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Abstract. In this paper, we estimate joint-density function of the stock price and
its volatility for the Heston model and the double volatility Heston model through the
Malliavin-Thalmaier formula. First, we give the representation of the joint density of
the stock and its volatility. Next, we simulate these formulas on computer and compare
them to other existing methods. We conclude from these experiments that our method
has the smallest variance. Finally we apply the formula to the calculation of Greeks in
finance.
Keywords: Density estimation, Malliavin-Thalmaier formula, Greeks.

1. Introduction. Financial systems require a careful continuous risk control in order to
avoid undesirable results due to sudden large portfolio movements. One of the components
in this problem is the risk control of option contracts.

From the mathematical point of view, the quantity that expresses this risk is the de-
rivative of the price of the option price with respect to the parameters in the problem
(these quantities are called “the Greeks” as many of them are denoted used capital Greek
letters). In systems theory this problem falls in the area of sensitivity analysis.

In this article, we deal with such a problem for binary options which are certain partic-
ular type of option contracts for which is difficult to compute these sensitivity quantities.
In a particular case, this problem is equivalent to the estimation of density functions for
random variables arising from solutions of stochastic differential equations. For a detailed
description, see Section 4.

In general, such differential equations are not explicitly solvable and therefore the need
for Monte Carlo simulation arises. The theory in order to estimate density functions
through the Malliavin calculus has been available since the eighties. See Nualart [11]
(Proposition 2.1.5) or Sanz-Solé [12] (Proposition 5.4). These formulae were applied in
finance in Fournié et. al. [4] for one dimensional financial models.

When this formula is used to simulate multidimensional density functions one finds a
“curse of dimensionality” problem. In fact, the classical formulae that give simulatable
expressions for the density involve multiple iterated Skorohod integrals. The Skorohod
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integral is an extension of the Ito’s integral. Multiple stochastic integrals for fully multidi-
mensional settings are costly to compute which lead to the above curse of dimensionality
problem.

To solve this problem, the Malliavin-Thalmaier formula was introduced in Malliavin,
Thalmaier [10] to simulate multidimensional density functions through the Monte-Carlo
method. This method is based on an alternative expression for the delta (Schwarz) dis-
tribution function based on the Poisson kernel. Using this formula one can get away
from the “curse of dimensionality”, but the variance of this formula is infinite due to the
degeneracy of the Poisson kernel.

The variance of the Malliavin-Thalmaier formula is infinite and therefore the formula is
unstable for simulation. In order to be able to use this formula, Kohatsu-Higa, Yasuda [6]
introduced an approximation of this formula in the spirit of the kernel density estimation
method in non-parametric statistics.

In [6], we obtained the order of the bias, the L2 error and a central limit theorem
(CLT) for this approximation. And in Kohatsu-Higa, Yasuda [7], we gave a proposal of
how to choose an approximate optimal size of the approximation parameter through the
calculation of the leading constants in the error expansion. This is achieved using an
appropriate CLT and a pilot simulation.

In the previous articles, “toy models” were used to demonstrate the method on a
particular type of sensitivity quantity called Delta (the derivative with respect to the
initial price). In this article, we give explicit formulas and carry out the experiments on
models that are actually in use in the financial technology and we compute as well the
formulae for other sensitivity quantities that are used in risk analysis. Furthermore we
compare our methods with various other stochastic methods that could be used in order
to carry the calculation of these sensitivities. We now a brief description of the contents
of the article.

We estimate the joint-density function of the stock and volatility in the Heston model
(see Heston [5]) and the double volatility Heston model (see Fonseca, Grasselli [3]), which
are important stochastic volatility models currently in use as a financial model.

First we give an expression of these densities through the Malliavin-Thalmaier formula.
In particular, we compute their Malliavin weights explicitly. Then we simulate the densi-
ties by using the optimal size of the approximation parameter and compare them to other
methods. That is, we compare the Malliavin-Thalmaier formula without approximation,
the kernel density estimation method (KDE) (see Scott [13]), which is a nonparametric
method for density estimation in statistics using the Gaussian kernel, and the Laplacian
of the Poisson kernel (see Kohatsu-Higa, Yasuda [8]).

