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Abstract. In this article, we consider a modification of the Karatzas-Pikovsky model
of insider trading. Specifically, we suppose that the insider agent influences the
long/medium term evolution of prices of the Black-Scholes type model through the
drift of the model. We say that the insider agent is using a portfolio leading to a
partial equilibrium if the following three properties are satisfied: a) the portfolio used
by the insider leads to a stock price which is a semimartingale under its own filtration
and its own filtration enlarged with the final price b) the portfolio used by the insider
is optimal in the sense that it maximizes the logarithmic utility for the insider when
its filtration is fixed and c) the optimal logarithmic utility in b) is finite. We give suf-
ficient conditions for the existence of a partial equilibrium and show in some explicit
models how to apply these general results.

1. Introduction

Lawful insider trading is a financial empirical fact which can be studied from various
points of view. In the literature, one may find empirical studies, financial economic
theoretic studies and recently studies in mathematical finance. These studies try to
give an explanation to the basic puzzle of why there is trading in the stock market if
there are traders that are better informed than others.

The Karatzas-Pikovsky model for insider trading considers the Black-Scholes model

dS(t) = µS(t)dt+ σS(t)dW (t), S(0) = S0,

where (Ω,F , P ) is a standard Wiener space and W is the canonical Wiener process in
this space. An insider trader is modeled as an investor which uses a bigger information
stream for trading. That is, his/her portfolio policies are adapted to a filtration G ⊇ F .
Usually G = F ∨ σ(S(T )) where σ(X) stands for the sigma algebra generated by the
random variable X and ∨ stands for the minimal filtration satisfying the usual conditions
which contains F and σ(X).

In this setting, Karatzas-Pikovsky found the optimal utility for the insider, which
blows up at time T and leads to the conclusion that the optimal utility of the insider is
infinite. From the mathematical point of view is important to note that in order to make
sense of the wealth process of the insider, one needs to have that W is a semimartingale
in the filtration G, which is the case in the Karatzas-Pikovsky model.

This model has been carefully studied from a mathematical point of view in recent
years showing that this blow up effect is present in various other situations (see for
example Imkeller [12], Imkeller et. al. [13]). From the financial economics point of
view, regardless of the simplicity of the above set-up, this model has not attracted much
attention essentially because the utility of the insider is infinite which is at contradiction
with the reality of lawful insiders.
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On the other hand, many generalizations of the Karatzas-Pikovsky model have been
undertaken by Prof. Øksendal ’s research group 1. In particular, they have considered
(jump type) models where the drift and diffusion coefficients may be anticipating and
depend on the portfolio of the insider agent under a general filtration set-up. In par-
ticular, example 1 considered in section 5, was first considered in [6] where existence of
the optimal portfolio was obtained for a fixed filtration G.

Still, in the opinion of the authors, the domain lacks a greater variety of explicit
examples where the optimal insider portfolio can be explicitly written, the filtration
have a strong relationship with the information carried by stock prices and the utility of
the insider agent is finite. The goal of the present article is to present a set-up where the
insider has an effect on the price dynamics, its logarithmic utility is finite and a partial
equilibrium condition is satisfied. In an accompanying paper, we have also considered
another two examples which fall in the class introduced here (see [10]).

In this article, we study the following model. Let (Ω,F , P ; (Ft)t≥0) to be a complete
filtered probability space with the augmented Wiener filtration (Ft)t≥0 generated by the
1-dimensional Wiener process W .

On this probability space, we define a financial market with one risk-free asset with
price S0 given by

dS0
t = rS0

t dt, S0
0 > 0,

and one risky investment, whose price St ≡ Sπt is described by

(1.1) dSt = St

{(
µ+ aπt − b

∫ t

0
H(t, u)πudu

)
dt+ σdWt

}
, S0 > 0.

Here r > 0, µ, a, b ∈ R, H(t, u) > 0 for all t ∈ [0, T ] and π := (πt)t≥0 is the proportion of
the insider agent wealth invested in the risky asset, an element of the set of admissible
strategies

(1.2) ASπ :=
{

(πt)t≥0; (πt)t∈[0,T ] ∈ L2
T

}
,

where L2
T is the totality of Sπ-progressively measurable processes π on the time interval

[0, T ] such that E
[∫ T

0 π2
t dt
]
<∞. Here,

(1.3) Sπt = σ(Sπ(s); s ≤ t) ∨ σ
(

ln(Sπ(T )) + σW ′((T − s)θ); s ≤ t
)
,

where W ′ is a 1-dimensional Brownian motion independent of W and θ > 0.
Clearly the proposed model can be considered as a perturbation of the Karatzas-

Pikovsky model (a = b = 0).
Furthermore, note that in (1.1), if a 6= 0 or b 6= 0, then the insider influences the

stock price dynamics through his/her strategy. The minus sign in front of b can be
interpreted as a term which offsets the influence of the insider by considering variations
of the strategy of the insider with respect to past time averages of its own strategy.

Now we explain the condition (1.3). W ′ is a dynamic perturbation of the information
generated by the insider so as to assume that this agent does have some uncertainty on
the information used for trading.

Furthermore, W ′ and θ, characterize the fact that the information of the insider is
dynamic and changes through time. In Corcuera et al. [3], it was proven that if θ < 1

1see e.g. http://folk.uio.no/oksendal/publications.html
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then the insider has finite optimal utility. That is, if the rate at which the insider
improves his views on future events is slow enough then the optimal utility is finite.

Clearly, the stochastic integral (1.1) is not well defined in general. Therefore we
assume that this integral can be defined as a semimartingale integral in the filtration
Sπ2.

Finally, our goal is to prove that there exists a portfolio π∗ ∈ ASπ∗ such that W is a
semimartingale in the filtration Sπ∗ and π∗ is an optimal portfolio when the filtration
is fixed to be Sπ∗ . Furthermore its corresponding optimal logarithmic utility is finite.

The model presented here can be considered as a large trader model. These models
have been studied for a long time and the current discussion in that area if much farther
and complicated than the goal of this article. Within various models, the model closest
to the one considered here is the model of Cuoco-Cvitanic [4].

In that model, only the drift of the model depends on the strategy of the large trader.
This model has been extended to insider trading models by Grorud-Pontier [9]. In both
cases the representative example is given by the “pressure on rates” example. That is,
as the portfolio policy of the insider increases it creates a bounded reduction on the rate
of growth. This case is clearly different from the situation we consider here.

This difference creates a qualitative mathematical difference in both models. While
in the large trader model, concavity properties appear, in our case these properties are
not satisfied. This in turn, introduces complications when one wants to use duality
theory to solve the optimization problem.

Finally, some of the algebraic proofs and accessory results appear in the Appendices.

2. Existence and uniqueness of optimal portfolios for fixed enlarged
filtrations

Our objective in this section is to consider a logarithmic utility optimization problem
for the model (1.1), where π := (πt)t≥0 is the proportion of wealth that the insider
invested in the risky asset. π an element of the set of admissible strategies

AG :=
{

(πt)t≥0; (πt)t∈[0,T ] ∈ L(G)2
T

}
,

where L(G)2
T is the totality of (Gt)-progressively measurable processes on the time in-

terval [0, T ] such that E
[∫ T

0 π2
t dt
]
<∞. G is a fixed filtration satisfying G ⊇ F and we

assume through this section that on the filtration G, W is a semi-martingale on [0, T ]
with the decomposition

(2.1) W (t) = Ŵ (t) +

∫ t

0
g1(s)α(s)ds,

where g ∈ L2[0, T ] is a deterministic strictly positive function, α is a G-adapted inte-

grable process and Ŵ is a Wiener process in the filtration G3.
We consider the maximization of the logarithmic expected utility function

Ψ(T ) = sup
π∈AG

J(π),(2.2)

2One may also use the forward integral. Although this would give greater generality, it will also
increase the technicality of the proofs.

3This particular type of compensator is used in order to allow easy application of Proposition 9.1
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where J(π) is defined by

J(π) := E
[
log(V̂ π

T )
]
.

Here V̂ π is given by

(2.3) dV̂ π
t = πtV̂

π
t Ŝ
−1
t dŜt, V̂

π
0 = 1.

Here Ŝ denotes the discounted stock price defined by Ŝt = e−rtSt. Note that the explicit
solution of equation (2.3) is given by

V̂ π
t = exp

[∫ t

0

{
πu

(
µ− r + aπu − b

∫ u

0
H(u, v)πvdv

)
− 1

2
σ2π2

u

}
du+

∫ t

0
πuσdWu

]
.

Theorem 2.1. Consider a filtration G ⊇ F such that (W,G) is a semimartingale with
the decomposition (2.1), where α is a G-adapted process and g1 is a deterministic function

such that E
[∫ T

0 |g1(s)α(s)|2ds
]
<∞. Assume

0 ≤ a < σ2 − 2|b|K(T )

2
for K(T ) :=

(∫ T

0

∫ t

0
H2(t, u)dudt

)1/2

.(2.4)

If π∗ ∈ AG satisfies the optimality equation

µ− r + (2a− σ2)π(t)− b
∫ t

0
H(t, u)π(u)du(2.5)

+ σg1(t)α(t)− bE
[∫ T

t
H(u, t)π(u)du

∣∣∣Gt] = 0,

then π∗ is an optimal portfolio for the problem (2.2). Furthermore, there exists at most
one solution for equation (2.5) in the space L2(Ω× [0, T ]).

