

σs

)

dWs.

Here W is a Brownian motion independent of B. Moreover, for t ≤ ti,

Dtβti =
∂θσt

∂xXt

+

∫ ti

t

DtµsDtXsds +

∫ ti

t

∂x

(

∂θσs

∂xXs

)

DtXsdBs.

and therefore we have

√
n

(

n
∑

i=1

∫ ti

ti−1

Dtβti∂xXtσt
−1dt −

∫ ti

ti−1

∂θσt

σt

dt

)

L2

→ 0.

Consequently

1√
n

δ(β̃)
L→

√
2

∫ 1

0

(

∂θσs

σs

)

dWs. (3.5)
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Moreover, by using the polarization identity and Burkholder’s inequal-
ity we can see that

1√
n

δ(β̃) −
√

n

n
∑

i=1

{

∂θσti−1

σ3
ti−1

(∆Xti)
2 − 1

n

∂θσti−1

σti−1

}

Lα

→ 0,

for any α > 0. So, finally

1√
n

E(δ(β̃)|X(n))
L→

√
2

∫ 1

0

(

∂θσs

σs

)

dWs.

In particular this implies that the asymptotic Fisher information
for θ is given by

2E

[

∫ 1

0

(

∂θσs

σs

)2

ds

]

.

If we define

Zn(θ, θ +
u√
n

) = log p(X(n); θ +
u√
n

) − log p(X(n); θ)

Zn(θ, θ +
u√
n

) =

∫ θ+u/
√

n

θ

E(δ(β̃)|X(n)
θ′ = Xn

θ )dθ′.

It can be seen that

E(δ(β̃)|X(n)
θ ) = n

n
∑

i=1

{

∂θσti−1

σ3
ti−1

(∆Xti)
2 − 1

n

∂θσti−1

σti−1

}

+
n
∑

i=1

Ri(θ, (Xθ)ti−1
, (Xθ)ti

)

(3.6)
where E(|Ri(θ, (Xθ)ti−1

, (Xθ)ti
)|α)1/α = O(1/n), uniformly in i, for

any α > 0. Then,

Eθ

(

|Ri(θ
′, (Xθ)ti−1

, (Xθ)ti
)|
)

= Eθ′

(

|Ri(θ
′, (Xθ′)ti−1

, (Xθ′)ti
)| pi(θ)

pi(θ′)

)

= (Eθ′(|Ri|α))1/α

(

Eθ′

[

(

pi(θ)

pi(θ′)

)β
])1/β

,

where 1/α + 1/β = 1, α > 1, β > 1, Ri = Ri(θ
′, (Xθ)ti−1

, (Xθ)ti
) and

pi(θ) is the joint density of
(

(Xθ)ti−1
, (Xθ)ti

)

evaluated at Xθ′ . The

expectation with respect to this process is denoted by Eθ′ .
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Now, since σ ∈ C1,3 is uniformly elliptic, transition densities can
be bounded from above and below uniformly by the Gaussian kernel,
and then by continuity there exists β > 1 such that

Eθ′

[

(

pi(θ)

pi(θ′)

)β
]

< C,

see Proposition 5.1 in ([5]). So
∫ θ+u/

√
n

θ

E|Ri(θ
′, (Xθ)ti−1

, (Xθ)ti
)|dθ′ ≤ C

∫ θ+u/
√

n

θ

(E|Ri|α)1/α dθ′

≤ C
u

n3/2
.

Now, we only need to calculate the derivatives, with respect to θ fixed
X(n), of the expression (3.6). We obtain, after some calculations,

1

n
∂θE(δ(β̃)|X(n)) =

n
∑

i=1

{

∂2
θσti−1

σ3
ti−1

(∆Xti)
2 − 1

n

∂2
θσti−1

σti−1

}

+
n
∑

i=1

{

−3

(

∂θσti−1

)2

σ4
ti−1

(∆Xti)
2 +

1

n

(

∂θσti−1

)2

σ2
ti−1

}

+op(1).

Finally, by taking into account the continuity of the derivatives
with respect to θ, we have,

Zn(θ, θ +
u√
n

)
L→ u

∫ 1

0

√
2
∂θσs

σs

dWs −
u2

2

∫ 1

0

2

(

∂θσs

σs

)2

ds.

