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A Review of Recent Results on Approximation
of Solutions of Stochastic Differential Equations
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Abstract. In this article, we give a brief review of some recent results concern-
ing the study of the Euler-Maruyama scheme and its high-order extensions.
These numerical schemes are used to approximate solutions of stochastic dif-
ferential equations, which enables to approximate various important quan-
tities including solutions of partial differential equations. Some have been
implemented in Premia [56]. In this article we mainly consider results about
weak approximation, the most important for financial applications.
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1. Introduction

The Euler-Maruyama scheme is a simple and natural approximation method for
the solution of various types of stochastic differential equations. It helps not only to
simulate the solutions of stochastic equations but it also serves theoretical purposes
(see, e.g., the articles of E. Gobet [18, 19] on the local asymptotic mixed normality
(LAMN) property in statistics).

To introduce this notion consider the stochastic differential equation

X(t) = x +
∫ t

0

b(X(s))ds +
r∑

j=1

∫ t

0

σj(X(s))dZj(s), (1)

where b, σi : R
d → R

d, i = 1, . . . , r, are Lipschitz coefficients and Z = (Z1, . . . , Zr)
is an r-dimensional Wiener process.

For a partition of the interval [0, T ] denoted as π : 0 = t0 < · · · < tn = T ,
we define the norm of the partition as ‖π‖ = max{ti+1 − ti; i = 0, . . . , n − 1}



142 B. Jourdain and A. Kohatsu-Higa

and η(t) = sup{ti; ti ≤ t} the last discretization time before t. Then the Euler-
Maruyama scheme is defined inductively by

∀t ∈ [ti, ti+1], Xπ(t) = Xπ(ti)+ b(Xπ(ti))(t− ti)+
r∑

j=1

σj(Xπ(ti))(Zj(t)−Zj(ti)).

The simplicity and the generality of the possible applications are the main attrac-
tions of this scheme. In practice, one only needs to simulate the Brownian incre-
ments (Z(ti+1)−Z(ti))0≤i≤n−1 in order to compute (Xπ(t1), Xπ(t2), . . . , Xπ(tn)).
Let us first mention the strong convergence rate result.

Theorem 1. Under the above assumptions

∀p ≥ 1, E

[
sup
t≤T

‖X(t) − Xπ(t)‖2p

]
≤ C ‖π‖p

where the constant C depends on p, T , x and the Lipschitz constants.

The proof of this result is standard and essentially goes through the same
methodology used to prove existence of solutions to (1). This result can also be
generalized to various equations without changing the essential ideas.

In this paper, we are mainly interested in analyzing different error terms
which involve a test function. The corresponding results are called weak conver-
gence results. Section two deals with weak convergence for the Euler scheme. In
case the partition is uniform (ti = iT

n ), denoting the Euler scheme by Xn in-
stead of Xπ, we first state the convergence in law of the normalized error process√

n(X − Xn) to a process χ which writes as a stochastic integral with respect
to a Brownian motion independent from Z. More precisely, for any continuous
and bounded function F on the space of continuous paths, E (F (

√
n(X − Xn)))

converges to E (F (χ)) as n → +∞.
Analysis of the weak error E (f(X(T )))−E (f(Xn(T ))) turns out to be more

important for applications: for instance, the price of a European option with payoff
function f and maturity T written on an underlying evolving according to (1) un-
der the risk-neutral measure writes E(e−rT f(X(T ))) where r denotes the risk-free
rate. In [60], Talay and Tubaro prove that this difference can be expanded in powers
of 1

n . This justifies the use of Romberg-Richardson extrapolations in order to speed-
up the convergence: for instance E (f(X(T ))) − E

(
2f(X2n(T )) − f(Xn(T ))

)
=

O( 1
n2 ) (see Pagès [53] for a recent study devoted to the numerical implementa-

tion of these extrapolations). The proof given by Talay and Tubaro relies on the
Feynman-Kac partial differential equation associated with (1). Here, we present
another methodology introduced in [33] and based on the integration by parts
formula of Malliavin calculus. In [10], a general framework relying on the study of
the linear stochastic equation satisfied by the error process X − Xn is presented.
This new methodology enables to deal with a great variety of equations including
some which seem beyond the scope of the former PDE approach. We illustrate this
latter point on the example of stochastic differential equations with delay.
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The third section is devoted to a method of exact (in law) simulation of (1)
recently introduced by [4, 5] in the one-dimensional case r = d = 1. Then, for a
smooth diffusion coefficient σ which does not vanish, one can make a change of
variables which transforms (1) into a SDE with diffusion coefficient constant and
equal to one. Under a new probability measure given by Girsanov theorem, the
original Brownian motion Z solves the latter SDE. The exponential factor giving
the change of probability measure is then simulated by a rejection/acceptation
technique involving a Poisson point process.

It is possible to obtain schemes with convergence order higher than the one
of the Euler scheme by keeping more terms in the stochastic Taylor expansion of
the solution of the SDE. Section four deals with such schemes. We first introduce
Stratonovitch stochastic integrals in order to write nice Taylor expansions. Then,
on the example of the Milshtein scheme, we illustrate the difficulty to simulate
the iterated Brownian integrals which appear in the expansions and therefore to
implement schemes with high-order of strong convergence. Recently, to overcome
this difficulty, Kusuoka [40, 41] proposed to replace these iterated Brownian in-
tegrals by random variables with the same moments up to a given order. This
leads to schemes with high order of weak convergence. These schemes and their
application in finance are currently the subject of a consequent research activity:
[42, 47, 48, 50, 17].

The last section adresses extensions of the results presented previously. The
case where instead of Z we have a Lévy process, Z, is first considered. Discretiza-
tion of reflecting stochastic differential equations is also discussed.

2. Weak errors: from Jacod-Kurtz-Protter to Milshtein-Talay

If one is trying to approach the problem of weak convergence of the error process
then the first natural approach is to study the weak convergence of the process

√
n (X(t) − Xn(t)) .