Proof. First, we rewrite J(π) as

J(π) = E

[∫ T

0

{
π(t)

(
µ− r + aπ(t)− b

∫ t

0
H(t, u)π(u)du+ σg1(t)α(t)

)
−σ

2

2
π(t)2

}
dt

]
,(2.6)

and notice that by the Cauchy-Schwarz inequality∣∣∣∣∫ T

0
π(t)

∫ t

0
H(t, u)π(u)dudt

∣∣∣∣(2.7)

≤
(∫ T

0
π(u)2du

)1/2
(∫ T

0

(∫ t

0
H(t, u)π(u)du

)2

dt

)1/2

≤K(T )

(∫ T

0
π(u)2du

)
.

Next we prove that J(π) is concave. That is,

J(απ1 + (1− α)π2) ≥ αJ(π1) + (1− α)J(π2); α ∈ [0, 1], π1, π2 ∈ AG .
A straightforward calculation shows that

J(απ1 + (1− α)π2)− αJ(π1)− (1− α)J(π2) = α(1− α)N(π1 − π2),
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where

N(π) := E

[∫ T

0

{
σ2 − 2a

2
π2(t) + bπ(t)

∫ t

0
H(t, u)π(u)du

}
dt

]
.

From (2.4) and (2.7), we see that N(π1 − π2) ≥ 0 and therefore J(π) is concave. Now
to prove (2.5), consider the directional derivative

DvJ(π) := lim
ε→0

J(π + εv)− J(π)

ε
, v, π ∈ AG .

Using Fubini’s theorem, one obtains that

J(π + εv)− J(π)

=εE

[∫ T

0

{
µ− r + (2a− σ2)π(t)− b

∫ t

0
H(t, u)π(u)du+ σg1(t)α(t)

−bE
[∫ T

t
H(u, t)π(u)du

∣∣∣Gt]} v(t)dt

]
− ε2N(v).

Therefore, we obtain that

DvJ(π) =E

[∫ T

0

{
µ− r + (2a− σ2)π(t)− b

∫ t

0
H(t, u)π(u)du+ σg1(t)α(t)

−bE
[∫ T

t
H(u, t)π(u)du

∣∣∣Gt]} v(t)dt

]
,

and that DvJ(π∗) = 0. Noting that J(π) is concave, for all v, π ∈ AG and ε ∈ (0, 1), we
have

J(π + εv)− J(π) ≥ (1− ε)J
(

π

1− ε

)
+ εJ(v)− J(π)

= J

(
π

1− ε

)
− J(π) + ε

{
J(v)− J

(
π

1− ε

)}
.(2.8)

Now, with 1
1−ε = 1 + η we have

lim
ε→0

1

ε

{
J

(
π

1− ε

)
− J(π)

}
= lim

η→0

1 + η

η
{J(π + ηπ)− J(π)} = DπJ(π).

Combining this with (2.8), we get for v, π ∈ AG

DvJ(π) = lim
ε→0

J(π + εv)− J(π)

ε
≥ DπJ(π) + J(v)− J(π).

In particular, applying this to π = π∗ and using that DvJ(π∗) = 0, we get

J(v)− J(π∗) ≤ 0 for all v ∈ AG ,

which proves that π∗ is optimal. For the uniqueness is enough to note that in fact for
π 6= 0 one has that N(π) > 0 therefore J is strictly concave which gives the uniqueness
of solutions.

Note also that (2.6) and the conditions π∗∈AG and E
[∫ T

0 |g1(s)α(s)|2ds
]
< ∞ imply

that J(π∗) <∞. �
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We remark here that the condition (2.4) is essential in order to interpret the model
correctly. In particular, this condition states that the volatility has to be big enough (or
the coefficients a, b and the function H small enough) so as to allow for the concavity
of J . In strategical terms, this means that volatility has to be big enough to allow the
insider to “hide” his behavior within the movements of the volatility. Also the fact that
T can not be too big means that this type of insider behavior can not continue for long
periods of time (for b 6= 0). From now on, condition (2.4) will be assumed.

3. Characterization of optimal portfolios and optimal utility function
under an explicit filtration

In Theorem 2.1 we have given general conditions that an optimal portfolio should
satisfy in order to maximize the logarithmic utility for a general fixed enlarged filtra-
tion. In order to obtain optimal portfolios as explicitly as possible, we use a particular
filtration of the type

Gt = Ft ∨ σ
(
W ′(u)−W ′

(
(T − t)θ

)
;u ∈ [(T − t)θ, T θ]

)
(3.1)

∨ σ

(∫ T

t
g1(s)dW (s) +

∫ (T−t)θ

0
g2(s)dW ′(s)

)
= Ft ∨ σ(I(s); s ≤ t),(3.2)

where

I(t) =

∫ T

0
g1(s)dW (s) +

∫ (T−t)θ

0
g2(s)dW ′(s),

for two fixed deterministic strictly positive functions g1, g2 ∈ L2[0, T ] and W ′ another
one dimensional Wiener process independent of W .

In fact, the equality (3.2) is satisfied because g2 is strictly positive and therefore

σ
(
W ′(u)−W ′

(
(T − t)θ

)
;u ∈ [(T − t)θ, T θ]

)
= σ

(∫ (T−s)θ

(T−t)θ
g2(u)dW ′(u); s ≤ t

)
.

We obtain the explicit semimartingale decomposition of the Wiener process W in this
filtration as well as some related properties of its compensator process in Proposition
9.1. In particular, this filtration satisfies the hypotheses in the previous section. Also,
the property that the Radon-Nikodym derivative of the compensator is square integrable
is important to obtain the finiteness of the utility as we have seen in Theorem 2.1.

Our objective in this section is to characterize the solution of the optimality equation
(2.5) and the corresponding optimal value Ψ(T ) of the optimization problem (2.2) using
classical stochastic control methods.

In order to obtain an optimal portfolio, π∗, as explicitly as possible we concentrate
on the decomposable case H(t, u) = h1(u)h2(t)−1. This allows the characterization of
optimal strategies through the use of techniques of stochastic control. This explicit
representation is obtained in Theorem 3.1 which then requires the solution of certain
Ricatti type equations.

ASSUMPTION (A): H(t, u) = h1(u)h2(t)−1, h1(t), h2(t) > 0 for all t ∈ [0, T ] and
g1, g2, h1 and h2 ∈ C1([0, T )).

From now on, this assumption is in force. To characterize the optimal portfolio sat-
isfying (2.5), we need to introduce the following Ricatti and linear ordinary differential
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equations. This procedure will also be needed to characterize the optimal logarithmic
utility. We will use the following general structural notation. We say that Z is a solution
of a (Z1, Z2, Z3)-Ricatti equation if it is a solution of the following ordinary differential
equation : {

Ż(t) + Z1(t)Z2(t) + Z2(t)Z(t) + Z3(t) = 0,
Z(T ) = 0.

Similarly we say that Z is a solution of a (Z1, Z2)-linear ODE if it is a solution of the
linear ordinary differential equation{

Ż(t) + Z1(t)Z(t) + Z2(t) = 0,
Z(T ) = 0.

With this notation we now set P to be the solution of a (ZP1 , Z
P
2 , Z

P
3 )-Ricatti equation

with

ZP1 (t) = b
h1(t)

h2(t)
,(3.3)

ZP2 (t) =
2b

2a− σ2

h1(t)

h2(t)
− ḣ1(t)

h1(t)
− ḣ2(t)

h2(t)
,

ZP3 (t) =
b

(2a− σ2)2

h1(t)

h2(t)
,

and Q to be a solution of a (ZQ1 , Z
Q
2 )−linear ODE with

ZQ1 (t) = b

(
1

2a− σ2
+ P (t)

)
h1(t)

h2(t)
− ḣ1(t)

h1(t)
,(3.4)

ZQ2 (t) = −σ

{
ḣ2(t)

h2(t)
g1(t) + ġ1(t)

}
P (t).

Similarly L is a solution of a (ZL1 , Z
L
2 )−linear ODE with ZL1 = ZQ1 and

ZL2 (t) = −b µ− r
2a− σ2

(
1

2a− σ2
+ P (t)

)
h1(t)

h2(t)
.(3.5)

Furthermore, we define X ∈ L2(Ω× [0, T ]) by

Xt := ηt

[
σg1(0)α(0) +

∫ t

0
η−1
u

[{
−bh1(u)

h2(u)
Q(u) + σ

(
ġ1(u) + g1(u)

ḣ2(u)

h2(u)

)}
α(u)

(3.6)

−bh1(u)

h2(u)

(
L(u)− µ− r

2a− σ2

)]
du+ σ

∫ t

0
η−1
u g1(u)dα(u)

]
,

where η̇tη
−1
t = ZQ1 (t) or more explicitly

(3.7) ηt := exp

[∫ t

0

{
b

(
1

2a− σ2
+ P (u)

)
h1(u)

h2(u)
− ḣ2(u)

h2(u)

}
du

]
.
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Theorem 3.1. Assume (A), (2.4) and that the (ZP1 , Z
P
2 , Z

P
3 )-Ricatti equation has a

solution. Then, π∗ ∈ L2(Ω× [0, T ]) defined by

π∗(t) = −
(

1

2a− σ2
+ P (t)

)
Xt +Q(t)α(t) +

(
L(t)− µ− r

2a− σ2

)
,(3.8)

is the unique solution of the optimal equation (2.5).

In fact, in order to obtain the above formulas one plugs (3.8) into the optimality
equation (2.5) obtaining the corresponding equations for P , Q and L as the deterministic
coefficients corresponding to X, α and the non-random term. The explicit steps of this
proof are carried out in Appendix 10.