That is, the model satisfies the LAMN (Local Asymptotic Mixed Nor-
mality) property.

4. Statistical inference for models with jumps

In this section, we show how to treat cases where the observed process
have jumps. Essentially the question reduces to the use of an appro-
priate extension of Malliavin’s Calculus to processes with jumps. That
is, the integration by parts formulas. First, we consider the case when
assume that the vector of observations Z(n) has a Gaussian component
(c.f. [4]). That is, Z is a sequence of G = F ×H-measurable random
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variables where F is the σ-field generated by the isonormal Gaussian
process and H is a σ-field independent of F . For instance

Zk = F (θ,Xk, Yk), k = 1, ..., n

where X(n) = (X1, ..., Xn) is a G-measurable random vector and Y (n) =
(Y1, ..., Yn) is independent of G. We also set Z(n) = (Z1, ..., Zn).

Let T be a regular statistic T = T (Z(n)) and g(θ) = Eθ(T ). Then
we have

∂θEθ(T ) = ∂θE(T (Z(n))) = E(∂θT (Z(n)))

= E(∂zi
T (Z(n))∂θZi).

Now we extend the operator D to the product filtration (this is also
called partial Malliavin Calculus) so that

DZk = ∂xk
FDXk

Then using this duality property we have that

DT = ∂zi
T (Z(n))DZi = ∂zi

T (Z(n))∂xi
FDXi.

As before, if there exists a random variable V with values in H such
that

〈DZi, V 〉H = ∂θZi,

we will have that

∂θ log p(Z(n); θ) = E(δ(V )|Z(n)).

4.1. Jump diffusions

Let X(n) = (Xt1 , Xt2 , ..., Xtn), ti = i∆n, where n = ∆−1
n and

Xt = x+

∫ t

0

bs(θ,Xs)ds+

∫ t

0

σs(θ,Xs)dBs +

∫ t

0

cs,z(θ,Xs−)M(dz, ds).

Where M(dz, ds) is a compensated Poisson random measure with in-
tensity ν(dz, ds) = νs(dz)ds and B is an independent standard Brow-
nian motion. Assume that bs, σs, cs,z and their derivatives with respect
to θ and x are C1.3

b (as functions of t and x) and that σs is uniformly
bounded below by a positive constant. By using the same arguments
that in the continuous case and assuming that ∂xcs,z(θ, x) > −1, we
have that

DXt = ∂xXt (∂xX·)
−1 σ·(θ,X·)1[0,t](·).
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Then, writing

βt = (∂xXt)
−1 ∂θXt

and

β̃t = ∂xXt (σt(θ,Xt))
−1

n
∑

i=1

a(t)(βti − βti−1
)1{ti−1≤t<ti},

where

a ∈ L2([0, T ]),

∫ ti

ti−1

a(t)dt = 1, i = 1, ..., n,

we have

∂θXti = 〈β̃, DXti〉H .

Consequently,

E(δ(β̃)|X(n)),

where

δ(β̃) =
n
∑

i=1

(βti − βti−1
)

∫ ti

ti−1

a(t)∂xXt (σt(θ,Xt))
−1 dBt

−
n
∑

i=1

∫ ti

ti−1

a(t)Dtβti∂xXt (σt(θ,Xt))
−1 dt.

Also we will have that

Zn(θ, θ +
u√
n

)
L→ u

∫ 1

0

√
2
∂θσs

σs

dWs −
u2

2

∫ 1

0

2

(

∂θσs

σs

)2

ds.

Notice that we would obtain another asymptotic regime if σs

would not depend on θ as we have seen in example 6. This is also
the case in the next subsections.