This is done in a series of articles by Jacod, Kurtz and Protter (e.g., see Section
5 in [39]). To simplify the ideas suppose that we are dealing with the Wiener case
in one dimension (r = 1), b ≡ 0 and that the partition is uniform: ti = iT

n . Since
the process Xn solves

Xn(t) = x +
∫ t

0

σ(Xn(η(s)))dZ(s),

we have that

X(t) − Xn(t) =
∫ t

0

σn
1 (s) (X(s) − Xn(s)) dZ(s)

+
∫ t

0

σn
2 (s) (Z(s) − Z(η(s))) dZ(s) (2)
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where

σn
1 (s) =

∫ 1

0

σ′(αX(s) + (1 − α)Xn(s))dα

σn
2 (s) =

∫ 1

0

σ′(αXn(s) + (1 − α)Xn(η(s)))dασ(Xn(η(s))).

Given the strong convergence result and assuming smoothness of σ, one has that
σn

1 and σn
2 converge in the Lp(C[0, T ], R)-norm to

σ1(s) = σ′(X(s))

σ2(s) = σ′σ(X(s)).

Solving (2), we obtain that

X(t) − Xn(t) = En(t)
∫ t

0

En(s)−1σn
2 (s) (Z(s) − Z(η(s))) dZ(s)

− En(t)
∫ t

0

En(s)−1σn
1 σn

2 (s) (Z(s) − Z(η(s))) ds,

where

En(t) = exp
(∫ t

0

σn
1 (s)dZ(s) − 1

2

∫ t

0

(σn
1 (s))2 ds

)
(3)

is the Doleans-Dade exponential, solution of the linear equation

En(t) = 1 +
∫ t

0

σn
1 (s)En(s)dZ(s).

Now consider the process
√

n

∫ t

0

(Z(s) − Z(η(s))) dZ(s)

=
√

n

2




j(t)−1∑
i=0

(Z(ti+1) − Z(ti))2 + (Z(t) − Z(η(t)))2 − t


 ,

where tj(t) = η(t). Then using Donsker’s theorem (see, e.g., Billingsley [6] p. 68)
we have that √

n

∫ ·

0

(Z(s) − Z(η(s))) dZ(s) =⇒ Z ′

where
√

2
T Z ′ is a Wiener process independent of Z. Furthermore if we consider

〈
Z,

√
n

∫ ·

0

(Z(s) − Z(η(s))) dZ(s)
〉

t

=
√

n

∫ t

0

(Z(s) − Z(η(s))) ds

we have that this quadratic covariation converges to 0 in L2. This points to the
following convergence(

Z,
√

n

∫ ·

0

(Z(s) − Z(η(s))) dZ(s)
)

=⇒ (Z, Z ′)
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where Z and
√

2
T Z ′ are two independent Wiener processes. Therefore one can

hint at the following result

√
n (X(t) − Xn(t)) =⇒ E(t)

∫ t

0

E(s)−1σ2(s)dZ ′(s),

where

E(t) = exp
(∫ t

0

σ1(s)dZ(s) − 1
2

∫ t

0

(σ1(s))
2 ds

)

and (Z,
√

2
T Z ′) is a two-dimensional Wiener process.

This result in a variety of forms and generalizations has been extensively
proved by Jacod, Kurtz and Protter.

In particular, from this result one obtains that for any continuous bounded
functional F in C[0, T ] one has that E [F (

√
n (X − Xn))] converges to ⇐= disp

E

[
F

(
E(·)

∫ ·

0

E(s)−1σ2(s)dZ ′(s)
)]

.

On one hand these results give more detail about the limit law of the error process.
Nevertheless, this does not give full information about the rate of convergence of
various other functionals such as E(X(t)p)−E(Xn(t)p), pX(t)(x)−pXn(t)(x) where
p stands for the density function.

For this reason other efforts have been directed into extending the type of
convergence into stronger topologies than the one given by weak convergence of
processes. In [29], the authors prove that for any continuous bounded functional
F and any bounded real variable Y we have that

E
[
Y F

(√
n (X − Xn)

)]→ E

[
Y F

(
E(·)

∫ ·

0

E(s)−1σ2(s)dZ ′(s)
)]

.

This type of convergence is called stable convergence in law. It is worth noting
that if Y is restricted to a subfiltration this concept also allows the study of the
convergence of the conditional expectation of the error process. This type of results
are promising but still it does not allow the analysis of the convergence of quantities
like the ones mentioned before.

In order to analyze this problem, there is another “parallel” theory called
weak approximation that deals particularly with the error

E [f(X) − f(Xn)] .

The state of the art of this problem is more advanced than the one given previously
by the theory of Jacod-Kurtz-Protter. In fact one is able to deal with non bounded,
non continuous and even Schwartz distribution functions f (see Guyon [24]). On
the other hand one is not able to give precise information on the distribution of
the limit error. Just to explain in simple terms the ideas behind this approach,
let’s explain in simple terms a complex result due to Bally and Talay [2, 3].
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To clarify the methodology, we consider a real diffusion process (that is Z is
a one-dimensional Wiener process)

X(t) = x +
∫ t

0

σ(X(s))dZ(s), t ∈ [0, T ],

and its Euler approximation

Xn(t) = x +
∫ t

0

σ(Xn(η(s)))dZ(s), t ∈ [0, T ],

where η(s) = kT/n for kT/n ≤ s < (k + 1)T/n. The error process Y = X − Xn

solves

Y (t) =
∫ t

0

(σ(X(s)) − σ(Xn(η(s))))dZ(s)

=
∫ t

0

∫ 1

0

σ′(aX(s) + (1 − a)Xn(η(s)))da(X(s) − Xn(η(s)))dZ(s),

this can be written

Y (t) =
∫ t

0

σn
1 (s)Y (s)dZ(s) + G(t), 0 ≤ t ≤ T,

with

σn
1 (s) =

∫ 1

0

σ′(aX(s) + (1 − a)Xn(η(s)))da

G(t) =
∫ t

0

σn
1 (s)(Xn(s) − Xn(η(s)))dZ(s)

=
∫ t

0

σn
1 (s)σ(Xn(η(s)))(Z(s) − Z(η(s)))dZ(s).

In this simple case we have an explicit expression for Yt,

Y (t) = En(t)
∫ t

0

En(s)−1(dG(s) − σn
1 (s)d 〈G, Z〉s)

where En(t) is given by (3). Finally we obtain

Y (t) = En(t)
∫ t

0

En(s)−1σ1(s)σ(Xn(η(s)))(Z(s) − Z(η(s)))dZ(s)

− En(t)
∫ t

0

E(s)−1σn
1 (s)2σ(Xn(η(s)))(Z(s) − Z(η(s)))ds.