Through our numerical results, we can confirm that our approximation formula has the
smallest variance within these methods.

In [6], we also applied the Malliavin-Thalmaier formula to the calculation of Greeks
and gave a new theoretical representation of Greeks, which are important risk indices in
finance. Here we simulate Delta, Vega and Kappa of two-asset digital put option in the
Black-Scholes model. We compare these results with the finite difference method and a
method by Fournié et al. [4]. Then through numerical results, we find that our expression
has the smallest variance in the three methods.

In physical systems, problems as the one described above are also common. These
systems may be discrete or continuous, with a chaotic component described through an
appropiate stochastic processes. In such a case density estimation is the central problem
to be able to solve filtering problems and perform non-parametric estimation. For some
examples, see e.g. [14], [15], [16].
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In short, the article has the following sections: in Section 2, we will give the Malliavin-
Thalmaier formula and its approximation. In Section 3, we will provide explicit expres-
sions of the approximation to the Malliavin-Thalmaier formula in the case of the Heston
and double volatility Heston model and also give their numerical results. In Section 4, we
will deal with the calculation of Greeks.

2. Malliavin-Thalmaier Representation of Multidimensional Density Functions
and its Approximation. Suppose that F = (F1, ..., Fd) is a nondegenerate random vec-
tor in (D∞)d and G is a random variable in D∞. Notations and terminologies can be
found in Nualart [11].

Definition 2.1. Given the Rd-valued random vector F and the R-valued random variable
G, a multi-index α ∈ ⋃

j∈N{1, ..., dj and a power p ≥ 1 we say that there is an integra-

tion by parts formula (IBP formula) in Malliavin sense if there exists a random variable
Hα(F ; G) ∈ Lp(Ω) such that

IPα,p(F, G) : E

[
∂α

∂xα
f(F )G

]
= E

[
f(F )Hα(F ; G)

]
for all f ∈ C

|α|
0 (Rd).

Here |α| denotes the length of the multi-index α.

Related to the Malliavin-Thalmaier formula [10], Bally and Caramellino [2], have ob-
tained the following result.

Proposition 2.1. (Bally, Caramellino [2]) Suppose that for some p > 1

sup
|a|≤R

E

[∣∣∣ ∂

∂xi

Qd(F − a)
∣∣∣

p
p−1

+
∣∣∣Qd(F − a)

∣∣∣
p

p−1

]
< ∞ for all R > 0, a ∈ Rd.

If IPi,p(F ; 1) (i = 1, ..., d) holds then the law of F is absolutely continuous with respect to
the Lebesgue measure on Rd and the density pF is represented as

pF (x̂) = E

[
d∑

i=1

∂

∂xi

Qd (F − x̂) H(i)(F ; 1)

]
for x̂ ∈ Rd.

Although the above formula makes sense as a duality in Lp, p > 2, one obtains that
the variance of the proposed estimator is infinite. In fact, one can easily prove that

E

[(
∂

∂xi

Qd (F − x̂)

)2
]

= ∞.

In order to avoid the explosion of the variance of the Malliavin-Thalmaier estimator,
we have proposed the use of a kernel density type alternative to this estimator. For this
reason, we define

∂

∂xi

Qh
d(x) := Ad

xi

|x|dh
.

where | · |h is defined as

|x|h :=

√√√√
d∑

i=1

x2
i + h (h > 0, x ∈ Rd).

Then we define the approximation to the density function of F as; for x̂ ∈ Rd,

ph
F (x̂) := E

[
d∑

i=1

∂

∂xi

Qh
d (F − x̂) H(i)(F ; 1)

]
.
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Note that clearly, Qd = Q0
d. The bias and L2 errors together with the central limit theorem

are given in [6].
The advantage of the above formulation in comparison with the classical results in

Nualart [11] (Proposition 2.1.5) or Sanz-Solé [12] (Proposition 5.4) is that the above
formulas require only one integration by parts. That is H(i) is only required while in the
classical formulas Hα is required with |α| = d. One could also avoid the approximation
above by using the integration by parts formula twice which will lead to H(i,j). But as the
objective here is to reduce the quantity of integration by parts, we find that this approach
performs better.