4.2. The pure jump case

In the previous calculation, we have used the Brownian motion in order
to use the integration by parts property that will lead to an expression
of the score. In this section we use the jump structure and, for the
sake of simplicity, we assume that there is no Brownian component.
Clearly, this also leads to different expressions for the same models if
we consider models with Brownian and jump components.
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4.2.1. Processes with different intensity. Let Yt be an observation of
a compound Poisson process of parameter λ and with jumps given by
a random variable X, then

∂λE(1{Yt∈A}) = ∂λP (Yt ∈ A)

= ∂λ

∞
∑

n=0

e−λt (λt)n

n!
P (X1 + ... + Xn ∈ A)

= −t

∞
∑

n=0

e−λt (λt)n

n!
P (X1 + ... + Xn ∈ A)

+t

∞
∑

n=0

ne−λt (λt)n−1

n!
P (X1 + ... + Xn ∈ A)

= −tP (Yt ∈ A) +
1

λ

∞
∑

n=0

e−λt (λt)n

n!
nP (X1 + ... + Xn ∈ A)

= −tE(1{Yt∈A}) +
1

λ
E(1{Yt∈A}Nt) = E(1{Yt∈A}(

Nt

λ
− t)),

where we should understand that X1 + ...+Xn := 0 if n = 0. Suppose
now that we observe Yt1 , Yt2 , .., Ytn , 0 ≤ t1 ≤ .. ≤ tn ≤ T . Since the
increments are independent, the score function is given by

E(
NT

λ
− T |Yt1 , Yt2 , ..., Ytn) = λ−1

n−1
∑

i=0

E(Nti+1
− Nti|Yti+1

− Yti) − T.

Here

E(Nt|Yt) =
∞
∑

k=1

k
f (k)(Yt)(λt)k

k!
∑∞

i=0 f (i)(Yt)
(λt)i

i!

,

where f (i) stands for the i-th convolution of the density of the random
variable X. We remark that this is related to Proposition 3.6 in [3],
where the authors use Girsanov’s theorem.

The trajectories of a compound Poisson process can be described
by indicating the time and amplitude of the jumps. To see this, let
Ω = ∪∞

n=1 (R+ × R)n be the sample space and denote an element ω ∈
∪∞

n=1 (R+ × R)n as ω = ((s1, x1), ..., (sk, xk)) for certain natural k. In
this space we assume that the canonical random variables sj − sj−1 ∼
exp(λ) and xj ∼ f(x) are independent sequences and also independent



Inference and Malliavin calculus 27

of each other. Next, consider the maps

Yt : Ω → R

((s1, x1), ..., (sk, xk)) → Yt(ω) =
k
∑

i=1

xi1[si,∞](t)

the family (Yt)t≥0 is a compound Poisson process. Then, note that

∂λE(1{Yt∈A})

= t

∞
∑

n=0

e−λt (λt)n

n!
(P (X1 + ... + Xn+1 ∈ A) − P (X1 + ... + Xn ∈ A))

= tE(
∞
∑

n=0

e−λt (λt)n

n!
(P (X1 + ... + Xn + x ∈ A) − P (X1 + ... + Xn ∈ A))x=Xn+1

)

=

∫ T

0

E(Ψs,x(1{Yt∈A})x=Xn+1
)ds = E

(
∫

R

∫ T

0

Ψs,x(1{Yt∈A})f(x)dxds

)

,

where for any random variable F, we let Ψs,x(F)(ω) = F(ωs,x)−F(ω),
where ωs,x is a trajectory like ω but where we add a jump of amplitude
x at time s. We also can write

∂λE(1{Yt∈A}) =
1

λ
E

(
∫

R

∫ T

0

Ψs,x(1{Yt∈A})ν(dx)ds

)

,

where ν(dx) = λf(x)dx is the Lévy measure of the compound Poisson
process Y. If we denote by δ the adjoint operator of Ψ·,· we deduce
that

δ(1) = NT − λT.