Now let f be a smooth function with possibly polynomial growth at infinity. We
are interested in obtaining the rate of convergence of Ef(X(T )) to Ef(Xn(T )).
We first write the difference

Ef(X(T )) − Ef(Xn(T )) = E

[∫ 1

0

f ′(aXT + (1 − a)Xn(t))daY (T )
]

.
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Replacing Y (T ) by its expression, we obtain with the additional notation ⇐= disp

Fn =
∫ 1

0

f ′(aX(T ) + (1 − a)Xn(T ))da,

Ef(X(T ))− Ef(Xn(T ))

= E

[
FnEn(T )

∫ T

0

En(s)−1σn
1 (s)σ(Xn(η(s)))(Z(s) − Z(η(s)))dZ(s)

]

− E

[
FnEn(T )

∫ T

0

En(s)−1σn
1 (s)2σ(Xn(η(s)))(Z(s) − Z(η(s)))ds

]
. (4)

Applying the duality formula for stochastic integrals (E[〈DF, u〉L2[0,T ]] = E[Fδ(u)]
see [51]) where D stands for the stochastic derivative and δ stands for the adjoint
of the stochastic derivative, this gives

Ef(X(T )) −Ef(Xn(T ))

= E

[∫ T

0

Ds(FnEn(T ))En(s)−1σn
1 (s)σ(Xn(η(s)))(Z(s) − Z(η(s)))ds

]

− E

[
FnEn(T )

∫ T

0

En(s)−1σn
1 (s)2σ(Xn(η(s)))(Z(s) − Z(η(s)))

]
.

Consequently, the differenceEf(X(T ))−Ef(Xn(T )) has the simple expression

Ef(X(T )) −Ef(Xn(T )) =E

[∫ T

0

Un(s)(Z(s) − Z(η(s)))ds

]
,

with

Un(s) = (Ds(FnEn(T )) − FnEn(T )σ1(s))(En(s)−1σn
1 (s)σ(Xn(η(s)))).

We finally obtain the rate of convergence by applying once more the duality for
stochastic integrals

Ef(XT ) −Ef(Xn
T ) =E

[∫ T

0

∫ s

η(s)

DuUn(s)duds

]
.

This last formula ensures that |Ef(X(T ))−Ef(Xn(T ))| ≤ CT/n and leads to an
expansion ofEf(X(T ))−Ef(Xn(T )) with some additional work. Furthermore the
above argument extends easily in the case that f is an irregular function through
the use of the integration by parts formula of Malliavin Calculus.

In other stochastic equations, one cannot explicitly solve the stochastic lin-
ear equation satisfied by Y , but in a recent article [10], one can find a general
framework that allows treating a great variety of equations. As example we have
developed the case of delay equations. The idea explained above appeared for the
first time at some workshop proceedings (in [33]) and later was used by various
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authors (see [20, 22, 21]) to prove weak approximations errors in other contexts
such as the Zakai equation or backward stochastic differential equations.

In fact, the first time this argument appeared in [33], it was just considered
as an alternative argument to prove the classical results of weak approximation
of Milshtein [43] which are usually obtained through a PDE method. Later it
has been shown that in fact this new approach can go beyond the classical proof
method. To explain this with a concrete example, we will briefly describe the
problem with delay equations which is solved in [10]. Notice that such equations
have been introduced in finance by Rogers and Hobson [25] in order to propose a
complete model with stochastic volatility. In few words the problem with the Euler
approximation for delay equations is that if one tries to use the Milshtein method
one gets into infinite-dimensional problems quite rapidly and therefore the degree
of generalization is quite limited. In fact, consider (see the article of Buckwar and
Shardlow [8]) the following one-dimensional delay equation

dX(t) =
(∫ 0

−τ

X(t + s)dm(s) + b(X(t))
)

dt + σ(X(t))dZ(t)

where m is a deterministic finite measure on the interval [−τ, 0] and the initial
conditions are X(s) = x(s) for s ∈ [−τ, 0].

Consider the integral operator A

Ax(t) =
∫ 0

−τ

x(t + s)dm(s).

Then using classical theory of stochastic differential equations in infinite dimen-
sions (an extension of the variation of constants method, see Da Prato-Zabczyk)
one obtains

X(t) = S(t)x +
∫ t

0

S(t − s)b(X(s))ds +
∫ t

0

S(t − s)σ(X(s))dZ(s)

where S is the semigroup associated with the linear first term in the equation
for X .

The natural definition of the Euler scheme is obviously obtained by discretiza-
tion of the integral in the drift term. That is,

Xn(ti+1) = Xn(ti) +
m∑

j=0

X(ti + sj)m(sj , sj+1]

+ b(Xn(ti))(ti+1 − ti) + σ(Xn(ti))(Z(ti+1) − Z(ti))

where sj is a partition of the interval [−τ, 0] such that ti + sj = tl for some l ≤ i.
Similarly, one finds that Xn is generated using instead of S the Yoshida

approximations to this semigroup. That is the semigroup Sn associated with

Anx(t) =
m∑

j=0

x(t + sj)(m(sj+1) − m(sj)).
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Then, as when n tends to infinity Anx −→ Ax and Snx −→ Sx, one expects the
strong convergence of the Euler scheme. In order to study the weak errors one has
to go further and define the solution of the partial differential equation associated
with this problem:

ut(t, y) =
1
2
ux0x0(t, y)σ(x0)2 + ux(t, y)Ax + ux0(t, y)b(x0)

where x(0) = x0 for y = (x0, x) ∈ R × L2[−τ, 0]. The (non-trivial) argument is
then similar to the classical Milshtein argument.

Nevertheless, it is also clear from the above set-up that this approach has its
limitations. For example, one cannot suppose that there is also a continuous delay
in the diffusion coefficient or that the delay term is non-linear.