3. Numerical Results for the Heston-type Density. In this section, we simulate
the joint-density of the Heston model and the double volatility Heston model through
the Malliavin-Thalmaier formula. In the following sections, we give expressions of Malli-
avin weights H(i)(F ; G) without proof. These weights are calculated using arguments of
Malliavin calculus. Note that one has to be careful about the non-differentiability of the
square root function at zero. As these arguments are quite long to write in the case of
the Heston model and the double volatility Heston model, we do not include them here.
Nevertheless the computational complexity is unaffected by the length of these equations.

3.1. The Heston Model. In this section, we consider the joint-density function of the
Heston model, which is the most popular stochastic volatility model in finance. The model
is given as follows;

dSt = µStdt +
√

vtStdW
(1)
t ,

dvt = −γ(vt − θ)dt + κ
√

vtdW
(2)
t ,

where µ, γ, θ, κ are constants with 2γθ ≥ κ2 (see Lamberton, Lapeyre [9]) and W
(1)
t , W

(2)
t

are Wiener processes with E[W
(1)
t W

(2)
t ] = ρt.

We introduce a new Wiener process Zt, which is independent of W
(2)
t and W

(1)
t =

ρW
(2)
t +

√
1− ρ2Zt. We also perform the following change of variables. Set Xt :=

ln(St/S0)− µt and ut := avt. Then from Itô’s formula, we have the following dynamics;

dXt = − ut

2a
dt +

√
ut

a

{
ρdW

(2)
t +

√
1− ρ2dZt

}
,

dut = −γ(ut − aθ)dt +
√

aκ
√

utdW
(2)
t .

(1)

As the exact value of the joint density value of (Xt, ut) is unknown we will use the following
Monte Carlo methods to estimate this value. We estimate this value using the Malliavin-
Thalmaier formula (2) whose variance explodes, then its approximated version (3) and
finally two KDE methods ((4) and (6)).

First we give the Malliavin-Thalmaier formula for the transformed Heston model (1).

Theorem 3.1. Set F := (F1, F2) := (Xt, ut) for fixed t > 0. Assume that E[
∫ t

0
u−3

s ds] <
∞. For x = (x1, x2) ∈ R2, we have

pF (x) =
1

2π
E

[
2∑

i=1

Fi − xi

|F − x|2H(i)(F ; 1)

]
, (2)
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where

H(1)(F ; 1) :=

√
a√

1− ρ2t

∫ t

0

1√
us

dZs,

H(2)(F ; 1) :=
1

t
{A−B} ,

A :=
1√

aκe(t)

∫ t

0

e(s)√
us

dW (2)
s +

1

2e(t)

∫ t

0

e(s)

us

ds +
aκ2

8e(t)

∫ t

0

s
e(s)

u2
s

ds−
√

aκ

4e(t)

∫ t

0

s
e(s)

u
3
2
s

dW (2)
s ,

B :=
ρ

κ
√

a(1− ρ2)e(t)

∫ t

0

e(s)√
us

dZs − 1

2
√

a(1− ρ2)e(t)

∫ t

0

e(r)

∫ r

0

1√
us

dZsdr

+
ρ

2
√

1− ρ2e(t)

∫ t

0

e(r)√
ur

∫ r

0

1√
us

dZsdW (2)
r +

1

2e(t)

∫ t

0

e(r)√
ur

∫ r

0

1√
us

dZsdZr,

e(t) := exp

(
−γt− aκ2

8

∫ t

0

1

ur

dr +

√
aκ

2

∫ t

0

1√
ur

dW (2)
r

)
.

Sufficient conditions in order to obtain that E[
∫ t

0
u−3

s ds] < ∞ are 2γθ > 3κ2, see e.g.
Alós, Ewald [1].