The above theorem characterizes the optimal portfolio for an insider where the en-
larged filtration is fixed to be (3.1). This result also shows that under such a filtra-
tion, α retains some Markovian properties which are used in the proof of Theorem 3.1.
Therefore, classical stochastic control techniques can still be applied. This also leads
to the definition of a value function associated to this problem which will be denoted
by v(t, x, α). This is the maximal logarithmic utility value when the problem is con-
sidered in the interval [t, T ] and the driving process (X(s), α(s))s∈[t,T ] departs from
(X(t), α(t)) = (x, α).

In order to proceed with the characterization of the optimal logarithmic utility
Ψ(T ) = J(π∗) we define the following ordinary differential equations. R is a solution of
a (ZR1 , Z

R
2 )-linear ODE with:

ZR1 (t) =
ḣ2(t)

h2(t)
− ḣ1(t)

h1(t)
,(3.9)

ZR2 (t) = −bh1(t)

h2(t)
Q2(t) + 2σ

{
ḣ2(t)

h2(t)
g1(t) + ġ1(t)

}
Q(t).

M is a solution of a (ZM1 , ZM2 )-linear ODE with:

ZM1 (t) =
ḣ2(t)

h2(t)
− ḣ1(t)

h1(t)
,(3.10)

ZM2 (t) = −bh1(t)

h2(t)

(
L(t)− µ− r

2a− σ2

)
Q(t) + σ

{
ḣ2(t)

h2(t)
g1(t) + ġ1(t)

}
L(t),

and N is a solution of a (ZN1 , Z
N
2 )-linear ODE with:

ZN1 (t) =
ḣ2(t)

h2(t)
− ḣ1(t)

h1(t)
,(3.11)

ZN2 (t) = − b
2

h1(t)

h2(t)

(
L(t)− µ− r

2a− σ2

)2

+
g2

1(t) + θ(T − t)θ−1g2
2((T − t)θ)

G2(t)

{
−σ2g2

1(t)P (t) + σg1(t)Q(t) +R(t)
}
.

Then, we obtain the following result which characterizes the optimal logarithmic utility
of the insider.
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Theorem 3.2. Assume (A), b 6= 0 and E
[∫ T

0 |g1(t)α(t)|2dt
]
<∞. Define

v(t, x, α) =
2a− σ2

b

h2(t)

h1(t)

{
−1

2
P (t)x2 +Q(t)xα+

1

2
R(t)α2 + L(t)x+M(t)α+N(t)

}
,

where Q,R,L,M and N are solutions of the respective (ZF1 , Z
F
2 )-linear ODE’s for F =

Q,R,L,M,N equations and P is a solution of the (ZP1 , Z
P
2 , Z

P
3 )-Ricatti equation. If g1

is a continuous positive function and the conditions of Theorem 3.1 are satisfied and if

E [v(t,Xt, α(t))]→ 0 as t→ T,

then the optimal value of the problem (2.2) is finite and

Ψ(T ) = J(π∗) = E [v(0, X0, α(0))] .

Proof. From the proof of Theorem 2.1, we have that for any admissible portfolio π ∈ AG ,

J(π) ≤ E

[∫ T

0

(
π(t)(µ− r + σg1(t)α(t))− 1

2
(σ2 − 2a− 2|b|K(T ))π(t)2

)
dt

]
≤ 1

2(σ2 − 2a− 2|b|K(T ))
E

[∫ T

0
(µ− r + σg1(t)α(t))2dt

]
<∞.

Recall that from (3.6), using the Itô formula for the product h2(t)Xt, we have that Xt

satisfies

dXt +
ḣ2(t)

h2(t)
Xtdt(3.12)

=b
h1(t)

h2(t)

{(
1

2a− σ2
+ P (t)

)
Xt −Q(t)α(t)−

(
L(t)− µ− r

2a− σ2

)}
dt

+ σ

(
ġ1(t) + g1(t)

ḣ2(t)

h2(t)

)
α(t)dt+ σg1(t)dα(t).

Using Itô’s formula, Proposition 9.1 and (3.12), we have for s < T

v(s,Xs, α(s))− v(0, X0, α(0))(3.13)

=

∫ s

0

(
∂v

∂t
dt+ vxdXt + vαdα(t) +

vxx
2
d 〈X〉t + vxαd 〈X,α〉t +

vαα
2
d 〈α〉t

)
=m(s) +

2a− σ2

b

∫ s

0

h2(t)

h1(t)
F1(t,Xt, α(t))dt,

where

m(s) =
2a− σ2

b

∫ s

0

h2(t)

h1(t)
{Q(t)X(t) +R(t)α(t) +M(t)

+σg1(t) (−P (t)X(t) +Q(t)α(t) + L(t))} dα(t),

and

F1(t, x, α) =
∑

0≤i+j≤2

Aij(t)x
iαj .

Here, the coefficients Aij have explicit expressions (see Section 11) depending on
P,Q,L,M,R, g1, h1 and h2. Furthermore from Proposition 9.1 and (3.6) the continuity
of Q, R, M , g1, P and L it follows that m is a G martingale in [0, T ).
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On the other hand, using (3.8)

J(π∗) = E

[∫ T

0

{
2a− σ2

2
(π∗(t))2 + (µ− r +Xt)π

∗(t)

}
dt

]
(3.14)

= E

[∫ T

0

{
2a− σ2

b

h2(t)

h1(t)
F2(t,Xt, α(t))

}
dt

]
,

where

F2(t, x, α) :=
∑

0≤i+j≤2

Bij(t)x
iαj .

Here Bij can also be written explicitly as Aij (see Section 11). Then if we con-
sider F1(t, x, α) + F2(t, x, α) and in particular Aij + Bij we see that these coeffi-
cients corresponds to each of the ODE’s defining P , Q, R, M , N and L. Therefore
F1(t, x, α) + F2(t, x, α) = 0 (see Section 11). Next, as E[v(s,Xs, α(s))] → 0 as s → T
then applying these results into (3.13), we obtain that E [v(0, X0, α(0))] = J(π∗). �

The following section describes the sufficient conditions so that the filtration G be-
comes the insider’s filtration and therefore the optimal portfolio obtained in the previous
theorem corresponds to the optimal portfolio for the insider. Later we prove that such
a portfolio leads to a finite utility.

4. The partial equilibrium equation

Up until this point the filtration is fixed to be (3.1). In order to make it coincide with
(1.3) we introduce the optimal portfolio characterization obtained in Theorem 3.1 into
(1.3) and equal this result to (3.1). This gives an equation which may be rightly called
a “partial equilibrium equation” which is obtained in Theorem 4.1.

We will show that there exists a portfolio π∗ satisfying the following properties.

Definition 4.1. A portfolio π∗ is called a partial equilibrium if it satisfies the fol-
lowing three properties

1. The portfolio π∗ leads to a filtration Sπ∗ where W is a semimartingale4 the model
(1.1) and the wealth equation (see (2.3)) makes sense as a linear stochastic differential
equation driven by a semimartingale.

2. If the filtration Sπ∗t is fixed (and therefore the resulting price process S is well
defined by condition 1.) then π = π∗ is the optimal portfolio for the logarithmic expected
utility function within all portfolios in the class Sπ∗t . That is,

(4.1) π∗ = argmax{E[log(V̂ π
T )]; π ∈ ASπ∗},

where V̂ π is the discounted wealth process defined in (2.3).
3. The logarithmic utility obtained using π∗ is finite.

Heuristically speaking, partial equilibrium means the following. Supposing that the
insider has the above information and that there is an extra cost/risk for changing
strategies (or that he is only able to carry out local optimization procedures), he will
not have much of a technical reason to change strategies although there may be other
portfolios which perform better than the one above.

4Therefore by Stricker’s Theorem, Sπ
∗

is also a semimartingale under its own filtration. See Theorem
4, page 57 in Protter [19]
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In this section, we will establish our main theoretical result which states that the
optimal portfolio π∗ obtained in Theorem 3.1 can be characterized as a policy obtained
from the filtration Sπ∗ for some particular type of function g1. Finally we characterize
the optimal value function for the problem in Theorem 3.2.

In order to introduce our main result, we first define the following processes:

U1
t =

∫ t

0
g1(s)F (t, s)dW (s),

U2
t =

∫ T

0
g1(s)dW (s) +

∫ (T−t)θ

0
g2(s)dW ′(s),

ks(u) = −
∫ s

u

{
−a
(

1

2a− σ2
+ P (v)

)
+ 1

}
ηvdvη

−1
u b

h1(u)

h2(u)
+ a,

As(u) := ks(u)

{
Q(u)− σ

(
1

2a− σ2
+ P (u)

)
g1(u)

}
, u ∈ [0, s],

F (t, s) = 1−
∫ t

s

At(u)

G(u)
du−

∫ s

0

AT (u)

G(u)
du.

Theorem 4.1. Assume (A), (2.4) and that Q and L are solutions of the respective
(ZF1 , Z

F
2 )-linear ODE’s for F = Q,L equations and P is a solution of the (ZP1 , Z

P
2 , Z

P
3 )-

Ricatti equation. Let g1(t) = g2((T − t)θ) be a strictly positive solution of

g1(t) = g1(t)

∫ t

0

AT (s)

G(s)
ds+ σ, t ∈ [0, T ).(4.2)

Moreover assume that
∫ T

0
|g1(s)|√
G(s)

ds < ∞, inft∈[0,T ] |F (t, t)| ≥ c0 > 0 and

sup0≤s≤t≤T |∂tF (t, s)| <∞. Then

Gt = Sπ∗t ,

where π∗ is given by (3.8).