In comparison, using the method explained previously, one obtains the fol-
lowing result:

Let (Xt)t∈[0,T ] be the solution stochastic delay equation:



dXt = σ

(∫ 0

−τ

Xt+sdν(s)
)

dZt + b

(∫ 0

−τ

Xt+sdν(s)
)

dt

Xs = ξs, s ∈ [−τ, 0],

where τ > 0, ξ ∈ C([−τ, 0], IR) and ν is a finite measure.
We consider the Euler approximation of (Xt) with step h = τ/n



dXn
t = σ

(∫ 0

−τ

Xn
η(t)+η(s)dν(s)

)
dZt + b

(∫ 0

−τ

Xn
η(t)+η(s)dν(s)

)
dt

Xn
s = ξs, s ∈ [−τ, 0],

with η(s) = [ns/τ ]
n/τ , where [t] stands for the entire part of t. We assume that the

functions f , σ and b are C3
b . Then we obtain that

Ef(XT ) − Ef(Xn
T ) = hCf + Ih(f) + o(h) (5)

where Cf = C(U0) and Ih(f) = Ih(U0) are defined in [10]. In particular |Ih(f)| ≤
Ch and

U0
s = σ′

(∫ 0

−r

Xs+udν(u)
)

Dsf
′(XT ) + b′

(∫ 0

−r

Xs+udν(u)
)

f ′(XT )

+ σ′
(∫ 0

−r

Xs+udν(u)
)

Ds

(∫ T

0

θtdt

)
+ b′

(∫ 0

−r

Xs+udν(u)
)∫ T

s

θtdt

and θ is the unique solution of

θt = α∗
(

J

(
f ′(XT ) +

∫ T

0

θsds

))
(t) + β∗

(
E

(
f ′(XT ) +

∫ T

.

θsds|F.

))
(t)
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with

α∗(X)(t) = E

(∫ 0

max(t−T,−r)

σ′
(∫ 0

−r

Xt−u+vdν(v)
)

Xt−udν(u)|Ft

)

β∗(X)(t) = E

(∫ 0

max(t−T,−r)

b′
(∫ 0

−r

Xt−u+vdν(v)
)

Xt−udν(u)|Ft

)
.

The above-quoted result (5) is an expansion of the error. This result is used
in order to increase the rate of convergence of the method using the Romberg
extrapolation (see [60] for details in the diffusion case). That is, if Ef(XT ) −
Ef(Xn

T ) = hCf + o(h). Then if we define Y = 2f(Xn
T ) − f(Xn/2

T ) one obviously
obtains that Ef(XT )−EY = o(h) therefore increasing the rate of convergence of
the method. In order to know exactly what has been gained, it is also important to
obtain the order of the term o(h) in (5). This can be done using the same method
but through tedious work obtaining that in fact, Ef(XT )−Ef(Xn

T ) = hCf +O(h2)
under enough smoothness conditions on σ and b. In the diffusion case, Pagès [53]
addresses variance issues in the context of multi-step Romberg extrapolation.

3. An exact simulation method for one-dimensional
elliptic diffusions

Recently in two articles by Beskos et al. [4, 5], an interesting exact method of
simulation in dimension one has been introduced. Consider the one-dimensional
diffusion

X(t) = x +
∫ t

0

b(X(s))ds +
∫ t

0

σ(X(s))dZ(s)

where σ(x) ≥ c > 0 for any x ∈ R and σ ∈ C1(R). Then perform the change
of variables Yt = η(Xt) where η(z) =

∫ z

x
1

σ(u)du. By Itô’s formula, Y satisfies the
following sde:

Y (t) =
∫ t

0

α(Y (s))ds + Z(t)

where α(y)= b
σ (η−1(y))− σ′

2 (η−1(y)). Suppose that we want to compute E(f(XT )).
Then using Girsanov’s theorem we have that

E(f(XT )) = E

[
f(BT ) exp

(∫ T

0

α(Bs)dBs − 1
2

∫ T

0

α(Bt)2dt

)]
(6)

where B is another Wiener process and here we assume that α is bounded. This
idea is usually found when one proves existence of weak solutions for stochastic
differential equations.



Approximation of Solutions of Stochastic Differential Equations 151

Next, one defines the function A(u) =
∫ u

0
α(y)dy. With this definition we

have, applying Itô’s formula, that

A(BT ) =
∫ T

0

α(Bs)dBs +
1
2

∫ T

0

α′(Bs)ds.

Therefore

Ef(XT ) = E

[
f(BT ) exp

(
A(BT ) − 1

2

∫ T

0

(
α(Bt)2 + α′(Bt)

)
dt

)]
.

If one was to simulate the above quantity, one would need the whole path of
the Wiener process B. In fact this is done in a series of papers by Detemple et al.
[14, 15, 16] where the Doss-Sussman formula is used to improve the approximation
and obtain a scheme which is of strong order one. Instead, Beskos et al. [5] propose
to use a Poisson process to simulate the exponential in the above expression. In
fact, one assumes that φ(x) = 1

2

(
α(x)2 + α′(x)

)
is such that ∀x ∈ R, 0 ≤ φ(x) ≤

M and introduces a Poisson point process N with intensity ds×du on [0, T ]×[0, M ],
independent of B. For any Borel subset S of [0, T ] × [0, M ], N(S) is a Poisson
random variable with parameter the Lebesgue measure of S. Hence, the random
variable N1 = N({(s, u) ∈ [0, T ]× [0, M ] : 0 ≤ u ≤ φ(B(s))}) is such that

P (N1 = 0|B) = exp

(
−
∫ T

0

φ(Bs)ds

)
.

The simulation scheme follows from the equality

E(f(XT )) = E
[
f(BT ) exp (A(BT ))E(1{N1=0}|B)

]
= E

[
f(BT ) exp (A(BT )) 1{N1=0}

]
.

How is the simulation done? First one simulates independent exponential random
variables with parameter M say X1, . . . , Xν until

∑ν
i=1 Xi > T . Then one simu-

lates independent random variable Ui, . . . , Uν−1 uniformly distributed on the inter-
val [0, M ]. The resulting point process N =

∑ν−1
i=1 δ(X1+···+Xi,Ui) on [0, T ]× [0, M ]

is Poisson with intensity ds × du. Now one simulates the independent increments
B(X1), B(X1 + X2) − B(X1), . . . , B(T ) − B(

∑ν−1
i=1 Xi) of the Brownian motion

and computes N1 =
∑ν−1

i=1 1{Ui≤B(X1+···+Xi)}.
Obviously there are various issues that have not been considered in this short

introduction which rest as open problems or that had already been treated by the
authors. Also as it was well known before, the one-dimensional case always per-
mits various reductions that do not happen in higher dimensions. For instance, in
higher dimensions, the so-called Doss transformation which permits to obtain a
SDE with a constant diffusion coefficient is only possible when σ satisfies a restric-
tive commutativity condition. Notice that under that condition, the discretization
scheme obtained by applying the Euler scheme to the SDE with constant diffusion
coefficient and making the inverse change of variables is of strong order one (see
[14]). Moreover, in higher dimensions the replacement of the stochastic integral
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in (6) by a standard integral thanks to Itô’s formula is only possible when α is a
gradient function.