Next, we describe the approximated version of the Malliavin-Thalmaier formula in the
transformed Heston model (1).

Corollary 3.1. Set F := (F1, F2) := (Xt, ut) for fixed t > 0. Assume that E[
∫ t

0
u−3

s ds] <
∞. For x = (x1, x2) ∈ R2, we have

ph
F (x) =

1

2π
E

[
2∑

i=1

Fi − xi

|F − x|2h
H(i)(F ; 1)

]
, (3)

where H(i)(F ; 1), i = 1, 2 is the same as Theorem 3.1.

We compare the density value obtained from the above calculation with the KDE
method. To implement this method we use the multidimensional Gaussian kernel with
equal bandwidth sizes. That is, for F := (F1, · · · , Fd) and x = (x1, ..., xd) ∈ Rd,

pF (x) ≈ 1

N

N∑
j=1

1

hd

d∏
i=1

1√
2π

exp

(
−(F

(j)
i − xi)

2

2h2

)
, (4)

where F
(j)
i , i = 1, ..., d, j = 1, ..., N is a sequence of r.v.’s, independent copies of Fi.

We also can estimate the density function through the Laplacian of the Poisson kernel.
That is, for x̂ ∈ Rd,

pF (x̂) = E [δ0 (F − x̂)] = E

[
d∑

i=1

∂2

∂x2
i

Q (F − x̂)

]
. (5)

If we simulate (5) directly, it is clear that the simulation will return either zero or an
error. Therefore we introduce the following approximation of (5); for h > 0,

ph
Poi (x̂) := E

[
d∑

i=1

∂2

∂x2
i

Qh
d (F − x̂)

]
. (6)
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Table 1. Parameters of the Heston model

parameter notation value

initial log stock price S0 100
(initial volatility)2 v0 0.1
scale parameter a 3
expected return µ 0.1

speed of mean reversion γ 2
long term mean θ 0.1

volatility of volatility process κ 0.2
correlation ρ -0.8
maturity t 1

time step size ∆t 1/50=0.02

3.2. Numerical Results of the Heston Model. In the numerical simulations, we
have used the parameters for the Heston model that appear in Table 1. Next, in order to
determine the value of h in (3) we use an optimal approximation-parameter size through
a pilot simulation for the approximated Malliavin-Thalmaier formula. For more details,
see Kohatsu-Higa, Yasuda [7]. Similarly, we use the same method to deduce the optimal
bandwidth sizes for the KDE method (see Kohatsu-Higa, Yasuda [8]).

We simulate the following quantities; (i). the approximated Malliavin-Thalmaier for-
mula with the optimal parameter size, (ii). the Malliavin-Thalmaier formula without
approximation, (iii). the KDE method with the Gaussian kernel and the optimal band-
width size, (iv). the KDE method on the Laplacian of the Poisson kernel with the opti-
mal bandwidth size and (v,vi). results of 108-times Monte-Carlo simulation through the
Malliavin-Thalmaier formula with and without approximation.

In Figure 1, we give the simulation results where the X-axis denotes the number of the
Monte-Carlo simulation and the Y-axis its density value. We can observe that the KDE
method with the Gaussian kernel swings wildly and the KDE method using the Laplacian
of the Poisson kernel has large bias-error. The approximated Malliavin-Thalmaier formula
is slightly stable, compared to the one without approximation.

Now we discuss the variance of the above methods in Figure 2. Obviously the KDE
method has quite large variance (most of values are out of the frame). The KDE method
using the Laplacian of the Poisson kernel and the Malliavin-Thalmaier formula without
approximation have similar variance values, which are more than twice of the value of the
associated variance for the approximated Malliavin-Thalmaier formula.

Note that the Malliavin-Thalmaier formula without approximation has some singular
points even if the number of the Monte-Carlo simulation is big enough (around 8.5× 105

times). So we can conclude that our proposal of approximation is better than the other
proposals.

At first, it may seem odd that the KDE method does so poorly in this case, as its
optimality is a well-known property in statistics. The main reason for this, is that the
application of an integration by parts formula changes the order of degeneracy of the
variance and therefore the KDE method becomes clearly suboptimal.