Note that the partial equilibrium equation (4.2) of Volterra type is non-linear in g1

as P and Q depend on g1 as well, through their characterizing equations. It is also clear
from the above equation that As(u) is a continuous function for u ∈ [0, s] and therefore
g1 ∈ C1([0, T )).

Note that as G(T ) = 0, solving equation (4.2) appears to be difficult in general and
this degeneracy problem will appear in some of the examples where we have been able to
prove existence of solutions for (4.2) using relative compactness arguments. As equation
(4.2) means that there is a stability in the flow of information, we call it the partial
equilibrium equation in what follows.

Proof. In the proof we use the symbol σ for two different purposes, one for σ−fields
and the other for the volatility coefficient. As their roles are clearly differentiated there
should be no confusion.

First, note that Xt, defined in (3.6) satisfies

(4.3) Xt = − b

h2(t)

∫ t

0
h1(u)π∗(u)du+ σg1(t)α(t).
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If we consider the solution of (1.1) in the filtration G with the portfolio process π∗

defined in (3.8) and using (4.3) one has that
(4.4)

σ(Sπ
∗
(t)) = σ

(∫ t

0

(
−a
(

1

2a− σ2
+ P (s)

)
+ 1

)
X(s) + (aQ(s)− σg1(s))α(s)ds+ σW (t)

)
.

On the right hand side of the above equality, we have deleted the deterministic terms, as
it clearly does not change the σ−field. This property will be used again without further
mention.

Now, we replace X given by (3.6) in (4.4) and applying the integration by parts
formula, we have∫ s

0
η−1
u g1(u)dα(u) = η−1

s g1(s)α(s)− g1(0)α(0)

−
∫ s

0

[
−

{
b
h1

h2
(u)

(
1

2a− σ2
+ P (u)

)
− ḣ2

h2
(u)

}
g1(u) + ġ1(u)

]
α(u)η−1

u du,

together with Fubini’s theorem, we obtain that

σ(Sπ
∗
(t)) = σ

(∫ t

0
At(u)α(u)du+ σW (t)

)
.

Using (9.2) and the stochastic Fubini theorem, we rewrite
∫ t

0 At(u)α(u)du so that

σ(Sπ
∗
(t)) = σ

(∫ t

0

(
g1(s)

∫ s

0

At(u)

G(u)
du+ σ

)
dW (s)

+

∫ t

0

At(u)

G(u)
du

(
U2
t −

∫ t

0
g1(s)dW (s)

)
+

∫ T θ

(T−t)θ
g2(s)

∫ T−s1/θ

0

At(u)

G(u)
dudW ′(s)

)
.

Therefore as g1 is a solution of (4.2), we have that

σ(Sπ
∗
(t)) = σ

(∫ t

0
g1(s)dW (s) +

∫ t

0
g1(s)

∫ s

0

At(u)−AT (u)

G(u)
dudW (s)(4.5)

+

∫ t

0

At(u)

G(u)
du

(
U2
t −

∫ t

0
g1(s)dW (s)

)
+

∫ T θ

(T−t)θ
g2(s)

∫ T−s1/θ

0

At(u)

G(u)
dudW ′(s)

)
.

Similarly, as g2((T − t)θ) solves (4.2), we obtain that

σ
(

log
(
Sπ
∗
(T )
)

+ σW ′((T − t)θ)
)

(4.6)

= σ

(
U2
t +

∫ T θ

(T−t)θ
g2(s)

∫ T−s1/θ

0

AT (u)

G(u)
dudW ′(s)

)
.
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Finally,

Sπ∗t = σ(Sπ
∗
(s); s ≤ t) ∨ σ

(
log
(
Sπ
∗
(T )
)

+ σW ′((T − s)θ); s ≤ t
)

(4.7)

= σ(Sπ
∗
(s); s ≤ t) ∨ σ

(
log
(
Sπ
∗
(T )
)

+ σW ′((T − t)θ)
)

∨ σ
(
W ′(u)−W ′((T − t)θ);u ≥ (T − t)θ

)
.

Using (4.5) and (4.6) and after some linear operations on the processes in (4.7) one
obtains that

Sπ∗t = σ
(
U1
s ; s ≤ t

)
∨ σ(U2

t ) ∨ σ
(
W ′(s)−W ′((T − t)θ); s ≥ (T − t)θ

)
.

Now we concentrate on the process U1. Applying Theorem 4.4 in Hida-Hitsuda [11]
page 69, we will prove that σ

(
U1
s ; s ≤ t

)
= Ft. According to that theorem, the result

will hold if the trivial solution x ≡ 0 is the only solution to the characteristic equation∫ t

0
F (t, s)x(s)ds = 0.

In fact, first differentiate the equation with respect to t to obtain

x(t)F (t, t) +

∫ t

0
∂tF (t, s)x(s)ds = 0.

As |F (t, t)| =
∣∣∣1− ∫ t0 AT (u)

G(u) du
∣∣∣ ≥ c0 > 0 then x is a continuous function and and if

sup0≤s≤t≤T |∂tF (t, s)| < ∞ then by Gronwall inequality x ≡ 0. From here the result
follows. �

Remark: 1. From the proof of Theorem 4.1, one can give a financial interpreta-
tion of G in (3.1). In fact, σ

(
W ′(u)−W ′((T − t)θ); (T − t)θ ≤ u ≤ T θ

)
is generated

by the insider signal noise in the interval [0, t]. Next, given this σ-field one sees that
σ
(
log
(
Sπ
∗
(T )
)

+ σW ′((T − t)θ)
)

is the sigma field σ(I(0)). Finally, given these two

σ-fields then σ(Sπ
∗
(s); s ≤ t) reduces to Ft. Again, given these σ-fields one also obtains

that σ(I(0)) becomes σ(I(s); s ≤ t).
Therefore, loosely speaking, σ

(∫ T
t g1(s)dW (s) +

∫ (T−t)θ
0 g2(s)dW ′(s)

)
, represents

the insider information. Ft represents the price information and

σ
(
W ′(u)−W ′

(
(T − t)θ

)
;u ∈ [(T − t)θ, T θ]

)
represents the insider information noise. But this interpretation is only valid when all
these σ fields are considered together.

2. Considering the elements in the proof above, one may interpret the elements of the
partial equilibrium equation (4.2) as follows. The left side of the equation (4.2) appears
due to the type of information set up in (3.2). The first term on the right side of (4.2)
appears due to the insider effects in the price model (1.1) (in fact, if a = b = 0 this term
vanishes) and finally, the second term on the right side is the volatility of the model.
Therefore this equation states that the insider information structure, its leverage on
the price and the volatility in the model have to combine in order to achieve partial
equilibrium.

3. Observing the previous proof, one understands that there may be other portfolios
satisfying the conditions in the definition of partial equilibrium.
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The following lemma provides an easy way to check the conditions required on F in
the previous theorem.

Lemma 4.1. Assume that P , Q, h1, h2 and g1 are bounded functions, θ ≤ 1 and that
there exists a positive constant c such that inft∈[0,T ] min{h2(t), g2(t)} > c. Then there
exists a constant c0 such that inft∈[0,T ] |F (t, t)| ≥ c0 > 0 and sup0≤s≤t≤T |∂tF (t, s)| <∞.

Proof. If g1(t) ≤ C then we have that

F (t, t) =
σ

g1(t)
≥ σ

C
,

∂tF (t, s) =

{
−a
(

1

2a− σ2
+ P (t)

)
+ 1

}
ηt

∫ t

s

η−1
u bh1(u)

G(u)h2(u)

{
Q(u)− σ

(
1

2a− σ2
+ P (u)

)
g1(u)

}
du

+G(t)−1

∫ T

t

{
−a
(

1

2a− σ2
+ P (u)

)
+ 1

}
ηuduη

−1
t b

h1(t)

h2(t)

{
Q(t)− σ

(
1

2a− σ2
+ P (t)

)
g1(t)

}
.

The proof finishes by noting that G(t) ≥ c2(T − t)θ. �

In the remaining sections we consider some representative examples.

5. Example 1: An insider with long term effects

Before we start studying in detail the examples, we give a detailed description of the
model interpretation.

5.1. Model interpretation. Consider Y π
t =

∫ t
0
dSπs
Sπs
−µt−σWt. Then if δ is a perturba-

tion of the portfolio process π, we have that Y π+δ
T −Y π

T =
∫ T

0 (a−b
∫ T
s H(u, s)du)δsds. Y

measures the change from a Black-Scholes type structure. The above calculation allows
us to give some interpretation on the influence of perturbations in the insider portfolio
composition in the model. Let’s start discussing some particular examples.

The case a > 0, b = 0 stands for an insider with long term effects on the stock price
dynamics. In fact, then in the previous difference taken at time T , we see that the same
weight is given to a change in portfolio composition at time T and at time 0.

Another way of explaining this effect is as follows. Suppose that the insider invests
his money on the stock during a time interval [d, e] and then takes his money out of the
market. Then the stock price for large time T has a drift µT + a(e − d). Then if T is
large then the effect of a(e−d) can be neglected. That is, the asymptotic rate of return
is µ+a(e−d)/T . So when T approaches infinite the effect of the large trader dissipates.

Similarly, the case a > 0, b > 0, stands for an insider with medium term effects
on the stock price dynamics. In fact, in that case we see that through an appropriate
determination of H and b the effects of change of portfolios near time 0 can be weakened.
In fact, H represents a weighting average function of the past wealth proportions of the
agent. Taking the differences between the current wealth proportion with a weighted
average of the past strategy allows to weaken the long term dependence of the price
drift on the strategies of the insider. Note also that in general, this should allow more
flexibility on insider strategies as his/her portfolio strategies will have less effects on
stock prices.
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5.2. Model specification, optimal portfolios and optimal utilities. In this sec-
tion, we assume

(5.1) a > 0, b = 0, h1(t) ≡ 1, and h2(t) ≡ 1.