It can be seen that if us,x is a predictable random field on [0, T ] × R

belonging to the domain of the operator δ then

δ(u) =

∫

R

∫ T

0

us,xM̃(dx, ds),

where M̃ is the compensated random measure associated with the
compound Poisson process (we assume here that

∫

|x|>1
xν(dx) < ∞),

see [8] for the Poisson process and [12] for the general case, note that

the authors use the operator Ψs,x

x
instead of Ψs,x.
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4.2.2. Processes with different amplitude parameter. Let

Li := Yti − Yti−1
=

∫ ti

ti−1

∫

R

g(θ, x)M(dx, ds),

ti = i∆n, i = 1, ...n, with

M(dx, ds) =
∞
∑

k=1

δ{τk}(ds)δ{Xk}(dx),

where 0 < τ1 < τ2 < ... < τn is a sequence of jump times of a Poisson
process with intensity one and Xi,i = 1, ..., n, ... is an iid sequence
independent of (τi)i≥1 and with density f, g(θ, x) is a deterministic
function. Note that the intensity of the Lévy process is assumed to
be known and the inference is on the amplitude of the jumps. The
compound Poisson process associated with M(dx, ds) is

Zt =

∫ t

0

∫

R

xM(dx, ds).

Note that when Z jumps x units, Yt =
∫ t

0

∫

R
g(θ, x)M(dx, ds) jumps

g(θ, x) but with same frequency as Z. In fact, Y is a compound Poisson
process with random Poisson measure

MY (dx, ds) =
∞
∑

k=1

δ{τk}(ds)δ{g(θ,Xk)}(dx)

In such a situation we have for a regular statistic T ≡ T (L1, ..., Ln)

∂θE(T ) =
n
∑

j=1

E(∂ljT∂θLj),

and

∂θLj =

∫ tj

tj−1

∫

R

∂θg(θ, x)M(dx, ds)

=
∞
∑

k=1

∂θg(θ,Xk)1(τk∈(tj−1,tj)},
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so

∂θE(T ) =
n
∑

j=1

∞
∑

k=1

E(∂ljT∂θg(θ,Xk)1(τk∈(tj−1,tj)})

=
n
∑

j=1

∞
∑

k=1

E(∂ljT∂xk
Lj∂θg(θ,Xk)

1

∂xg(θ,Xk)
1(τk∈(tj−1,tj)}).

Since

∂xk
Lj = ∂xg(θ,Xk)1(τk∈(tj−1,tj)}

we can write

∂θE(T ) =
n
∑

j=1

∞
∑

k=1

E(∂ljT∂xk
Lj∂θg(θ,Xk)

1

∂xg(θ,Xk)
1(τk∈(tj−1,tj)})

=
n
∑

j=1

∞
∑

k=1

E(∂xk
T

∂θg(θ,Xk)

∂xg(θ,Xk)
1(τk∈(tj−1,tj)})

= −
n
∑

j=1

∞
∑

k=1

E

(

T
1

f(Xk)
∂x

(

∂θg(θ,Xk)f(Xk)

∂xg(θ,Xk)

)

1(τk∈(tj−1,tj)}

)

,

where in the last inequality we use the independence between (Xk)k

and the jump times and where we assume there are not ”border”
effects. That is,

T
∂θg(θ, x)f(x)

∂xg(θ, x)

∣

∣

∣

∣

x∈∂supp(f)

= 0.

Finally

∂θE(T ) = −
n
∑

j=1

∞
∑

k=1

E

(

T
1

f(Xk)
∂x

(

∂θg(θ, x)f(x)

∂xg(θ, x)

)

x=Xk

1(τk∈(tj−1,tj)}

)

= −E

(

T
n
∑

j=1

∫

R

∫ tj

tj−1

1

f(x)
∂x

(

∂θg(θ, x)f(x)

∂xg(θ, x)

)

M(dx, ds)

)

= −E

(

T

∫

R

∫ tn

t0

1

f(x)
∂x

(

∂θg(θ, x)f(x)

∂xg(θ, x)

)

M(dx, ds)

)

.
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So, the score function is given by

−E

(
∫

R

∫ tn

t0

1

f(x)
∂x

(

∂θg(θ, x)f(x)

∂xg(θ, x)

)

M(dx, ds)

∣

∣

∣

∣

Yt1 , Yt2,..., Ytn

)

.

If we define the random variables V := g(θ,X) the previous expression
can be written as

−E

(
∫

R

∫ tn

t0

∂v∂θvfV (v)

fV (v)
M(dv, ds)

∣

∣

∣

∣

Yt1 , Yt2,..., Ytn

)

,

and we can compare it with expression (2.4).
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