Remark 3.1. Here we did not simulate the density through the classical method in the
Malliavin calculus (see [11] or [12]). In Kohatsu-Higa, Yasuda [7], we gave a numerical
result of the joint-density in the case of two assets of the Black-Scholes model. Then
we obtained that the variance of the classical method was much larger than one of the
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Malliavin-Thalmaier formula. The Heston model has higher complexity than the Black-
Scholes model, so one can easily guess that the calculation will become extremely long and
that same conclusion will probably follow. Furthermore, the classical formula suffers from
the curse of dimensionality problem and therefore its use is limited. A similar comment
can be also applied to the PDE method.

3.3. The Double Volatility Heston Model. First we define the double volatility He-
ston Model [3] as follows;

dSt = µStdt +
√

vtStdW 1
t +

√
utStdW 2

t ,

dvt = γ(θ − vt)dt + κ
√

vtdB1
t ,

dut = α(β − ut)dt + τ
√

utdB2
t ,

where W 1
t ,W 2

t , B1
t , B

2
t are standard Wiener processes with E[W 1

t B1
t ] = ρ1t, E[W 2

t B2
t ] =

ρ2t (−1 ≤ ρ1, ρ2 ≤ 1) and W 1 tW 2, W 1 t B2, W 2 t B1, B1 t B2 and µ, γ, θ, κ, α, β, τ

are constants satisfying γθ ≥ κ2

2
and αβ ≥ τ2

2
(see [9]). Here t denotes independence.

Set Wiener processes Z1
t and Z2

t ; W 1
t = ρ1B

1
t +

√
1− ρ2

1Z
1
t , W 2

t = ρ2B
2
t +

√
1− ρ2

2Z
2
t ,

where B1 t Z1, B2 t Z2, Z1 t Z2. And set Xt := ln(St/S0)− µt, Vt := a1vt, Ut := a2ut,
where a1, a2 are positive constants. Then we have

dXt = −1

2

(
Vt

a1

+
Ut

a2

)
dt +

ρ1√
a1

√
VtdB1

t +

√
1− ρ2

1√
a1

√
VtdZ

1
t

+
ρ2√
a2

√
UtdB2

t +

√
1− ρ2

2√
a2

√
UtdZ

2
t ,

dVt = γ (a1θ − Vt) dt +
√

a1κ
√

VtdB1
t ,

dUt = α (a2β − Ut) dt +
√

a2τ
√

UtdB2
t .

Finally, we have the following joint-density expression of the transformed double volatil-
ity Heston model through the Malliavin-Thalmaier formula.

Theorem 3.2. Set F := (F1, F2, F3) := (Xt, Vt, Ut) for fixed t > 0. Assume that

E
[∫ t

0
U−3

s + V −3
s ds

]
< ∞. Then, for x = (x1, x2, x3) ∈ R3, we have that

pF (x) :=
1

4π
E

[
3∑

i=1

Fi − xi

|F − x|3H(i)(F ; 1)

]
,

where expressions for H(i)(F ; 1), i = 1, 2, 3, are given in the Appendix.

As in the Heston model, a sufficient condition of E[
∫ t

0
U−3

s + V −3
s ds] < ∞ is 2γθ > 3κ2

and 2αβ > 3τ 2.
Then the approximated version is as follows;

Corollary 3.2. Set F := (F1, F2, F3) := (Xt, Vt, Ut) for fixed t > 0. Assume that

E
[∫ t

0
U−3

s + V −3
s ds

]
< ∞. For x = (x1, x2, x3) ∈ R3,

ph
F (x) =

1

4π
E

[
3∑

i=1

Fi − xi

|F − x|3h
H(i)(F ; 1)

]
,

where H(i)(F ; 1), i = 1, 2, 3, is the same as Theorem 3.2.
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Table 2. Parameters of the double volatility Heston model

parameter notation value

correlations (ρ1, ρ2) (0.2,-0.15)
scale parameters (a1, a2) (1,1)

speed of mean reversion (γ, α) (2,1.5)
long term mean (θ, β) (0.2,0.15)

volatility of volatility process (κ, τ) (0.2,0.15)
initial value of volatility process (V0, U0) (0.2,0.15)

initial log stock price X0 100
maturity t 1

time step size ∆t 1/200=0.005

3.4. Numerical Results of the Double Volatility Heston Model. We use the pa-
rameters for the double volatility Heston model in Table 2.