Namely, we consider the following insider model:

dSt = St {(µ+ aπt) dt+ σdWt} , S0 > 0.

Moreover, we assume that

(5.2) 0 < a <
σ2

2
.

Therefore hypotheses (4.2) and (A) are immediately satisfied.
Although this model has very simplistic features it shows various aspects that we

can expect in the next example to follow. First, we give a Lemma whose proof is
straightforward.

Lemma 5.1. Assume (5.1) and (5.2). Then, (2.4) is satisfied and

P (t) ≡ 0, Q(t) ≡ 0, L(t) ≡ 0, ηt ≡ 1,(5.3)

As(t) =
aσ

σ2 − 2a
g1(t), t ∈ [0, s].

From the above lemma, we can rewrite the equilibrium equation (4.2) as

(5.4) g1(t) = g1(t)

∫ t

0

aσg1(s)

(σ2 − 2a)G(s)
ds+ σ.

In the next theorem, we study the existence of solutions for the partial equilibrium
equation (5.4). In particular, we note that here the value of θ becomes of importance
to determine if the utility is finite or not. As it is discussed in [3] this is related with
the speed of transmission of information into the market.

Theorem 5.1. Assume (5.1), (5.2), and that

θ < 1.(5.5)

Then

g1(t) = σ exp

(∫ t

0

(
σ2

a
(T − s) +

(σ2 − 2a)

σ2
(T − s)θ

)−1

ds

)
is the unique solution of the equilibrium equation (5.4) which is bounded and strictly

positive. Furthermore
∫ T

0
|g1(s)|2
G(s) ds <∞ if and only if θ < 1.

Proof. First we note that from (5.4) one obtains that g1(0) = σ, g1(t) 6= 0 and that
g′1(t) 6= 0 for all t ∈ [0, T ]. Therefore we have that dividing (5.4) by g1(t) and differen-
tiating we obtain

(5.6)
ag1(s)3

(σ2 − 2a) g′1(s)
= G(s).

If we differentiate again the above equation, we obtain

a

(σ2 − 2a)

(
3− g1(s)g′′1(s)

g′1(s)2

)
= −1− θ(T − s)θ−1.
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Now, we perform the change of variables G1(s) = g1(s)(g′1(s))−1. Then the above
ordinary differential equation becomes

a

(σ2 − 2a)

(
2 + (G1(s))′

)
= −1− θ(T − s)θ−1.

From here, one obtains that for a fixed t0 ∈ [0, T ] and some suitable constants C and
C1, the solution is

g1(t) = C1 exp

(∫ t

t0

(
C − σ2s

a
+

(σ2 − 2a)

a

(
(T − s)θ − T θ

))−1

ds

)
.

In order to determine the constants we take t0 = 0, then one obtains that C1 = σ due
to the initial condition g1(0) = σ. Next, suppose that the above integral exists and

C 6= σ2T

a
+

(σ2 − 2a)

a
T θ,

then g1(T ) 6= 0 and g′1(T ) 6= 0 but this is a contradiction with (5.6) as G(T ) = 0.

Therefore C = σ2T
a + (σ2−2a)

a T θ. From here, we obtain that

g1(t) = σ exp

(∫ t

0

(
σ2

a
(T − s) +

(σ2 − 2a)

a
(T − s)θ

)−1

ds

)

G(t) =
ag1(t)2

σ2 − 2a

(
σ2

a
(T − t) +

(σ2 − 2a)

a
(T − t)θ

)
.

Then one has that for θ < 1

lim
s↑T

G(s)

g1(s)2 (T − s)θ
= 1.

Similarly, for θ ≥ 1 we have that

lim
s↑T

G(s)

g1(s)2 (T − s)
=

σ2

σ2 − 2a
.

and therefore one easily concludes that
∫ T

0
|g1(s)|2
G(s) ds <∞ if and only if θ < 1. �

From the characterization of g1 obtained in the previous Theorem we obtain the
optimal portfolio.

Theorem 5.2. Assume that (5.1), (5.2) and (5.5) are satisfied. Then, (3.8) can be
written as

π̂(s) =
µ− r + σg1(s)α(s)

σ2 − 2a
.(5.7)

Moreover, we have

Gt = S π̂t .(5.8)

Proof. Using (5.3), we obtain from (3.6) that X(t) = σg1(t)α(t). Applying this to (3.8)
then (5.7) follows at once. We note that clearly the conditions of Lemma 4.1 are satisfied
therefore we obtain (5.8) from Theorem 4.1. �
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Note that as a→ 0 the model converges to the Black-Scholes model and the portfolio
tends to the solution of the Karatzas-Pikovsky problem.

The portfolio (5.7) can be fully interpreted. The first part, µ−r
σ2−2a

, corresponds to

the Merton optimal portfolio where the volatility is modified from the usual σ2 into
σ2−2a. That is, the effective volatility for the insider is reduced due to his effect on the
market. The second term corresponds to the insider effect (information advantage) in
the market which is characterized by the Radon-Nikodym derivative of the compensator
of the semimartingale decomposition of W in the enlarged filtration.

The variance of the second term in the expression (5.7) is of the order (T − t)-θ

therefore the requirement that θ < 1 becomes important in order to obtain that

E[
∫ T

0 π(s)2ds] <∞ which leads to finite utility for this strategy.

Theorem 5.3. Assume that (5.1), (5.2) and (5.5) are satisfied. Then, the policy given
by (5.7) is a solution for the problem (4.1) and the maximal expected log utility of the
insider in partial equilibrium is given by

Ψ(T ) =
1

2(σ2 − 2a)

{
(µ− r)2T +

∫ T

0

σ2du
σ2

σ2−2a
(T − u) + (T − u)θ

}
.

Furthermore, the above utility is finite if and only if θ < 1.

Proof. Using (2.6) and Proposition 9.1 gives that

J(π̂) = E

[∫ T

0

{
π̂u (µ− r + aπ̂u + σg1(u)αu)− 1

2
σ2π̂2

u

}
du

]
=

1

2(σ2 − 2a)

{
(µ− r)2T + σ2

∫ T

0

g2
1(u)

G(u)
du

}
.

Therefore, the result clearly follows from Theorem 5.2. �

Note that the above maximal expected log utility is increasing with respect to a.
That is, that the higher the price impact the higher the maximal expected log utility
becomes. Furthermore, the case a = 0 corresponds to the Karatzas-Pikovsky model5.

6. Example 2: An insider with medium term effects and a weighted
average

In order to attenuate the influence of the agent we consider in this section a model
which satisfies

a > 0, b > 0, h1(t) = e
b
a
t, and h2(t) = e

b
a
t.(6.1)

dSt = St

{(
µ+ aπt − b

∫ t

0
e
b
a

(u−t)πudu

)
dt+ σdWt

}
, S0 > 0.

That is, the insider creates an effect on the drift through the variations of his strategies
with respect to a past time weighted average. Values closer to present time have a
bigger weight. And the past time weighted average seems to allow the insider to hide
his trades.

We only state the main results here and give the proofs in Appendix 12. First, by
direct calculations we obtain the following preliminary result.

5We thank a referee for this remark
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Lemma 6.1. Besides (6.1), we assume that

σ2 − 2a > 0,

and

lim
t→T

{(
eD(T−t) − e−D(T−t)

)
g1(t)

}
= 0,(6.2)

where D is defined by

D :=
bσ

a
√
σ2 − 2a

> 0.

Then, we obtain the following explicit formulas for P,Q,L, η,As and X:

P (t) =
r+r−

(
eD(T−t) − e−D(T−t))

r+eD(T−t) − r−e−D(T−t) < r−, where(6.3)

r± : =
1

a

{
σ2 − a
σ2 − 2a

± σ√
σ2 − 2a

}
> 0,

ηt =
r+eD(T−t) − r−e−D(T−t)

r+eDT − r−e−DT
> 0, and η is decreasing,(6.4)

Q(t) = − σr+r−

r+eD(T−t) − r−e−D(T−t)

[
−
(

eD(T−t) − e−D(T−t)
)
g1(t)

(6.5)

+
b

a

∫ T

t

(
eD(T−u) − e−D(T−u)

)
g1(u)du+D

∫ T

t

(
eD(T−u) + e−D(T−u)

)
g1(u)du

]
,

L(t) =
µ− r

σ(σ2 − 2a)2
(
r+eD(T−t) − r−e−D(T−t)

)(6.6)

×
{
−
√
σ2 − 2a

(
e
D
2

(T−t) − e−
D
2

(T−t)
)2
− σ

(
eD(T−t) − e−D(T−t)

)}
,

As(t) =
σks(t)

σ2 − 2a
B(t),(6.7)

where

B(t) = g1(t)− 1

(σ2 − 2a)
(
r+eD(T−t) − r−e−D(T−t)

)
×
{
b

a

∫ T

t

(
eD(T−u) − e−D(T−u)

)
g1(u)du+D

∫ T

t

(
eD(T−u) + e−D(T−u)

)
g1(u)du

}
,

ks(t) =
a
(
r+eD(T−s) − r−e−D(T−s))
r+eD(T−t) − r−e−D(T−t) ,

and Xt = σg1(t)α(t)−
∫ t

0
c1(t, u)α(u)du−

∫ t

0
c2(t, u)du,

where c1(t, u) and c2(t, u) are defined by

c1(t, u) : =
bσ
(
r+eD(T−t) − r−e−D(T−t))

(σ2 − 2a)
(
r+eD(T−u) − r−e−D(T−u)

)B(u),
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and

c2(t, u) : =
b(µ− r)

(
r+eD(T−t) − r−e−D(T−t))

aσ(σ2 − 2a)
3
2

(
r+eD(T−u) − r−e−D(T−u)

)2
×
{

2a+ (σ
√
σ2 − 2a+ σ2 − a)eD(T−u) − (σ

√
σ2 − 2a− σ2 + a)e−D(T−u)

}
respectively.