Nevertheless, the one-dimensional case always remains as a testing ground
for new methodology as it was proven by our recent development in Section 2. And
an exact Monte Carlo method for the pricing of Asian options in the Black-Scholes
model inspired by the above ideas will be implemented by Jourdain and Sbai [30]
in the version 10 of Premia [56].

4. Schemes with high-order of convergence

4.1. Stochastic Taylor expansions

In order to make such expansions, it is more convenient to rewrite (1) in Stratono-
vich form. The interest is that the chain rule holds for Stratonovich integrals. We
recall that for a regular adapted one-dimensional process (H(s))s≤t the Stratono-
vich integral

∫ t

0
H(s) ◦ dZj(s) is equal to the limit in probability of

∑
i

1
2 (H(ti+1 ∧

t) + H(ti ∧ t))(Zj(ti+1 ∧ t) − Zj(ti ∧ t)) as maxi |ti+1 − ti| tends to 0. Hence∫ t

0

H(s) ◦ dZj(s) =
∫ t

0

H(s)dZj(s) +
1
2
〈
H, Zj

〉
t

and (1) writes

X(t) = x +
∫ t

0

σ0(X(s))ds +
r∑

j=1

∫ t

0

σj(X(s)) ◦ dZj(s) (7)

where σ0 = b− 1
2

∑r
j=1 ∂σjσj with ∂σj denoting the matrix

(
∂σij

∂xl

)
1≤i,l≤d

for σj =

(σ1j , . . . , σdj)∗. Let us introduce the differential operators Vj =
∑d

i=1 σij(x)∂xi for
0 ≤ j ≤ r. Since the chain rule holds for Stratonovich integrals, for f a smooth
function on R

d,

f(X(t)) = f(x) +
∫ t

0

V0f(X(s))ds +
r∑

j=1

∫ t

0

Vjf(X(s)) ◦ dZj(s)

= f(x) +
r∑

j=0

∫ t

0

Vjf(X(s)) ◦ dZj(s),

where for notational convenience we set Z0(s) = s.
Now remarking that Vjf(X(s)) = Vjf(x) +

∑r
l=0

∫ s

0
VlVjf(X(u)) ◦ dZ l(u),

one obtains

f(X(t)) = f(x) +
r∑

j=0

Vjf(x)
∫ t

0

◦dZj(s)

+
r∑

j,l=0

∫
0≤u≤s≤t

VlVjf(X(u)) ◦ dZ l(u) ◦ dZj(s).
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Iterating the reasoning, one obtains that for any positive integer m,

f(X(t)) = f(x) +
m∑

k=1

r∑
j1,...,jk=0

Vj1Vj2 . . . Vjk
f(x)Z(j1,...,jk)(t)

+
r∑

j1,...,jm+1=0

∫
0≤s1≤···≤sm+1≤t

Vj1 . . . Vjm+1f(X(s1))

◦ dZj1(s1) ◦ · · · ◦ dZjm+1(sm+1)

where Z(j1,...,jk)(t) =
∫
0≤s1≤···≤sk≤t ◦dZj1(s1) ◦ · · · ◦ dZjk(sk).

For 1 ≤ j ≤ r, Zj(s) is of order
√

s while Z0(s) = s or, in other words, by
scaling, Z(j1,...,jk)(t) has the same distribution as t(k+#{1≤l≤k:jl=0})/2Z(j1,...,jk)(1).
Hence to obtain terms with the same order of magnitude in the above expansion,
one has to count the integrals with respect to Z0(s) twice. That is why for α =
(j1, . . . , jk) ∈ A =

⋃
l∈N∗{0, . . . , r}l, we set |α| = k and ‖α‖ = k + #{1 ≤ l ≤ k :

jl = 0}. Then we write

f(X(t)) = f(x) +
∑

α:‖α‖≤m

Vj1 . . . Vjk
f(x)Zα(t) + Rm,f (t) where

Rm,f (t) =
∑

α:|α|≤m,‖α‖>m

Vj1 . . . Vjk
f(x)Zα(t)

+
r∑

j1,...,jm+1=0

∫
0≤s1≤···≤sm+1≤t

Vj1 . . . Vjm+1f(X(s1))

◦ dZj1(s1) ◦ · · · ◦ dZjm+1(sm+1). (8)

Since the remainder Rm,f(t) involves termes scaling like t to a power greater or
equal to (m + 1)/2, the following result (see Proposition 2.1 [42] for p = 1) is not
surprising.

Proposition 2. When the functions f , b and σj are smooth, the remainder Rm,f (t)
is such that for p ≥ 1, E(|Rm,f (t)|2p)1/(2p) ≤ Ct

m+1
2 where the constant C depends

on p, f , b, σj and their derivatives.

4.2. The Milshtein scheme

The Milsthein scheme consists in choosing f(x) = x and m = 2 in the above
expansion (8) and removing the remainder:

∀t ∈ [ti, ti+1], Xπ(t) = Xπ(ti) +
r∑

j=0

σj(Xπ
ti

)(Zj(t) − Zj(ti))

+
r∑

j,l=1

∂σjσl(Xπ
ti

)(Z(l,j)(t) − Z(l,j)(ti+1)). (9)

The strong order of convergence of the Milshtein scheme is one (see, e.g., [32]):
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Theorem 3. Assume that the functions σj and b are C2 with bounded derivatives.
Then for p ≥ 1,

sup
t≤T

E [‖X(t)− Xπ(t)‖p] ≤ C‖π‖p,

where the constant C does not depend on the partition π.

To implement the Milshtein scheme, one faces the difficulty usually encoun-
tered when trying to construct practical discretization schemes from Taylor expan-
sions: the need to simulate increments of the multiple stochastic integrals which
appear. On the one hand, by the fundamental theorem of calculus, for 1 ≤ j ≤ r,
Z(j,j)(t) =

∫
0≤u≤s≤t

◦dZj
u ◦ dZj

s is equal to 1
2 (Zj(t))2. But on the other hand, no

such nice expression in terms of Zj(t), Zl(t) holds for Z(l,j)(t) when j �= l. The
generalization of equality 2Z(j,j)(t) = (Zj(t))2 writes Z(l,j)(t)+Z(j,l)(t) = ZlZj(t).

Hence, for the Milshtein scheme to be simulable, one needs the following
commutativity condition

(C) ∀1 ≤ l < j ≤ r, ∂σjσl = ∂σlσj

which always holds when r = 1 (single Brownian motion case). Under (C), it is
enough to simulate the Brownian increments since the Milshtein scheme writes

Xπ(ti+1) = Xπ(ti) + b(Xπ
ti
)(ti+1 − ti) +

r∑
j=1

σj(Xπ
ti
)(Zj(ti+1) − Zj(ti))

+
∑

1≤l<j≤r

∂σjσl(Xπ
ti
)(Z lZj(ti+1) − Z lZj(ti))

+
1
2

r∑
j=1

∂σjσj [(Zj(ti+1))2 − (Zj(ti))2 − (ti+1 − ti)].

In the elliptic case (when ∀x ∈ R
d, (σ1(x), . . . , σr(x)) is a basis of R

d), Cruzeiro,
Malliavin and Thalmaier [11] have recently proposed a new version of the Milshtein
scheme X̃π which does not involve iterated stochastic integrals of second order
(even if commutativity (C) fails). It instead involves a process with values in
orthogonal matrices which governs a dynamical rotation of the driving Brownian
motion. The solution of X̃ of the equation obtained from (1) by this rotation has
the same distribution as X . They prove that E(supt≤T |X̃π

t − X̃t|2) ≤ C‖π‖2.

4.3. Schemes with high-order of weak convergence

We just saw that the simulation of iterated Brownian integrals of order greater
than one is a problem. To overcome this difficulty and obtain simulable schemes
with high order of weak convergence, Kusuoka [40, 41] proposed to replace the
iterated Brownian integrals which appear in the stochastic Taylor expansion (8)
by random variables with the same moments up to order m. See also [47, 48] where
Ninomiya discusses the numerical implementation and efficiency of the resulting
scheme and [42] in which Lyons and Victoir propose another scheme based on
similar ideas.
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Definition 4. Let m ∈ N∗. A family (ζα)‖α‖≤m of random variables with finite
moments of any order is called m-moment like if

∀α1, . . . , αk ∈ A such that ‖α1‖ + · · · + ‖αk‖
≤ m, E [ζα1 . . . ζαk ] = E [Zα1(1) . . . Zαk(1)] .

(10)

The following 5-moment like family in dimension r = 1 is given in [48] where
other examples are also presented:

Example 5. Let η be a random variable such that P (η = 0) = 2
3 and P (η =

±√
3) = 1

6 . Then one obtains a 5-moment like family in dimension r = 1 by
setting

ζ0 = 1, ζ1 = η, ζ(1,1) =
1
2
η2, ζ(1,0) = ζ(0,1) =

1
2
η, ζ(1,1,1) =

1
6
η3,

ζ(1,1,0) = ζ(0,1,1) =
1
4
, ζ(0,0) =

1
2
, ζ(1,1,1,1) =

1
8

and ζα = 0 otherwise.

Now replacing the mutiple Brownian integrals by a m-moment like family in
(8) written for f(x) = I(x) where I(x) = x denotes the idendity function on Rd,
one approximates the law of X(t) by the one of

Y x
t = x +

∑
‖α‖≤m

t‖α‖/2Vj1 . . . Vjk
I(x)ζα.

Let Qtf(x) = E(f(Y x
t )) denote the corresponding approximation of E(f(X(t))).

Theorem 6. When the functions f , b and σj are smooth,

∣∣E(f(X(T ))) − Qt1Qt2−t1 . . . QT−tn−1f(x)
∣∣ ≤ C

n−1∑
i=0

(ti+1 − ti)(m+1)/2

where the constant C depends on f , b, σj and their derivatives.

Remark 7.

• For a regular grid ti = iT
n , one has

∑n−1
i=0 (ti+1− ti)(m+1)/2 = T (m+1)/2

n(m−1)/2 . Hence
the order of weak convergence of the scheme is (m − 1)/2.

• Setting ζj = Zj(1) for 0 ≤ j ≤ r, ζ(j,j) = 1
2 for 1 ≤ j ≤ r, ζ(j,l) =

0 for 0 ≤ j �= l ≤ r and ζ(j,k,l) = 0 for 1 ≤ j, k, l ≤ r, one obtains a
m = 3-moment like family. According to the Markov property, this family is
such that Qt1Qt2−t1 . . . QT−tn−1f(x) = E(f(Xπ(T ))) where Xπ denotes the
Euler-Maruyama scheme. The order of weak convergence of this scheme is
1 = (3 − 1)/2.

• Of course, for the numerical approximation of E(f(X(T ))), m-moment like
families which can be generated on finite probability spaces with as few ele-
ments as possible are preferable. For instance, the 5-moment like family given
in example 5 can be generated on a probability space with 3 elements support-
ing the random variable η. For this choice, the exact computation of the ap-
proximation Qt1Qt2−t1 . . . QT−tn−1f(x) is possible using a non-recombining
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trinomial tree with n time-steps and therefore 3n leaves. When m and r in-
crease, so does the cardinality of the probability space necessary to support a
m-moment like family. If exact computation of the approximation is no longer
possible, one has to resort to a partial sampling technique such as the Monte
Carlo method (see [48] which is devoted to that issue). An important open
problem is how to generate m-moment like families of order higher than 5.

• In [40, 41], Kusuoka works under a uniformly non-degeneracy assumption
weaker than the uniform Hörmander condition (called the UFG condition)
for (1) which ensures, thanks to the Malliavin calculus, that for t > 0 x →
E(f(X(t))) is smooth in the directions given by the fields generated by the
Lie brackets of Vj even if f is not. For the non uniform grid refined near the
maturity T

ti = T

(
1 −

(
n − i

n

)γ)
with γ > m,

he obtains convergence of the approximation with order (m − 1)/2 for func-
tions f only C1:

∣∣E(f(X(T ))) − Qt1Qt2−t1 . . . QT−tn−1f(x)
∣∣ ≤ C‖∇f‖∞

n(m−1)/2
.

Proof. Setting Ptf(x) = E(f(X(t))), one has the following decomposition of the
error

|E(f(X(T )) − Qt1 . . . QT−tn−1f(x)|
≤ |E(PT−tn−1f(X(tn−1))) − Qt1 . . . Qtn−1−tn−2PT−tn−1f(x)|

+ |Qt1Qt2−t1 . . . Qtn−1−tn−2(PT−tn−1f − QT−tn−1f)(x)|
(11)

We now prove the result by induction on n. For n = 1, one deals with Ptf(z) −
Qtf(z) which by (8) is equal to

E

[
f

(
z +

∑
‖α‖≤m

Vj1 . . . Vjk
I(z)Zα(t) + Rm,I(t)

)

−f

(
z +

∑
‖α‖≤m

t‖α‖/2Vj1 . . . Vjk
I(z)ζα

)]
.

Assuming for simplicity that d = 1 and making a standard Taylor expansion of the
function f in the neighborhood of z, one deduces that Ptf(z)−Qtf(z) is equal to

m∑
k=1

f (k)(z)
k!

E

[( ∑
‖α‖≤m

Vj1 . . . Vjk
I(z)Zα(t) + Rm,I(t)

)k

−
( ∑

‖α‖≤m

t‖α‖/2Vj1 . . . Vjk
I(z)ζα

)k
]

+ O(t
m+1

2 ).
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According to Proposition 2, Rm,I(t) scales like t(m+1)/2. Now developping the
powers and using (10) one obtains that the expectation of all terms scaling like
tl/2 with l ≤ m vanish. Therefore |Ptf(z)−Qtf(z)| ≤ Ct(m+1)/2 and the induction
hypothesis holds for n = 1.

We now assume that the induction hypothesis holds at rank n − 1. Since
when f is smooth, so is PT−tn−1f , we deduce that the first term of the right-hand
side of (11) is smaller than C

∑n−2
i=0 (ti+1 − ti)(m+1)/2. By the result proved for

n = 1, ‖PT−tn−1f − QT−tn−1f‖∞ ≤ C(T − tn−1)(m+1)/2. Since for all t ≥ 0,
‖Qtg‖∞ ≤ ‖g‖∞, one deduces that the second term of the r.h.s. of (11) is smaller
than C(T − tn−1)(m+1)/2. This concludes the proof. �

Let us briefly present the related approximation based on the notion of cu-
bature proposed by Lyons and Victoir [42].

Definition 8. Let m ∈ N∗ and t > 0. Continuous paths ωt,1, . . . , ωt,N with bounded
variation from [0, t] to Rr and positive weights λ1, . . . , λN such that

∑N
l=1 λl = 1

define a cubature formula with degree m at time t if
∀α = (j1, . . . , jk) ∈ A such that ‖α‖ ≤ m,

E(Zα(t)) =
N∑

l=1

λl

∫
0≤s1≤···≤sk≤t

dωj1
t,l(s1) . . . dωjk

t,l(sk)
(12)

where ωj
t,l(s) denotes the jth coordinate of ωt,l(s) when 1 ≤ j ≤ d and ω0

t,l(s) = s.

According to [42], there exists a cubature with degree m at time 1 such that
N is smaller than the cardinality of {α ∈ A : ‖α‖ ≤ m}. Moreover, one deduces
a cubature of degree m at time t by scaling. For l ∈ {1, . . . , N} let (yt,l(s, x))s≤t

denote the solution of the ODE:

yt,l(0, x) = x and ∀s ∈ [0, t], dyt,l(s, x) =
r∑

j=0

σj(yt,l(s, x))dωj
t,l(s).

Lyons and Victoir propose to approximate E(f(X(t)) by ⇐= disp

Qtf(x) =
N∑

l=1

λlf(yt,l(t, x)).

Theorem 6 still holds with this new definition of Qtf . The proof is based on
a similar decomposition of the error but the analysis of E(f(X(t)) − Qtf(x) is
easier. Indeed the Taylor expansion (8) holds for Z replaced by ωt,l. Multiplying
by λl, summing over l and substracting (8) then using Proposition 2 and (12), one
obtains that |E(f(X(t)) − Qtf(x)| ≤ Ct(m+1)/2.

Let us finally mention, interesting schemes with high weak order of conver-
gence recently proposed by Ninomiya and Victoir [50] and Fujiwara [17]. Even
if the idea of these schemes also comes from stochastic Taylor expansions, their
implementation is different from the previous ones. It requires a sequence of in-
dependent uniform random variables (Ui)1≤i≤n independent from (Z1, . . . , Zr).
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For θ ∈ N∗, to go from X̄π
θ (ti) to X̄π

θ (ti+1), one repeats the following steps for
k ∈ {1, . . . , θ}

1. integrate the ordinary differential equation d
dtx(t) = σ0(x(t)) on an interval

with length (ti+1 − ti)/2θ,
2. depending on whether Ui+1 ≤ 1

2 or not, integrate successively for j increasing
from 1 to r or for j decreasing from r to 1 the ODE d

dtx(t) = σj(x(t)) on an
interval with random length Zj(tki )−Zj(tk−1

i ) where tki = ti +k(ti+1− ti)/θ.
3. do the first step again.

Ninomiya and Victoir [50] prove that X̄π
1 (T ) is an approximation of X(T ) with

weak order of convergence 2. The idea of Fujiwara [17] is to make Romberg-like
extrapolations in order to improve the weak rate of convergence. Indeed, he proves
that E(f(X(T ))) is respectively approximated by 1

3E(4f(X̄n
2 (T )) − f(X̄n

1 (T )))
and 1

120E(243f(X̄n
3 (T ))−128f(X̄n

2 (T ))+5f(X̄n
1 (T ))) with order of convergence 4

and 6. When, for some of the above ODEs, no analytical expression of the solution
is available, one has to resort to discretization schemes. Those schemes have to be
chosen carefully in order to preserve the weak order for the resulting scheme for
(1). For instance, Fujiwara suggests a Runge-Kutta scheme with order 13 to pre-
serve the weak order 6. More recently, Ninomiya and Ninomiya [49] have proposed
a scheme with weak order 2 in which, for each time-step, only two ordinary differ-
ential equations have to be integrated on a random time-horizon. They have also
analysed the effect in terms of weak error of the resort to Runge-Kutta schemes
to integrate the ordinary differential equations. The schemes with weak order 2
proposed by Ninomiya and Victoir and by Ninomiya and Ninomiya are both im-
plemented in Premia [56] for the pricing of Asian options under the Heston model
of stochastic volatility.