Here we simulate the double volatility Heston model by using the same methods as
in the Heston model. Furthermore, we obtain the optimal approximation-parameter and
bandwidth size through a pilot simulation.

Figure 3 gives a the simulation results. The KDE method with the Gaussian kernel
moves wildly and the KDE method based on the Laplacian of the Poisson kernel has a
large bias-error. The approximated Malliavin-Thalmaier formula is slightly more stable
than the one without approximation.

Figure 4 shows the variance of the methods used in the simulation. The KDE method
with the Gaussian kernel has a comparatively large variance and is mainly out of the
frame of the graph. The KDE method on the Laplacian of the Poisson kernel and the
Malliavin-Thalmaier formula without approximation have larger variances than one with
approximation.

We also observe some points where the Malliavin-Thalmaier formula without approxi-
mation spikes due to the large variance. Clearly, the approximated version improves this
aspect and has stability.

4. Greeks Calculation. In this section, we apply the Malliavin-Thalmaier formula to
calculate Greeks in finance. A Greek is a sensitivity of an option price and an important
risk index for derivative traders in banks and security companies.

4.1. Settings and Expressions of Greeks. First we give the 2-dimensional Black-
Scholes model,

dS
(1)
t = µ1S

(1)
t dt + v1S

(1)
t dW

(1)
t ,

dS
(2)
t = µ2S

(2)
t dt + v2S

(2)
t

(
ρdW

(1)
t +

√
1− ρ2dW

(2)
t

)
,

where W
(1)
t and W

(2)
t are independent Wiener processes, and µ1, µ2, v1, v2, ρ are constants.

Now we consider the following Digital put option;

p
(
S

(1)
0 , S

(2)
0 , v1, v2, ρ

)
:= EQ

[
e−rt1

(
S

(1)
t ≤ K1

)
1

(
S

(2)
t ≤ K2

)]
, (7)

where K1, K2, r are positive constants and EQ is an expectation with respect to a risk
neutral measure Q. Without loss of generality, we assume r = 0. We calculate Delta

which is a sensitivity w.r.t. S
(1)
t , Vega which is a sensitivity w.r.t. v1 and Kappa which is



10 A. KOHATSU-HIGA AND K. YASUDA

 55

 60

 65

 70

 75

 80

 85

 0  100000  200000  300000  400000  500000  600000  700000  800000  900000  1e+006

D
en

si
ty

 v
al

ue

Number of Monte-Carlo simulation

Num. of Monte-Carlo -- Density value of the double vola. Heston model

MT formula with optimal h
MT formula without h

MT formula without h (mc=10^8)
MT formula with optimal h (mc=10^8)

Gaussian KDE with optimal h
KDE on Laplacian of Poisson kernel with optimal h

Figure 3. Density estimates for double volatility Heston model
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a sensitivity w.r.t. ρ, of (7), that is,

dp

dS
(1)
0

,
dp

dv1

and
dp

dρ
.

Kohatsu-Higa, Yasuda [6] gave a new expression of Greeks by using the Malliavin-
Thalmaier formula. In the present case, (7), we have the following expressions

Theorem 4.1. For x, y ∈ R, set

g1,1(x, y) :=
1

2π

{
arctan

y

x
− arctan

y −K2

x
− arctan

y

x−K1

+ arctan
y −K2

x−K1

}
,

g1,2(x, y) = g2,1(x, y) :=
1

4π
ln

(
(x2 + y2)((x−K1)

2 + (y −K2)
2)

((x−K1)2 + y2)(x2 + (y −K2)2)

)
,

g2,2(x, y) :=
1

2π

{
arctan

x

y
− arctan

x−K1

y
− arctan

x

y −K2

+ arctan
x−K1

y −K2

}
.