Therefore, the equilibrium equation (4.2) can be rewritten as

g1(t) = g1(t)

∫ t

0

AT (s)

G(s)
ds+ σ,(6.8)

AT (t) =
σ

σ2 − 2a
kT (t)B(t),

kT (t) :=
2σ√

σ2 − 2a

(
r+eD(T−t) − r−e−D(T−t)

)−1
.

Here we note that g1(t) = g2((T − t)θ).

Theorem 6.1. Assume (6.1) and the following conditions

a < min

{
1

2

[
σ2 −

√
2ab

(
T +

a

2b
(e−

2bT
a − 1)

)]
,
σ2

3

}
,(6.9)

θ < 1,(6.10)

T 1−θ <
(1− θ)(σ2 − 2a)

2a
.(6.11)

Then the following assertions are satisfied.
1. kT (t) ∈ (0, a] and the equation (6.8) has a strictly positive solution in such that (6.2)
is satisfied, g1(0) = σ, ġ1(t) > 0 and is bounded for t ∈ [0, T ].
2. Define

π̂(t) = −
(

1

2a− σ2
+ P (t)

)
Xt +Q(t)α(t) +

(
L(t)− µ− r

2a− σ2

)
.(6.12)

Then π̂ ∈ ASπ̂ and furthermore

Gt = S π̂t .

3. The strategy given by (6.12) is a strategy satisfying (4.1) with finite utility and its
value is

E [v(0, X0, α(0))] ,

where

v(t, x, α) =
2a− σ2

b

{
−1

2
P (t)x2 +Q(t)xα+

1

2
R(t)α2 + L(t)x+M(t)α+N(t)

}
.
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Here P,Q and L are given by (6.3), (6.5) and (6.6) respectively. Moreover, R,M and
N are the solutions of the following (0, ZF2 )-linear ODEs, F = R,M,N

ZR2 (t) = −bQ2(t) + 2σ

(
b

a
g1(t) + ġ1(t)

)
Q(t),

ZM2 (t) = −b
(
L(t)− µ− r

2a− σ2

)
Q(t) + σ

(
b

a
g1(t) + ġ1(t)

)
L(t),

ZN2 (t) = − b
2

(
L(t)− µ− r

2a− σ2

)2

+
g2

1(t)
{

1 + θ(T − t)θ−1
}

G2(t)

{
−σ2g2

1(t)P (t) + σg1(t)Q(t) +R(t)
}
.

(6.13)

For the proof, see Appendix 12. Note that if we assume (6.9), (2.4) is satisfied. Hence,
we can use the results in Sections 2 − 4.

Although the restriction (6.11) may not be optimal, it seems reasonable that some
kind of restriction of this type should appear. In fact, if the effect of the agent on the
prices dissipates quickly in the dynamics of the underlying the possibility of creating
arbitrage increases. In short, this restriction states that this kind of insider effect can
not happen over large periods of time.

7. Conclusions

The method to prove the existence of solutions to the partial equilibrium equation in
Example 2 is quite intricate as the non-linear ordinary differential equation character-
izing the partial equilibrium, (4.2), degenerates at time T . Therefore we have resorted
to an approximative argument in order to study the relative compactness of the family
of solutions with respect to a small parameter that makes the system non-degenerate.
We then characterize the strategy for the insider and the utility which is finite as θ < 1
is assumed.

We have also treated two additional examples (a > 0, b > 0 and a = 0, b < 0 with
h1 = h2 = 1) in a related article [10]. The techniques used in those cases resemble the
ones used in Example 2.

There are many obvious criticisms to the present modeling, such as why the influ-
ence of the insider does not appear in an non-bijective way in the volatility. Another
interesting aspect is the relation of the insider investor with the small investor. In our
setting this relation is only established under the restriction that markets do not blow
up. That is, the optimal portfolios π∗ lead to a finite utility and therefore optimization
and non-existence of arbitrage for the small trader can be carried out. In Appendix 8, we
also prove that a model where the effect of the insider is measured through the amount
of money invested in the stock will explode for all times with positive probability.

Undoubtedly this is a first attempt and we hope that many other articles discussing
other approaches appear in the future.
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8. Appendix: Investor’s optimal policy explodes for drifts depending on
the total amount of money invested

Here we consider the situation where the stock price is influenced through a power
function of the amount of money invested by an agent in the underlying. That is, our
model is

dSt = St {(µ+ a (ptSt)
α)dt+ σdWt} , S0 > 0,

where p denotes the number of shares that the agent invests in the underlying and
α, a > 0.

In this model there is no insider characteristics and for simplicity we assume that the
interest rate r ≡ 0. We furthermore simplify the setting considering the particular case
that the investor invests all his wealth in the underlying. In such a case the discounted
wealth process satisfies the equation

dV̂t = V̂t

[{
µ+ a

(
V̂t

)α}]
dt+ σV̂tdWt.
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If we transform the above equation using Yt = log(V̂t) we obtain that Yt satisfies the
equation

dYt =
(
µ0 + aeαYt

)
dt+ σWt,

where we assume that µ0 = µ − r − σ2

2 < 0. This equation can be analyzed using the
methodology of Engelbert-Schmidt (see Karatzas-Shreve [16] Section 5.5). In that case
the scale function is given by

p(x) =

∫ x

c
exp

{
−2σ−2

∫ ξ

c
(µ0 + aeαζ)dζ

}
dξ.

Here, c is any positive constant. From the properties of the exponential function we
have that p(+∞) < ∞ and p(−∞) > −∞ as µ0 < 0. As p is a strictly increasing
function, its inverse q exists on (p(−∞), p(+∞)). According to Proposition 5.5.13 in
Karatzas-Shreve [16] we have that Y = p−1(Z) where Z is the solution of the equation

dZt = σ̃(Zt)dWt,

where

σ̃(y) = 1(y < p(+∞))p′(q(y))σ.

Note that there exists two positive constants c0 and c1 such that 0 < c0 < p′(q(y))σ < c1.
Therefore the function σ̃ has a jump at p(+∞).

The Engelbert-Schmidt result also provides through a time change of the Brownian
motion, an almost explicit weak construction method for Z. In fact, let B be a Brownian
motion, define

Ts =

∫ s+

0

du

σ̃(Z0 +Bu)2
,

At = inf{s ≥ 0;Ts > t},

then Zt = Z0 + BAt . Clearly, as P (Ts = +∞) > 0 for all s > 0 then P (As = A∞) > 0
for all s > 0. This is equivalent to P (Zs > p(+∞)) > 0 for all s > 0. This clearly
implies that P (Ys = +∞) > 0 for all s > 0 and therefore in such a model the agent’s
best policy implies that the wealth process (and therefore the price process) is infinite
in finite time with positive probability.

This shows that the setting in Cuoco-Cvitanic may lead to infinite utilities and price
explosion if the drift is not decreasing in p.

9. Appendix: An enlargement of filtration problem

In this section we treat an enlargement of filtration problem which will be used in
the calculations. It is related to the insider problem with a fixed enlarged filtration.
The goal is to obtain the compensator of W under the filtration G defined by (3.1).

Here, for g1, g2 ∈ L2[0, T ] strictly positive functions, we define G(t) :=
∫ T
t g1(s)2ds +∫ (T−t)θ

0 g2(s)2ds > 0 for all t ∈ [0, T ).
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Proposition 9.1. Suppose that
∫ T

0
|g1(s)|√
G(s)

ds < ∞, then {W (t); t ∈ [0, T ]} is a semi-

martingale in the filtration G and the semimartingale decomposition of W is given by

Wt = Ŵt +

∫ t

0
g1(s)α(s)ds,(9.1)

α(s) =
1

G(s)

(∫ T

s
g1(u)dW (u) +

∫ (T−s)θ

0
g2(u)dW ′(u)

)
; s < T,(9.2)

where {Ŵ (t); t ∈ [0, T ]} is a G-Wiener process and α is a Gaussian G-martingale in
[0, T ) with quadratic variation given by

〈α〉t =

∫ t

0

(
g1(s)

G(s)

)2

ds+

∫ T θ

(T−t)θ

(
g2(s)

G(s)

)2

ds.

Proof. First, note that by the joint law of increments for the Brownian motion, we have
that for s < u < t

E [W (t)−W (u)| Gs] = E

[
W (t)−W (u)

∣∣∣∣∣
∫ T

s
g1(r)dW (r) +

∫ (T−s)θ

0
g2(r)dW ′(r)

]

=

∫ t

u
g1(r)dr

1

G(s)

(∫ T

s
g1(r)dW (r) +

∫ (T−s)θ

0
g2(r)dW ′(r)

)
.

Here we have used that for a Gaussian random vector (X,Y ), we have that E[X|Y ] =
E[XY ]
E[Y 2]

Y . Then (9.1) follows from a direct calculation. In fact,

E

[
W (t)−W (s)−

∫ t

s

g1(r)

G(r)

(∫ T

r
g1(u)dW (u) +

∫ (T−r)θ

0
g2(u)dW ′(u)

)
dr

∣∣∣∣∣Gs
]

=

∫ t

s
g1(r)dr

1

G(s)

(∫ T

s
g1(r)dW (r) +

∫ (T−s)θ

0
g2(r)dW ′(r)

)

−
∫ t

s

g1(r)

G(r)
E

[∫ T

r
g1(u)dW (u) +

∫ (T−r)θ

0
g2(u)dW ′(u)

∣∣∣∣∣Gs
]
dr.