5. Comments on some extensions

We discuss first the case when Z is a Lévy process. That is, process with indepen-
dent and stationary increments with characteristic function given by

E [exp (i 〈θ, Z(t)〉)]

= exp
(
−1

2
〈θ, Γθ〉 t + i 〈b, θ〉 t +

∫
Rr

(exp(i 〈θ, x〉) − 1 − iθx1 {x ≤ 1}) ν(dx)
)

where θ ∈ R
r, Γ ∈ R

r×r is a symmetric non-negative matrix and ν is a measure
satisfying

∫
Rr

(
1 ∧ |x|2

)
ν(dx) < ∞. When b = ν = 0 and Γ is the identity matrix,

then Z is a standard r-dimensional Wiener process. The constant b denotes the
drift of the process and ν is the Lévy measure associated to the process Z. We
note that in comparison with the Wiener process case not all moments of Z are
finite. In fact the moment of order k of Z is finite if

∫
Rr |x|k 1{x≥1}ν(dx) < ∞.

The existence and uniqueness of the above equation (1) is ensured by standard
theorems that can be found in, e.g., Protter [57] under Lipschitz assumptions on
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the coefficients b and σ. Nevertheless it is not clear under which conditions the
moments of the solution are finite if Z is a Lévy process, except for the case of
bounded coefficients.

In particular, we do not know how the finite moment property transfers from
Z into X when the coefficients are Lipschitz. These properties are important in
order to determine the convergence properties of the Euler scheme. The situation
in the case that σ is constant is already difficult enough. Nevertheless, this is an
interesting problem.

We quote here some results of the article Kohatsu-Yamazato [34] who study
this problem in the particular case that σ is constant.

For example, consider for simplicity the one-dimensional case r = d = 1 with
Γ = 0, b = 0 and ν a measure concentrated on (0,∞). The moment E(X(t)β)
is finite or not depending on whether the integral with respect to ν in the last
column is finite or not.

b(y) = yα β Criterion for finiteness of E(X(t)β)

0 ≤ α ≤ 1 β > 0
∫ +∞
1

yβν(dy)

α > 1 0 < β < α − 1 always finite

α > 1 β = α − 1
∫ +∞
1 log (y) ν(dy)

α > 1 β > α − 1
∫ +∞
1

yβ−α+1ν(dy)

In the same lines of the above table, but in another set up, Grigoriu-Samorod-
nistsky [23] studied the tail behavior of X(t). In either case the conclusions are
similar.

The rule seems to be that if the drift coefficient is sublinear then the drift
does not influence the finite moment property of Z and it transfers directly to X.
If the drift is superlinear then the situation is different. That is, the finite moment
property depends on the difference of power between the drift and the moment
to be evaluated. Therefore, it can be conjectured that this is the situation in the
Lipschitz cases.

Currently, as far as our knowledge goes, it is not known if X has finite mo-
ments even if the exponential moments of Z are bounded unless one imposes a
series of stringent conditions. In most papers found in the literature, besides this
assumption, one also has to make the assumption that the moments of X are
bounded which is an unaccomplished feature of this problem. For example one has
that

Theorem 9. Suppose that Z has exponential moments and that X has finite mo-
ments. Then

E

[
sup
t≤T

‖X(t) − Xπ(t)‖2p

]
≤ C ‖π‖p

where the constant C depends on T , x and the Lipschitz constants.



160 B. Jourdain and A. Kohatsu-Higa

One remarkable different case from the discussion in this paper is the situation
of reflecting stochastic differential equations. In general, if the domain is closed
and convex and the reflection is normal, then the results can be usually obtained
as generalizations of the non-reflecting case. The main difference lies in how the
inequalities are obtained. In fact, instead of using strong type inequalities directly
on the error process X(t) − Xπ(t), one has to use Itô’s formula and the fact that
contribution of the reflecting processes brings Xn closer to X . If the domain is
more general then the results are no longer valid. In fact, as proven by Pettersson
[54] (later refined by Slominski [59]) the rates can decay slightly depending on the
properties of the domain.

The latest refined results on this can be found in a recent thesis by S. Menozzi
[44]. Nevertheless there is no parallel theory in the style of Jacod-Kurtz-Protter.

In finance, one-dimensional processes that remain non-negative are of partic-
ular interest. This non-negativity property comes from the choice of the coefficients
in the SDE rather than from reflection. The typical example is the Cox-Ingersoll-
Ross process :

X(t) = x +
∫ t

0

(a − kX(s))ds + σ

∫ t

0

√
X(s)dZ(s), with x, a, σ ≥ 0 and k ∈ R,

which is used to model short interest rates but also stochastic volatility in the
Heston model. It is not possible to discretize this SDE by the standard Euler
scheme: indeed, Xπ(t1) is negative with positive probability and then it is not
possible to compute the square root in the diffusion coefficient in order to define
Xπ(t2). To overcome this problem, Deelstra and Delbaen [12], propose to take the
positive part before the square root and define recursively:

Xπ(ti+1) = Xπ(ti)(1−k(ti+1−ti))+a(ti+1−ti)+σ
√

(Xπ(ti))+ (Z(ti+1)−Z(ti)).

In her thesis [13], Diop studies the symmetrized Euler scheme defined by

Xπ(ti+1)=
∣∣∣Xπ(ti)(1−k(ti+1− ti))+a(ti+1− ti)+σ

√
Xπ(ti) (Z(ti+1)−Z(ti))

∣∣∣.
In [1], Alfonsi compares those schemes with some new ones that he proposes.
He concludes that the following explicit scheme combines the best features when
a ≥ σ2

4 :

Xπ(ti+1) =

((
1 − k

2
(ti+1 − ti)

)√
Xπ(ti) +

σ(Z(ti+1) − Z(ti))
2(1 − k

2 (ti+1 − ti))

)2

+
(

a − σ2

4

)
(ti+1 − ti).

This scheme has been implemented in Premia [56] in order to discretize the SSRD
model of credit risk [7].

Another interesting issue is the discussion about adaptive methods. That is,
how to choose the partition as to improve the first term in the expansion of the
strong error. For this, we refer the reader to [9] and subsequent articles [26] and [46].
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