(i). The Delta in the first stock S
(1)
t is given as follows;

dp

dS
(1)
0

= EQ

[
g1,1

(
S

(1)
t , S

(2)
t

)
H(1)

(
S

(1)
t , S

(2)
t ;

∂S
(1)
t

∂S
(1)
0

)]

+EQ

[
g2,1

(
S

(1)
t , S

(2)
t

)
H(2)

(
S

(1)
t , S

(2)
t ;

∂S
(1)
t

∂S
(1)
0

)]
,

where set

H(1)

(
S

(1)
t , S

(2)
t ;

∂S
(1)
t

∂S
(1)
0

)
:=

W
(1)
t

v1tS
(1)
0

− ρW
(2)
t√

1− ρ2v1tS
(1)
0

,

H(2)

(
S

(1)
t , S

(2)
t ;

∂S
(1)
t

∂S
(1)
0

)
:=

S
(1)
t

S
(1)
0 S

(2)
t

(
W

(2)
t√

1− ρ2v2t
+ 1

)
.

(ii). The Vega in the first volatility v1 is given as follows;

dp

dv1

= EQ

[
g1,1

(
S

(1)
t , S

(2)
t

)
H(1)

(
S

(1)
t , S

(2)
t ;

∂S
(1)
t

∂v1

)]

+EQ

[
g2,1

(
S

(1)
t , S

(2)
t

)
H(2)

(
S

(1)
t , S

(2)
t ;

∂S
(1)
t

∂v1

)]
,

where

H(1)

(
S

(1)
t , S

(2)
t ;

∂S
(1)
t

∂v1

)
:=

(W
(1)
t )2

v1t
− 1

v1

−W
(1)
t − ρ√

1− ρ2v1t

(
W

(1)
t − v1t

)
W

(2)
t ,

H(2)

(
S

(1)
t , S

(2)
t ;

∂S
(1)
t

∂v1

)
:=

S
(1)
t√

1− ρ2v2tS
(2)
t

(
W

(1)
t − v1t

)(
W

(2)
t +

√
1− ρ2v2t

)
.

(iii). The Kappa is given as follows;

dp

dρ
= EQ

[
g1,2

(
S

(1)
t , S

(2)
t

)
H(1)

(
S

(1)
t , S

(2)
t ;

∂S
(1)
t

∂ρ

)]

+EQ

[
g2,2

(
S

(1)
t , S

(2)
t

)
H(1)

(
S

(1)
t , S

(2)
t ;

∂S
(1)
t

∂ρ

)]
,



12 A. KOHATSU-HIGA AND K. YASUDA

where

H(1)

(
S

(1)
t , S

(2)
t ;

∂S
(1)
t

∂ρ

)

:=
v2S

(2)
t

v1tS
(1)
t

{(
W

(1)
t

)2

− ρv2tW
(1)
t − t + v1tW

(1)
t − ρW

(2)
t√

1− ρ2

[
W

(1)
t − ρv2t + v1t

]

− ρ√
1− ρ2

(
W

(1)
t W

(2)
t −

√
1− ρ2v2tW

(1)
t − ρ(W

(2)
t )2

√
1− ρ2

+ ρv2tW
(2)
t +

ρt√
1− ρ2

)}
,

H(2)

(
S

(1)
t , S

(2)
t ;

∂S
(1)
t

∂ρ

)
:=

W
(1)
t W

(2)
t√

1− ρ2t
− ρ

t(1− ρ2)

((
W

(2)
t

)2

− t

)
.

Proof: We can derive these Malliavin weights through arguments using Malliavin cal-
culus. ¤

4.2. Numerical Results of Calculation of Greeks. We use the parameters that ap-
pear in Figure 5. Here we compare the results of Theorem 4.1 with the finite central
difference (FD) method and the classical method by Forunié et al. [4]. Then we give

simulation results of Delta w.r.t. the first stock S
(1)
t , Vega w.r.t. the first volatility v1 and

Kappa of the above option.
In Figure 6, we compare Delta and Variance computed using these three methods. The

Delta value computed with any of the above three methods look similar at a first glance.
But once we look at the Variance, we find that variance of the FD method is much larger
than the other methods and the variance of the method by Fournié et al. is more than
triple the one by the Malliavin-Thalmaier formula method.