The proof finishes because we have that for r > s

E

[∫ T

r
g1(u)dW (u) +

∫ (T−r)θ

0
g2(u)dW ′(u)

∣∣∣∣∣Gs
]

= E

[∫ T

r
g1(u)dW (u) +

∫ (T−r)θ

0
g2(u)dW ′(u)

∣∣∣∣∣
∫ T

s
g1(u)dW (u) +

∫ (T−s)θ

0
g2(u)dW ′(u)

]

=
G(r)

G(s)

(∫ T

s
g1(u)dW (u) +

∫ (T−s)θ

0
g2(u)dW ′(u)

)
.

Therefore the process α is a G-martingale and Ŵ defined by (9.1) is a G continuous
martingale and therefore by Levy’s characterization of Brownian motion one obtains
that Ŵ is a Brownian motion for any interval [0, t] for t < T . Note that the condition∫ T

0
|g1(s)|√
G(s)

ds < ∞ is used to guarantee the integrability of the compensator. That is,
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using the Gaussian property for the sum of two stochastic integrals with deterministic
integrands, we have for some positive constant C

E

∣∣∣∣∣
∫ T

0

g1(s)

G(s)

(∫ T

s
g1(u)dW (u) +

∫ (T−s)θ

0
g2(u)dW ′(u)

)
ds

∣∣∣∣∣ ≤ C
∫ T

0

|g1(s)|√
G(s)

ds <∞.

Therefore Ŵ is well defined in [0, T ]. �

10. Appendix: Proof of Theorem 3.1

Proof of Theorem 3.1

Proof. Using (3.7), (3.8) and (3.12), we obtain an expression

d(h2(t)Xt) = −bh1(t)π∗(t)dt+ σd(g1(t)h2(t)α(t)).

Noting that X0 = σg1(0)α(0), we obtain (4.3).
Define

F (π) :=µ− r + (2a− σ2)π(t)− b

h2(t)

∫ t

0
h1(u)π(u)du

+ σg1(t)α(t)− bh1(t)E

[∫ T

t

π(u)

h2(u)
du
∣∣∣Gt] .

Using (3.8) and (4.3), we have

F (π∗) = (2a− σ2) {−P (t)Xt +Q(t)α(t) + L(t)} − bh1(t)E

[∫ T

t

π∗(u)

h2(u)
du
∣∣∣Gt] .

Since α is a G-martingale, we have that

E

[∫ T

t

π∗(u)

h2(u)
du
∣∣∣Gt] =−

∫ T

t

1

h2(u)

(
1

2a− σ2
+ P (u)

)
E[Xu|Gt]du

+ α(t)

∫ T

t

Q(u)

h2(u)
du+

∫ T

t

1

h2(u)

(
L(u)− µ− r

2a− σ2

)
du.

Furthermore, using (3.6) for u > t,

E[Xu|Gt] = ηuη
−1
t Xt

+ ηu

(∫ u

t
η−1
v

{
−bh1(v)

h2(v)
Q(v) + σ

(
ġ1(v) + g1(v)

ḣ2(v)

h2(v)

)}
dv

)
α(t)

− bηu
∫ u

t

h1(v)

h2(v)
η−1
v

(
L(v)− µ− r

2a− σ2

)
dv.

Therefore, we rewrite F (π∗) as

F (π∗) =
{
−η−1

t MX(t)X(t) +Mα(t)α(t) +M(t)
}
h1(t),
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where

MX(t) := (2a− σ2)P (t)
ηt

h1(t)
− b

∫ T

t

1

h2(u)

(
1

2a− σ2
+ P (u)

)
ηudu,

Mα(t) := (2a− σ2)
Q(t)

h1(t)
+ b

∫ T

t

1

h2(u)

(
1

2a− σ2
+ P (u)

)
ηu

·

(∫ u

t
η−1
v

{
−bh1(v)

h2(v)
Q(v) + σ

(
ġ1(v) + g1(v)

ḣ2(v)

h2(v)

)}
dv

)
du− b

∫ T

t

Q(u)

h2(u)
du,

M(t) := (2a− σ2)
L(t)

h1(t)
− b2

∫ T

t

1

h2(u)

(
1

2a− σ2
+ P (u)

)
ηu

·
{∫ u

t

h1(v)

h2(v)
η−1
v

(
L(v)− µ− r

2a− σ2

)
dv

}
du− b

∫ T

t

1

h2(u)

(
L(u)− µ− r

2a− σ2

)
du.

Note that as P is a solution of the (ZP1 , Z
P
2 , Z

P
3 )-Ricatti equation with coefficients given

in (3.3), we see that MX satisfies

ṀX(t) =
(2a− σ2)ηt

h1(t)

[
Ṗ (t) + b

h1(t)

h2(t)
P 2(t)

+

{
2b

2a− σ2

h1(t)

h2(t)
− ḣ1(t)

h1(t)
− ḣ2(t)

h2(t)

}
P (t) +

b

(2a− σ2)2

h1(t)

h2(t)

]
= 0

for all t ∈ [0, T ]. Noting that MX(T ) = 0, we see that MX(t) = 0 for all t ∈ [0, T ]. In

a similar fashion and using that MX(t) = 0 for all t ∈ [0, T ] we obtain that Ṁα(t) = 0

and Ṁ(t) = 0 for all t ∈ [0, T ]. Therefore, since Mα(t) = 0 and M(t) = 0 hold for all
t ∈ [0, T ], we conclude the proof as F (π∗) = 0 implies that π∗ is the optimal portfolio
by Theorem 2.1. �

11. Appendix: Proof of Theorem 3.2

Proof. Here we prove that

F1(t, x, α) + F2(t, x, α) = 0, for t ∈ [0, T ].

By direct calculations we can observe that

F2(t, x, α) :=
bh1(t)

2h2(t)

[{
P 2(t)− 1

(2a− σ2)2

}
x2 − 2P (t)Q(t)xα+Q2(t)α2

−2

{
µ− r

(2a− σ2)2
+ P (t)L(t)

}
x+ 2Q(t)L(t)α+ L2(t)−

(
µ− r

2a− σ2

)2
]
,
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and

F1(t, x, α) = −1

2

[
Ṗ (t) +

{
2b

(
1

2a− σ2
+ P (t)

)
h1(t)

h2(t)
− ḣ2(t)

h2(t)
− ḣ1(t)

h1(t)

}
P (t)

]
x2

+

[
Q̇(t) +

{
b

(
1

2a− σ2
+ 2P (t)

)
h1(t)

h2(t)
− ḣ1(t)

h1(t)

}
Q(t)− σ

(
ġ1(t) +

ḣ2(t)

h2(t)
g1(t)

)
P (t)

]
xα

+
1

2

[
Ṙ(t) +

(
ḣ2(t)

h2(t)
− ḣ1(t)

h1(t)

)
R(t) + 2

{
−bh2(t)

h1(t)
Q(t) + σ

(
ġ1(t) +

ḣ2(t)

h2(t)
g1(t)

)}
Q(t)

]
α2

+

[
L̇(t) +

{
b

(
1

2a− σ2
+ 2P (t)

)
h1(t)

h2(t)
− ḣ1(t)

h1(t)

}
L(t)− b(µ− r)

2a− σ2

h1(t)

h2(t)
P (t)

]
x

+

[
Ṁ(t) +

(
ḣ2(t)

h2(t)
− ḣ1(t)

h1(t)

)
M(t)

+

{
−2b

h2(t)

h1(t)
Q(t) + σ

(
ġ1(t) +

ḣ2(t)

h2(t)
g1(t)

)}
L(t) +

b(µ− r)
2a− σ2

h1(t)

h2(t)
Q(t)

]
α

+

[
Ṅ(t) +

(
ḣ2(t)

h2(t)
− ḣ1(t)

h1(t)

)
N(t)− bh2(t)

h1(t)

(
L(t)− µ− r

2a− σ2

)
L(t)

+
g2

1(t) + θ(T − t)θ−1g2
2((T − t)θ)

G2(t)

{
−σ2g2

1(t)P (t) + σg1(t)Q(t) +R(t)
}]
.

Using the ODE equations satisfied by P , Q, L, R, M and N , we see that F1(t, x, α) +
F2(t, x, α) = 0. �

12. Appendix: Proofs of Section 6

Proof of Lemma 6.1
If h1(t) = e

b
a
t and h2(t) = e

b
a
t holds, the ODE’s for P , Q and L become:

(12.1)

 Ṗ (t) + bP 2(t)− 2
b(σ2 − a)

a(σ2 − 2a)
P (t) +

b

(σ2 − 2a)2
= 0,

P (T ) = 0,

(12.2)

 Q̇(t) + b

{
− σ2 − a
a(σ2 − 2a)

+ P (t)

}
Q(t)− σ

{
b

a
g1(t) + ġ1(t)

}
P (t) = 0,

Q(T ) = 0,

(12.3) L̇(t) + b

{
− σ2 − a
a(σ2 − 2a)

+ P (t)

}
L(t)− b (µ− r)

2a− σ2

(
1

2a− σ2
+ P (t)

)
= 0,

L(T ) = 0.