We compare Vega and Variance in Figure 7 and Kappa and Variance in Figure 8 using
the above three methods. Then their Delta results are close to each other. In Figure 8,
variance of the FD method is extremely large and completely out of the frame.

5. Conclusions. In this paper, we gave expressions that allow Monte Carlo simulation of
the joint-density of the stock price and its volatility in the Heston and the double volatil-
ity Heston model by using the Malliavin-Thalmaier formula. Then through numerical
experiments, we found that the approximated Malliavin-Thalmaier formula, which had
been introduced in Kohatsu-Higa, Yasuda [6], have the smallest variance in comparison
with other methods applied in the financial industry. Next we applied the Malliavin-
Thalmaier formula for the calculation of Greeks. We found that this new method has
smaller variance than the method by Fournié et al. [4].
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Appendix. Here we give explicit expressions for H(i)(F ; 1), i = 1, 2, 3, in the double
volatility Heston model. For j = 1, 2,

H(1)(F ; 1) :=

√
a1a2

t

∫ t

0

dZ1
s + dZ2

s√
a2(1− ρ2

1)Vs +
√

a1(1− ρ2
2)Us

,

H(2)(F ; 1) := A−B1 −B2,

A :=
1

eV (t)t

{
1√
a1κ

∫ t

0

eV (s)√
Vs

dB1
s +

1

2

∫ t

0

eV (s)

Vs

ds

+
a1κ

2

8

∫ t

0

s
eV (s)

V 2
s

ds−
√

a1κ

4

∫ t

0

s
eV (s)

V
3
2

s

dB1
s

}
,

Bj :=

√
a2

eV (t)t

{
ρ1√
a1κ

∫ t

0

eV (s)dZj
s√

a2(1− ρ2
1)Vs +

√
a1(1− ρ2

2)Us

− 1

2
√

a1

∫ t

0

eV (r)

∫ r

0

dZj
sdr√

a2(1− ρ2
1)Vs +

√
a1(1− ρ2

2)Us

+
1

2

∫ t

0

eV (r)√
Vr

∫ r

0

dZj
s(ρ1dB1

r +
√

1− ρ2
1dZ

1
r )√

a2(1− ρ2
1)Vs +

√
a1(1− ρ2

2)Us

}
,

eV (t) := exp

(
−γt− a1κ

2

8

∫ t

0

1

Vs

ds +

√
a1κ

2

∫ t

0

1√
Vs

dB1
s

)
,

H(3)(F ; 1) := C −D1 −D2,

C :=
1

eU(t)t

{
1√
a2τ

∫ t

0

eU(s)√
Us

dB2
s +

1

2

∫ t

0

eU(s)

Us

ds

+
a2τ

2

8

∫ t

0

s
eU(s)

U2
s

ds−
√

a2τ

4

∫ t

0

s
eU(s)

U
3
2
2

dB2
s

}
,

Dj :=

√
a1

eU(t)t

{
ρ2√
a2

∫ t

0

eU(s)dZj
s√

a2(1− ρ2
1)Vs +

√
a1(1− ρ2

2)Us

− 1

2
√

a2

∫ t

0

eU(r)

∫ r

0

dZj
sdr√

a2(1− ρ2
1)Vs +

√
a1(1− ρ2

2)Us

+
1

2

∫ t

0

eU(r)√
Ur

∫ r

0

dZj
s(ρ2dB2

r + dZ2
r )√

a2(1− ρ2
1)Vs +

√
a1(1− ρ2

2)Us

}
,

eU(t) := exp

(
−αt− a2τ

2

8

∫ t

0

1

Us

ds +

√
a2τ

2

∫ t

0

1√
Us

dB2
s

)
.