Suppose that P (t) 6= r±. Then we can rewrite (12.1) as

Ṗ (t)

P (t)− r+
− Ṗ (t)

P (t)− r−
= −2D.(12.4)
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Integrate (12.4) on [t, T ]. Then we get

P (t)− r−
P (t)− r+

=
r−
r+

e−2D(T−t),

which leads to (6.3). Moreover, from (3.7) and after some calculations one obtains (6.3).
Furthermore, we have

η̇t
ηt

= −Dr+eD(T−t) + r−e−D(T−t)

r+eD(T−t) − r−e−D(T−t) .

Integrating the above equality on [0, t], we get (6.4).

Note that from (3.4), (3.5) and (3.7) and as h1 ≡ h2 then ZQ1 = ZL1 = η̇tη
−1
t and

therefore

(ηtQ(t))′ = σ

{
b

a
g1(t) + ġ1(t)

}
P (t)ηt.

We integrate the above equality on [t, T ] and use (6.2), (6.3) and (6.4). Then we obtain
(6.5). For L, we similarly have

(ηtL(t))′ = −b(µ− r)
σ2 − 2a

(
P (t)− 1

σ2 − 2a

)
ηt.

Therefore, we obtain (6.6).
From (6.3) and (6.5) we have

Q(t)− σ
(
P (t)− 1

σ2 − 2a

)
g1(t) =

σ

σ2 − 2a
B(t).(12.5)

Using (12.5) and (6.4), we have (6.7).
Finally, if we note that if we perform an integration by parts on the stochastic integral

in (3.6) we have the following alternative expression for X

Xt = σg1(t)α(t)− ηtb
∫ t

0
η−1
u

h1(u)

h2(u)

[{
Q(u)− σg1(u)

(
1

2a− σ2
+ P (u)

)}
α(u)(12.6)

+L(u)− µ− r
2a− σ2

]
du,

then the expression for X in the statement of Lemma 6.1 follows from (6.4), (6.6), (12.5),
(6.3) and (6.5).

Proof of Theorem 6.1: Proof of 1. The proof that kT (t) ∈ (0, a] is straightfor-
ward. Also note that kT (T ) = a. To study the existence of solution to the partial equi-
librium equation (6.8), we introduce the following approximating equations for n ≥ 2,
t ∈ [0, T ]:

gn(t) = gn(t)

∫ t

0

AnT (s)

Gn(s)
ds+ σ,(12.7)

Gn(t) : =

∫ T

t

{
1 + θ

(
T − u+

1

n

)θ−1
}
g2
n(u)du+

g2
n(T )

nθ
,

AnT (t) =
σ

σ2 − 2a
kT (t)Bn(t),(12.8)
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Bn(t) := gn(t)− 1

(σ2 − 2a)
(
r+eD(T−t) − r−e−D(T−t)

)
×
{
b

a

∫ T

t

(
eD(T−u) − e−D(T−u)

)
gn(u)du+D

∫ T

t

(
eD(T−u) + e−D(T−u)

)
gn(u)du

}
.

First, assuming gn(T ) = x0 > 0, we shall show that there exists x0 > 0 such that
gn(0) = σ. Then, if gn satisfies (12.7) then we have that gn(t) > 0. Next, we divide the
equation (12.7) by gn(t) and differentiating both sides of the equation we have

ġn(t) =
gn(t)2AnT (t)

σGn(t)
.(12.9)

Now we will use (12.9) in order to find a bound for gn(T )−gn(t). In fact, kT (t) ≤ a and

Bn(t) ≤ gn(t) give that AnT (t) ≤ σagn(t)
σ2−2a

. To this fact we add that Gn(t) ≥ gn(t)2(T − t)θ
and the temporary assumption that gn is increasing in an interval I0 = (t0, T ] to obtain
that for t ∈ I0

gn(T )− gn(t) ≤ agn(T )

σ2 − 2a

∫ T

t

du

(T − u)θ
(12.10)

≤ aT 1−θgn(T )

(σ2 − 2a)(1− θ)
.

Therefore from the assumption (6.11), we see that gn(t) > gn(T )
2 > 0 for t ∈ I0.

By contradiction, assume that Bn(t) > 0 for t ∈ (t0, T ] and Bn(t0) = 0. Then, since
gn is continuous and increasing on [t0, T ], we have from (12.7) and (6.9)

0 = Bn(t0) ≥ gn(T )

[
1

2
− 1

(σ2 − 2a)(r+eD(T−t0) − r−e−D(T−t0))

{
b

a

∫ T

t0

(eD(T−u) − e−D(T−u))du

+D

∫ T

t0

(eD(T−u) + e−D(T−u))du

}]

=
gn(T )

2aσ(σ2 − 2a)
(
r+eD(T−t0) − r−e−D(T−t0)

) [4a√σ2 − 2a

+σ(σ2 − 3a)
(

eD(T−t0) − e−D(T−t0)
)

+ (σ2 − 2a)
3
2

(
eD(T−t0) + e−D(T−t0)

)]
> 0.

This is a contradiction. Repeating similar arguments, we see that Bn(t) > 0 and
ġn(t) > 0 for t ∈ [0, T ]. From here it also follows that

x0

2
< gn(t) < x0, and 0 < ġn(t) ≤ ax0n

θ

σ2 − 2a
(12.11)

for t ∈ [0, T ]. From (12.7) we shall construct a system of ordinary differential equations.
For this, we introduce the following auxiliary function

Mn(t) :=
ġn(t)

g2
n(t)

Gn(t),(12.12)

and note that

0 < Mn(t) ≤ 4ax0n
θ

σ2 − 2a

{
T +

(
T +

1

n

)θ}
.(12.13)
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Then, using (12.9), we have

Mn(t) =
AnT (t)

σ
.(12.14)

Setting w(t) := log gn(t), v(t) := log ġn(t) and m(t) := logMn(t). From (12.12) and
(12.14), we obtain the following system:

˙w(t)
v(t)
m(t)

 = f(t, w(t), v(t),m(t)),

w(T )
v(T )
m(T )

 =


log x0

log
(
nθax0
σ2−2a

)
log
(

ax0
σ2−2a

)
 ,

where

f(t, w(t), v(t),m(t)) :=

(12.15)


ev(t)−w(t)

c̃+ 2ev(t)−w(t) +
{

1 + kT (t)
σ2−2a

+ θ
(
T − t+ 1

n

)θ−1
}

ev(t)−m(t) − bkT (t)
a(σ2−2a)

ew(t)−m(t)

c̃+ kT (t)
σ2−2a

ev(t)−m(t) − bkT (t)
a(σ2−2a)

ew(t)−m(t)

 ,

c̃ = c̃T (t) :=
k̇T (t)

kT (t)
+D

r+eD(T−t) + r−e−D(T−t)

r+eD(T−t) − r−e−D(T−t) .

Noting that (12.11) and (12.13) and repeating the application of Picard’s theorem, we
see that this system has a unique solution for t ∈ [0, T ]. Moreover, since for t ∈ [0, T ]
gn(t) is continuous on x0 and x0

2 < gn(t) < x0 for t ∈ [0, T ], by the intermediate value
theorem, there exists x0 > 0 such that gn(0) = σ. Next, we shall prove the boundedness
of gn. For that, from (12.9), we have

σ ≤ gn(t) ≤ σe
a

(σ2−2a)(1−θ)
T 1−θ

for t ∈ [0, T ].(12.16)

Here we have used that gn(0) = σ and gn is increasing for t ∈ [0, T ]. Furthermore, we
see that {gn(t)}n is equicontinuous. Indeed, in a similar way to (12.10) we have, for all
n

|gn(t)− gn(s)| ≤ a

σ2 − 2a
gn(T )

∫ t

s

du

(T − u)θ

≤ aσ

(σ2 − 2a)(1− θ)
e

a
(σ2−2a)(1−θ)

T 1−θ ∣∣∣(T − s)1−θ − (T − t)1−θ
∣∣∣ .

Therefore, there exists a uniformly convergent subsequence {gnk(t)}k, and ḡ(t) :=
limk→∞ gnk(t) solves the equation (12.7) by using bounded convergence theorem. Fur-

thermore ḡ satisfies (12.16) and ˙̄g(t) ≤ aḡ(t)
(σ2−2a)(T−t)θ follows from the same arguments

used in obtaining (12.10).

Proof of 2. All the necessary properties are stated in Theorem 6.1 therefore the
result follows from Theorem 4.1.
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Proof of 3. Note that we want to apply the result of Theorem 3.2. Therefore we
obtain the following estimate.

E[|v(t,Xt, α(t))|] ≤ KT

[
{|P (t)|+ |Q(t)|+ |L(t)|}E[X2

t ](12.17)

+ {|Q(t)|+ |R(t)|+ |M(t)|}E[α2(t)] + |L(t)|+ |M(t)|+ |N(t)|
]
,

E[α2(t)] ≤ 1

σ2(T − t)θ
,(12.18)

E[X2
t ] ≤ KT

{
1 +

1

(T − t)θ
+ (T − t)1−θ

}
.(12.19)

Moreover using Lemma 6.1, (6.13) and |ġ1(t)| ≤ KT
(T−t)θ , we can observe the following:

|P (t)| ≤ KT (T − t), |Q(t)| ≤ KT (T − t), |L(t)| ≤ KT (T − t),(12.20)

|R(t)| ≤ KT (T − t)2−θ, |M(t)| ≤ KT (T − t)2−θ, |N(t)| ≤ KT (T − t)1−θ.

From (12.17), (12.18), (12.19) and (12.20) we can get E[|v(t,Xt, α(t))|] → 0 as t → T .
Therefore the proof finishes using Theorem 3.2. �


