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Abstract

We consider the asymptotic behavior of a Bayesian parameterestimation method under
discrete stationary observations. We suppose that the transition density of the data is un-
known, and therefore we approximate it using a kernel density estimation method applied to
the Monte Carlo simulations of approximations of the theoretical random variables generat-
ing the observations. In this article, we estimate the errorbetween the theoretical estimator,
which assumes the knowledge of the transition density and its approximation which uses
the simulation. We prove the strong consistency of the approximated estimator and find the
order of the error. Most importantly, we give a parameter tuning result which relates the
number of data, the number of time-steps used in the approximation process, the number of
the Monte-Carlo simulations and the bandwidth size of the kernel density estimation.

1 Introduction

We consider a parameter estimation method of Bayesian type under discrete observations. That
is, our goal is to estimate the posterior expectation of some functionf given the observed data
YN

0 = (Y0,Y1, ...,YN);

EN[ f ] := Eθ[ f |Y0, ...,YN] :=

∫

f (θ)φθ(YN
0 )π(θ)dθ

∫

φθ(YN
0 )π(θ)dθ

, (1.1)

whereφθ(YN
0 ) is the joint-density of the model process forYN

0 = (Y0,Y1, ...,YN) andπ(θ) is a
prior distribution. This method can be applied when the joint-densityφθ(YN

0 ) is known a priori.
In this article, we suppose that this is not the case.

Suppose thatYi is a stationary Markov chain thereforeφθ(yN
0 ) = µθ(y0)

∏N−1
i=0 pθ(yi , yi+1),

whereµθ is a probability density function which is the invariant measure ofYi andpθ(y, z) is the
transition density fromy to z. But this expression (1.1) is still theoretical, as we do not know
the transition densitypθ. So we propose to estimate this quantity based on the simulation of the
underlying process. Usually the underlying process is also approximated using, for example,
the Euler-Maruyama scheme in the case thatY is generated by a diffusion.

∗The full paper [8] is still in preparation. If interested, you can request a copy by sending e-mail to
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Then we approximate the transition density of the Euler-Maruyama approximation through
the kernel density estimation method. Under these settings, we consider an approximation of
the posterior expectation (1.1):

Ên
N,m[ f ] :=

∫

f (θ)φ̂N
θ
(YN

0 )π(θ)dθ
∫

φ̂N
θ
(YN

0 )π(θ)dθ
,

where φ̂N
θ
(YN

0 ) := µθ(Y0)
∏N

j=1 p̂N
θ
(Yj−1,Yj) and p̂N

θ
(y, z) is an approximation of the transition

density obtained using the kernel density estimation method. The problem we want to address
is that there exists an appropriate choice of all the parameters that appear inthe approximation
of the posterior expectation so that convergence is obtained. In particular, the issue that is new
in this research in comparison with previous results is that we give an estimate of how good
the approximation of the transition density has to be as the amount of observations increase to
infinity (therefore the number of arguments inqθ tend to infinity). In reality one also needs
to approximate the invariant measure but this problem can be solved with an extra term. The
quality of approximation is studied in Talay [10] and the references therein.

Approximating posterior distribution can also be interpreted as a type of filtering problem
for a diffusion process. This approach is considered in a general framework by Del Moral,
Jacod, Protter [6]. Cano et al. [5] considered this problem based on Bayesian inference for a
stochastic differential equation with parameterθ under similar settings to ours. They use direct
calculations through an error estimation between the transition density of thetrue stochastic
differential equation and the transition density of the Euler-Maruyama approximation given by
Bally and Talay [1]. They prove that for fixedN the approximate posterior distribution which
uses the exact density of the Euler approximation converges to the exact posterior distribution
as the number of steps increase.

Yasuda [12] improved this result and gave a general framework where the rateof conver-
gence isN−1/2 under a condition of approximation for the simulated density and the density of
the approximation. This condition ((6)-(b) in this article) hides the tuning relationship between
mandN. The result is stated in general terms so that it can be adapted to various diffusion cases.

In this article, we consider the problem of approximation the transition densities using the
kernel density estimation method and therefore we clarify the tuning processthat is required for
the convergence of approximation of posterior expectations. Therefore, we give an explicit ex-
pression that shows how to choose parameters (number of Monte-Carlo simulationn, bandwidth
size of the kernel density estimationh and number of approximation parameter of the process
m) based on the number of observationsN.

In this paper, we assume that observation dataY0,Y1, ...,YN comes from a stationary and
α-mixing process and the time interval betweenYi andYi+1 is fixed for all i. We give the rela-
tionship between the number of data and the parameters of the transition density approximation
and we estimate the error as follows;

∣

∣

∣EN[ f ] − Ên
N,m[ f ]

∣

∣

∣ ≤ Ξ
√

N
a.s. ω, ω̂,

whereΞ is some positive random variable withΞ < +∞ a.s.ω, ω̂ (hereω denotes the random-
ness associated with the data and ˆω denotes the randomness associated with the simulations).
And also we prove thatEN[ f ] converges tof (θ0) with order 1√

N
, whereθ0 is the true value.

This paper is structured as follows. In Section 2, we will give the setting ofour problem and
precisely state our main theorem. In Section 3, we will prove our main theorem stated in Section
2 by using Laplace method dividing the proof in four estimations expressed in Proposition3.1.
This decomposition plays a central role in the proof. In Section 4, we will show how to deal
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with each term in the decomposition. In Section 5, we will give the tuning result which states
the relationship between the number of Monte-Carlo simulationn and the bandwidth sizeh with
related toN so that a certain rate of convergence is achieved.

The proofs of various statements are involved and therefore we have tried to give the main
line of thought in the proofs in this article. One can find proofs of Theorems, Propositions and
Lemmas of this paper in Kohatsu-Higa et al. [8] and Yasuda [12]. And also one can findan
example, the Ornstein-Uhlenbeck process case, of this paper in Kohatsu-Higa etal. [9].

2 Settings and Main Theorem

2.1 Settings

First we recall the definition ofα-mixing process;

Definition 2.1 (Billingsley [2], p.315) For a sequence X1,X2, ... of random variables, letαn be
a number such that

|P(A∩ B) − P(A)P(B)| ≤ αn

for A ∈ σ(X1, ...,Xk), B ∈ σ(Xk+n,Xk+n+1, ...) and k, n ∈ N. Suppose thatαn→ 0 as n→ ∞, then
we call the sequence X1,X2, ..., α-mixing process.

For convenience, we setα0 = 1.
Here we consider the following setting: Letθ0 ∈ Θ := [θl , θu], (θl < θu) be a parameter that

we want to estimate, whereΘ is a compact subset inR andθ0 ∈ Θ̇, whereΘ̇ denotes the interior
of the setΘ andΘ0 = Θ − {θ0}. Let (Ω,F ,Pθ0), (Ω̄, F̄ , P̄) and (Ω̂, F̂ , P̂) be three probability
spaces, where the probability measurePθ0 is parametrized byθ0. ∆ > 0 is a fixed parameter
that represents the time between observations. The probability space (Ω,F ,Pθ0) is used for the
observations, (̄Ω, F̄ , P̄) is used for the process that defines the process with lawPθ and the space
(Ω̂, F̂ , P̂) is used for the simulations that are used in estimating the transition density.

(i). (Observation process)Let {Yi∆}i=0,1,...,N be a sequence ofN+ 1-observations of a Markov
chain having transition densitypθ0(y, z), y, z ∈ R and invariant measureµθ0. This sequence
is defined on the probability space (Ω,F ,Pθ0).We writeYi := Yi∆ for i = 0, 1, ...,N.

(ii). (Model process)Denote byXy(θ) a random variable defined on the probability space
(Ω̄, F̄ , P̄) such that its law is given bypθ(y, ·).

(iii). Denote by (̂Ω, F̂ , P̂) the probability space which generates the simulation of the random
variableXy(θ).

(iv). (Approximating process) Denote byXy
(m)(θ) the simulation of an approximation of the

model processXy(θ), which is defined on (̄Ω, F̄ , P̄). Ĥt := F̂t ⊗ F̄ satisfies the usual
condition.m is the parameter that determines the quality of the approximation. ˜pN

θ
(y, ·) =

p̃N
θ
(y, ·; m(N)) is the density for the random variableXy

(m)(θ).

(v). (Approximated transition density) Let K : R→ R+ be a kernel which satisfies
∫

K(x)dx=
1 andK(x) > 0 for all x. Denote by ˆpN

θ
(y, z), the kernel density estimation of ˜pN

θ
(y, z) based

on n simulation (independent) ofXy
(m)(θ) which are defined on (̂Ω, F̂ , P̂). The outcomes

of n simulations are denoted byXy,(k)
(m) (θ), k = 1, ..., n. Forh(N) > 0,

p̂N
θ (y, z) := p̂N

θ (y, z; ω̂; m(N), h(N), n(N)) :=
1

n(N)h(N)

n(N)
∑

k=1

K

















Xy,(k)
(m(N))(θ, ω̂) − z

h(N)

















.
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(vi). For givenm, we introduce the “average” transition density over all trajectories with respect
to the kernelK;

p̄N
θ (y, z) := p̄N

θ (y, z; m(N), h(N)) := Ê
[

p̂N
θ (y, z)

]

= Ê

















1
h(N)

K

















Xy,(1)
(m(N))(θ, ·) − z

h(N)

































,

whereÊ means the expectation with respect toP̂.

As it can be deduced from the above set-up, we have preferred to state our problemin
abstract terms without explicitly defining the dynamics that generateXy(θ) or how the approxi-
mationXy

(m)(θ) is defined. This is done in order not to obscure the arguments that follow and to
avoid making the paper excessively long. All the properties that will be requiredfor pθ are p̃N

θ

that will be satisfied for a subclass of diffusion processes.

Remark 2.2 (i). Without loss of generality, we can consider the product of the above three
probability spaces so that all random variables are defined on the same probability space.
We do this without any further mentioning.

(ii). Note that from the definition and the properties of the kernel K,p̄N
θ
(y, ·) satisfies for all

θ ∈ Θ and y∈ R

∫

p̄N
θ (y, z)dz= 1 and p̄N

θ (y, z) > 0 f or all z ∈ R.

Our purpose is to estimate the posterior expectation of some functionf ∈ C1(Θ) given the
data:

EN[ f ] := Eθ[ f |Y0, ...,YN] =
IN( f )
IN(1)

:=

∫

f (θ)φθ(YN
0 )π(θ)dθ

∫

φθ(YN
0 )π(θ)dθ

,

whereφθ(YN
0 ) = φθ(Y0, ...,YN) = µθ0(Y0)

∏N
j=1 pθ0(Yj−1,Yj) is the joint density of (Y0,Y1, ...,YN).

We propose to estimate this quantity based on the simulation of the process:

Ên
N,m[ f ] :=

În
N,m( f )

În
N,m(1)

:=

∫

f (θ)φ̂N
θ
(YN

0 )π(θ)dθ
∫

φ̂N
θ
(YN

0 )π(θ)dθ
,

whereφ̂N
θ
(YN

0 ) := µθ(Y0)
∏N

j=1 p̂N
θ
(Yj−1,Yj).

2.2 Main Theorem

Assumption 2.3 We assume the following

(1). (Observation process){Yi}i=0,1,...,N is anα-mixing process withαn = O(n−5).

(2). (The prior distribution) The prior distributionπ is continuous inθ. And the support is
Θ, that is, for allθ ∈ Θ, π(θ) > 0.

(3). (Density regularity) The transition densities p, p̄N ∈ C2,0,0(Θ×R
2; R+), and for allθ ∈ Θ,

y, z ∈ R, we have thatmin
{

pθ(y, z), p̄N
θ
(y, z)

}

> 0. And pθ admits an invariant measure

µ ∈ C0,0
b (Θ × R; R+), and for allθ ∈ Θ, µθ(y) > 0 for every y∈ R.
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(4). (Identifiability) Assume that there exist c1 and c2 : R→ (0,∞) such that for allθ ∈ Θ,

inf
N

∫

|qi
θ(y, z) − qi

θ0
(y, z)|dz≥ ci(y)|θ − θ0|,

and Ci(θ0) :=
∫

ci(y)2µθ0(y)dy ∈ (0,+∞) for i = 1, 2 and q1
θ = pθ and q2

θ = p̄N
θ
.

(5). (Regularity of the log-density)We assume that for qθ = pθ,p̄N
θ

sup
N

sup
θ∈Θ

" (

∂i

∂θi
ln qθ(y, z)

)12

pθ0(y, z)µθ0(y)dydz< +∞, f or i = 0, 1, 2,

sup
N

sup
θ∈Θ

∣

∣

∣

∣

∣

∣

∂2

∂θ2

"
(ln qθ(y, z)) p̄N

θ0
(y, z)µθ0(y)dydz

∣

∣

∣

∣

∣

∣

< +∞,

sup
N

sup
θ∈Θ

" ∣

∣

∣

∣

∣

∣

∂i

∂θi
ln qθ(y, z)

∣

∣

∣

∣

∣

∣

p̄N
θ0

(y, z)µθ0(y)dydz< +∞, f or i = 0, 1,

where ∂
0

∂θ0
qθ = qθ. 1

(6). (Parameter tuning)

(a). We assume the following boundedness condition;

sup
N

sup
θ∈Θ

∣

∣

∣

∣

∣

∣

∣

1
√

N

N−1
∑

i=0

(

∂

∂θ
ln p̂N

θ (Yi ,Yi+1) −
∂

∂θ
ln p̄N

θ (Yi ,Yi+1)

)

∣

∣

∣

∣

∣

∣

∣

< +∞ a.s.

(b). Assume that for each y, z ∈ R, there exists a factor CN1 (y, z) and c1(y, z) such that
∣

∣

∣pθ0(y, z) − p̄N
θ0

(y, z)
∣

∣

∣ ≤ CN
1 (y, z)a1(N),

wheresupN CN
1 (y, z) < +∞ and a1(N)→ 0 as N→ ∞, and

CN
1 (y, z)a1(N)

√
N < c1(y, z),

where c1 satisfies the following;

sup
N

sup
θ∈Θ

" ∣

∣

∣

∣

∣

∂

∂θ
ln p̄N

θ (y, z)
∣

∣

∣

∣

∣

c1(y, z)µθ0(y)dydz< +∞.

(c). There exist some function gN : R
2 → R and constant a2(N), which depends on N,

such that for all y, z ∈ R

sup
θ∈Θ

∣

∣

∣

∣

∣

∂

∂θ
ln p̄N

θ (y, z) − ∂
∂θ

ln pθ(y, z)
∣

∣

∣

∣

∣

≤ |gN(y, z)|a2(N),

wheresupN Eθ0[|gN(Y0,Y1)|4] < +∞ and a2(N)→ 0 as N→ ∞.

Remark 2.4 (i). Assumption 2.3(4) is needed in order to be able to obtain that the density
can be used in order to discern the value ofθ from the observations. This type of assump-
tion is natural in statistics and can be assured in the case of one dimensional stochastic
differential equations under differentiability of the coefficients. Assumption 2.3(5) will be
satisfied under enough regularity of the transition density function pθ and its approxima-
tion p̄N

θ
. This can be achieved with Malliavin Calculus techniques in the case of diffusion

equations.

1The power 12 is needed to prove a central limit theorem (Proposition 4.4.).
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(ii). Assumption 2.3(6)-(a) will be crucial in what follows and it is the property that will de-
termine the rate of convergence and the tuning properties. Note that all other hypothesis
deal with the transition density pθ or the average of its approximation̄pN

θ
. Therefore the

needed properties essentially follow from similar properties of pθ and some limit argu-
ments. Assumption 2.3(6)-(a) is the only condition that deals with the approximation
itself p̂N

θ
, which is random. In particular, obtaining a lower bound forp̂N

θ
will be the

important problem to solve. This will be further discussed in Section 5.

(iii). In this problem, we need to study two approximation problems, one is a difference be-
tween the transition densities of the observation process and the approximated process,
and the other is a difference of the transition density of the approximated process and the
expectation for the approximation based on kernel density estimation. Assumption 2.3
(6)-(b) and (c) state the rate of convergence of the density of the approximation and its
derivatives. This problem was studied in Bally, Talay [1] and Guyon [7], and the sec-
ond approximation problem can be dealt using the kernel density estimation theory. For
example, in the case that the data{Yi} comes from a stochastic differential equation, the
Euler-Maruyama approximation is most commonly used. And in that case, we have the
following results. Assume that the drift and diffusion coefficients belong to C∞b (R), and
the diffusion coefficient satisfies the uniform ellipticity condition. Then forα, β ∈ N, there
exist c1 ≥ 0 and c2 > 0 such that for all N≥ 1, ∆ ∈ (0, 1] and y, z ∈ R,

∂αy∂
β
z p̃N
θ0

(y, z) − ∂αy∂βz pθ0(y, z) ≤
1

m(N)
∂αy∂

β
zπθ0(∆, y, z) + rm(N)

θ0
(∆, y, z),

where let D be a differential operator and pt
θ0

(y, z) be the transition density of Yt, set

πθ0(∆, y, z) :=
∫

∆

0

∫ ∞

−∞
ps
θ0

(y,w)D(p∆−s
θ0

(·, z))(w)dwds,

and

∣

∣

∣rm(N)
θ0

(∆, y, z)
∣

∣

∣ ≤ c1
1

m(N)2

1

∆
α+β+5

2

exp

(

−c2|y− z|2
∆

)

.

For more details, see Proposition 1 in Guyon [7].

For the second problem, in the case that the kernel K satisfies
∫

xK(x)dx = 0 and
∫

x2K(x)dx < +∞, if p̃N
θ0

(y, z) is uniformly bounded in y, z ∈ R and N ∈ N and twice
continuously differentiable with respect to z for all y∈ R and N∈ N, then we have, for all
y ∈ R and N∈ N,

p̄N
θ0

(y, z) − p̃N
θ0

(y, z) =
1
2

h(N)2
∂2p̃N

θ0

∂z2
(y, z)

∫

x2K(x)dx+ o(h(N)2).

For more details, see Wand, Jones [11].

Therefore roughly speaking, a1(N) = 1
m(N) + h(N)2. And the choice for m(N) =

√
N will

satisfy Assumption 2.3(6)-(b).

Now we state the main result of the paper.

Theorem 2.5 Under Assumption 2.3, there exists some positive random variableΞ such that
Ξ < +∞ a.s. and

∣

∣

∣EN[ f ] − Ên
N,m[ f ]

∣

∣

∣ ≤ Ξ
√

N
a.s.
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And also, we have

|EN[ f ] − f (θ0)| ≤
Ξ1√

N
a.s. and

∣

∣

∣Ên
N,m[ f ] − f (θ0)

∣

∣

∣ ≤ Ξ2√
N

a.s.,

whereΞ1 is some positive random variable withΞ1 < +∞ a.s. andΞ2 is some positive random
variable withΞ2 < +∞ a.s.

3 Idea of the Proof of Theorem 2.5

First we introduce some notation. Letp, q : R
2 → R+ be strictly positive functions of two

variables. Then let

H(p, q) :=
"

(

ln p(y, z)
)

q(y, z)µθ0(y)dydz,

ZN(θ) :=
1
√

N

N−1
∑

i=0

{

ln pθ(Yi ,Yi+1) − H(pθ, pθ0)
}

,

ε(θ) := H(pθ, pθ0) − H(pθ0, pθ0),

βN(θ) := ZN(θ) − ZN(θ0).

And also we set;

Z̄N(θ) :=
1
√

N

N−1
∑

i=0

(

ln p̂N
θ (Yi ,Yi+1) − H

(

p̄N
θ , p̄

N
θ0

))

,

ε̄N(θ) := H
(

p̄N
θ , p̄

N
θ0

)

− H
(

p̄N
θ0
, p̄N
θ0

)

,

β̄N(θ) := Z̄N(θ) − Z̄N(θ0).

SetΘ0 := Θ \ {θ0}. The following proposition states the properties that are needed to achieve
the proof of Theorem 2.5

Proposition 3.1 Under Assumption 2.3, we have the following results.

(i). There exist some strictly negative constants c1, c2 such that

c1 ≤ inf
θ∈Θ0

ε(θ)
(θ − θ0)2

≤ sup
θ∈Θ0

ε(θ)
(θ − θ0)2

≤ c2 < 0.

(ii). There exist some random variables d1, d2 such that

d1 ≤ inf
N

inf
θ∈Θ0

βN(θ)
θ − θ0

≤ sup
N

sup
θ∈Θ0

βN(θ)
θ − θ0

≤ d2 a.s.

(iii). There exist some strictly negative constants c3, c4 such that

c3 ≤ inf
N

inf
θ∈Θ0

ε̄N(θ)
(θ − θ0)2

≤ sup
N

sup
θ∈Θ0

ε̄N(θ)
(θ − θ0)2

≤ c4 < 0.

(iv). There exist some random variables d3, d4 such that

d3 ≤ inf
N

inf
θ∈Θ0

β̄N(θ)
θ − θ0

≤ sup
N

sup
θ∈Θ0

β̄N(θ)
θ − θ0

≤ d4 a.s.
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We will give an idea of the proof of this proposition after this section. We give the proof of
Theorem 2.5 using the results of Proposition 3.1.
Idea of the Proof of Theorem 2.5.We decompose the approximation error as follows;

EN[ f ] − Ên
N,m[ f ] =

(

IN( f ) − f (θ0)IN(1)
IN(1)

)

−














În
N,m( f ) − f (θ0)În

N,m(1)

În
N,m(1)















.

The goal is then to prove that there exists some random variableC1 andC2 such that

∣

∣

∣

∣

∣

IN( f ) − f (θ0)IN(1)
IN(1)

∣

∣

∣

∣

∣

≤ C1√
N

a.s., and

∣

∣

∣

∣

∣

∣

∣

În
N,m( f ) − f (θ0)În

N,m(1)

În
N,m(1)

∣

∣

∣

∣

∣

∣

∣

≤ C2√
N

a.s.

Indeed, we can writeIN( f ) and În
N,m( f ) as follows;

IN( f ) = eNH(pθ0 ,pθ0)+
√

NZN(θ0)

∫

Θ0

f (θ)eNε(θ)+
√

NβN(θ)µθ(Y0)π(θ)dθ,

In
N,m( f ) = eNH(p̄N

θ0
,p̄N
θ0

)+
√

NZ̄N(θ0)
∫

Θ0

f (θ)eNε̄(θ)+
√

Nβ̄N(θ)µθ(Y0)π(θ)dθ.

Then by using the Laplace method and Proposition 3.1, we have our conclusion. In fact, asN

goes to infinity the leading term in the quotientsIN( f )
IN(1) and

În
N,m( f )

În
N,m(1)

are determined byε(θ) andε̄(θ)

due to Proposition 3.1. Their behaviors are similar to Gaussian integrals where the variance
tends to zero and therefore the integrals will tend to the value in their “mean” which in this case
is θ0 as it follows from Proposition 3.1. Details can be found in Kohatsu-Higa et al.[8]. �

4 Proof of Proposition 3.1

4.1 Ideas for the proof of Proposition 3.1 (i) and (iii)

In order to prove the upper bounds for the statements in Proposition 3.1 (i) and (iii),one uses
the Pinsker’s inequality;

1
2

(∫

∣

∣

∣pθ(y, z) − pθ0(y, z)
∣

∣

∣ dz

)2

≤
∫

ln
pθ0(y, z)

pθ(y, z)
pθ0(y, z)dz,

and the identifiability condition. Therefore under Assumptions 2.3(4), we obtain the upper
bound in (i) and under Assumption 2.3(4) and(5), we obtain the upper bound in (iii).

For the lower bounds, we give a useful lemma for the first derivative ofH(pθ, pθ0) in θ;

Lemma 4.1 Let q be a transition density, which depends on a parameterθ. We assume that for
all θ ∈ Θ,

∂

∂θ

"
(ln q(y, z; θ)) q(y, z; θ0)µθ0(y)dydz=

" (

∂

∂θ
ln q(y, z; θ)

)

q(y, z; θ0)µθ0(y)dydz.

Then

∂

∂θ

"
(ln q(y, z; θ)) q(y, z; θ0)µθ0(y)dydz

∣

∣

∣

∣

∣

θ=θ0

= 0.

Using the above Lemma together with Taylor’s expansion we obtain the lower bound for (i)
under Assumption 2.3(3), (4) and(5), and under Assumption 2.3(4) and(5) for (iii).
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4.2 Ideas for the proof of Proposition 3.1 (ii)

In this section, we consider Proposition 3.1 (ii). We prove this boundedness by using a central
limit theorem inC(Θ; R

∞). Note thatC(Θ; R
∞) is a complete and separable metric space with

metricη defined as follows; Forx = (x1, x2, ...), y = (y1, y2, ...) ∈ C(Θ; R
∞),

η(x, y) := sup
θ∈Θ

∞
∑

i=1

1
2i
{|xi(θ) − yi(θ)| ∧ 1} .

For N ∈ N, set

β̃N(θ) :=



























βN(θ)
θ − θ0

=
ZN(θ) − ZN(θ0)
θ − θ0

if θ , θ0,

∂

∂θ
ZN(θ0) if θ = θ0.

And setγN := (β̃N, β̃N−1, ..., β̃1, 0, ...) ∈ C(Θ; R
∞). The reason why we need to useR

∞ in the
above setting can be seen from the following Lemmas. In fact, in order to prove the bound-
edness of̃βN(θ) in N, we need to consider another random vector which has the same “joint”-
distribution asγN when we apply the Skorohod representation theorem.

The idea of the proof consists of proving that the sequenceγN converges weakly inC(Θ; R
∞).

Therefore the limitγ = (γ1, γ2, · · · ) should satisfy that there exist some random variablesd1, d2

such that

d1 ≤ inf
θ∈Θ
γ1(θ) ≤ sup

θ∈Θ
γ1(θ) ≤ d2 a.s.

Now, without loss of generality we can use the Skorohod representation theorem, so that the first
componentγ1

N = β̃N of γN will satisfy a similar property. And finally, from the convergence, we
obtain the boundedness ofβ̃N in N. In particular, we use the following lemmas.

Lemma 4.2 Let X = (X1,X2, ...),Y = (Y1,Y2, ...) ∈ C(Θ; R
∞) be random variables such that

X
d
= Y. Then we have

sup
n

sup
θ∈Θ
|Xn(θ)|

d
= sup

n
sup
θ∈Θ
|Yn(θ)|.

Lemma 4.3 Let (S, ‖ · ‖) be a complete, separable metric normed space. Let X be an S -valued
random variable on a probability space(Ω,F ,P) and let Y be an S -valued random variable on

a probability space(Ω′,F ′,P′). Supposed that X
d
= Y and there exists anR+-valued random

variable d on(Ω′,F ′,P′) such that

‖Y(ω′)‖ ≤ d(ω′) for all ω′ ∈ Ω′.

Then there exists a positive random variable M on(Ω,F ,P) such that

‖X(ω)‖ ≤ M(ω) a.s. ω ∈ Ω.

In order to prove the weak convergence ofγN we extend Theorem 7.1 and Theorem 7.3 in
Billingsley [3] which imply that it is enough to prove convergence of marginals and tightness of
the sequenceγN.

In order to prove convergence of marginals, we use Assumption 2.3(1) and(5), so that for
everyr ∈ N andθ1, ..., θr ∈ Θ, (γN(θ1), ..., γN(θr)) converges weakly. The proof uses the Crámer-
Wold device and the following extension of the Central limit theorem forα-mixing processes
(the proof is an extension of Theorem 27.5 in Billingsley [2], p.316.)
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Proposition 4.4 Suppose that X1,X2, ... is stationary andα-mixing withαn = O(n−5), where
we setα0 = 1 and f is aB(R2)-measurable function which satisfies E[ f (X0,X1)] = 0 and
E[ f (X0,X1)12] < +∞. If we set fi := f (Xi ,Xi+1) and Sn := f1 + · · · + fn, then

1
n

Var(Sn) −→ σ2 := E
[

f 2
1

]

+ 2
∞
∑

k=1

E
[

f1 f1+k
]

,

where the series converges absolutely. AndSn√
n
⇒ M, where M is a normal distributed random

variable with mean0 and varianceσ2. If σ = 0, we define M= 0.

To prove the tightness ofγN, we use Assumption 2.3(1), (3) and(5). One needs to prove
that for allε > 0,

lim
δ→0

lim sup
N→∞

Pθ0















sup
|θ−θ′ |≤δ

N
∑

i=1

1
2i

{∣

∣

∣β̃N−i+1(θ) − β̃N−i+1(θ
′)
∣

∣

∣ ∧ 1
}

≥ ε














= 0.

In the proof, the basic ingredient is the Garsia, Rodemich, Rumsey lemma.

4.3 Decomposition for the Estimation for Proposition 3.1 (iv)

Set

J1
N(θ) :=







































1
√

N

N−1
∑

i=0

1
θ − θ0















ln
p̂N
θ

p̄N
θ

(Yi ,Yi+1) − ln
p̂N
θ0

p̄N
θ0

(Yi ,Yi+1)















, θ , θ0

1
√

N

N−1
∑

i=0

∂

∂θ
ln

p̂N
θ

p̄N
θ

(Yi ,Yi+1)

∣

∣

∣

∣

∣

∣

θ=θ0

, θ = θ0,

J2
N(θ) :=































√
N
" ln p̄N

θ
− ln p̄N

θ0

θ − θ0
(y, z)

{

p̄N
θ0
− pθ0

}

(y, z)µθ0(y)dydz, θ , θ0
√

N
"

∂

∂θ
ln p̄N

θ (y, z)
∣

∣

∣

∣

∣

θ=θ0

{

p̄N
θ0
− pθ0

}

(y, z)µθ0(y)dydz, θ = θ0,

J3
N(θ) :=



































































1
√

N

N−1
∑

i=0















ln p̄N
θ
− ln p̄N

θ0

θ − θ0
(Yi ,Yi+1)

−
" ln p̄N

θ
− ln p̄N

θ0

θ − θ0
(y, z)pθ0(y, z)µθ0(y)dydz















, θ , θ0

1
√

N

N−1
∑

i=0

{

∂

∂θ
ln p̄N

θ (Yi ,Yi+1)
∣

∣

∣

∣

∣

θ=θ0

−
"

∂

∂θ
ln p̄N

θ (y, z)
∣

∣

∣

∣

∣

θ=θ0

pθ0(y, z)µθ0(y)dydz

}

, θ = θ0,

Then we define:

β̄N(θ)
θ − θ0

:= J1
N(θ) − J2

N(θ) + J3
N(θ).

We can easily prove boundedness of the first termJ1
N(θ) from Assumption 2.3(6)-(a), and also

we can easily prove boundedness ofJ2
N(θ) from Assumption 2.3(6)-(b). Finally we consider

the third termJ3
N(θ). To prove boundedness ofJ3

N(θ), we prove a weak convergence by using the
similar argument as Section 4.2. Then we can prove Proposition 3.1 (iv).
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5 Parameter Tuning and the Assumption 2.3 (6)-(a)

This section is devoted to proving that Assumption 2.3(6)-(a) is satisfied under sufficient
smoothness hypothesis on the random variables and processes that appear in the problem as
well as the correct parameter tuning. That is, we need to prove that the following condition
(Assumption 2.3(6)-(a) in Section 2.2) is satisfied

sup
N

sup
θ∈Θ

∣

∣

∣

∣

∣

∣

∣

1
√

N

N−1
∑

i=0

(

∂

∂θ
ln p̂N

θ (Yi ,Yi+1) −
∂

∂θ
ln p̄N

θ (Yi ,Yi+1)

)

∣

∣

∣

∣

∣

∣

∣

< +∞ a.s. (5.1)

In order to understand the role of all the approximation parameters, we rewritep̂N
θ

andp̄N
θ

as
follows

p̂N
θ (y, z) :=

1
nh

n
∑

k=1

K

















Xy,(k)
(m) (θ) − z

h

















p̄N
θ (y, z) := E

















1
h

K

















Xy,(1)
(m) (θ, ·) − z

h

































.

Herem ≡ m(N), n ≡ n(N) andh ≡ h(N) are parameters that depend onN. n is the number
of Monte Carlo simulations used in order to estimate the density andm is the parameter of
approximation (in the Euler scheme this is the number of time steps used in the simulation of
Xy,(1)

(m) (θ)) andh is the bandwidth size associated to the kernel density estimation method. In
this sense we will always think of hypotheses in terms ofN although we will drop them from
the notation and just usem, n and h. The goal of this section is to prove that under certain
hypotheses, there is a choice ofm, n andh that ensures that condition (5.1) is satisfied.

As the main problem is to obtained upper and lower bounds for ˆpN
θ

for random arguments,
we will first restrict the values for the random variablesYi , i = 0, ....,N−1 to a compact set. This
is obtained using an exponential type Chebyshev’s inequality and the Borel-Cantelli Lemma
(Theorem 4.3 in pp.53 of Billingsley [2]) as follows

Lemma 5.1 Assume the following hypothesis
(H0). mc1 := supi E[ec1|Yi |2] < ∞ for some constant c1 > 0. Furthermore let aN ≥ θu − θl be a

sequence of strictly positive numbers such that
∑∞

N=1 N exp
(

−c1a2
N

)

< ∞.
Then we have that for a.s.ω ∈ Ω, there exists N big enough such thatmaxi=1,..,N |Yi | < aN.

That is, for

AN := {ω ∈ Ω; ∃i = 1, ...,N s.t. |Yi | > aN}
we have

P

(

lim sup
N→∞

AN

)

= 0.

The decomposition that we will use in order to prove (5.1) is the same decomposition as in
the proof of Theorem 3.2 in pp.73 of Bosq [4]. That is,

sup
θ∈Θ

sup
|x|,|y|≤aN

∣

∣

∣

∣

∣

∣

∂θ p̂N
θ

p̂N
θ

(x, y) −
∂θ p̄N

θ

p̄N
θ

(x, y)

∣

∣

∣

∣

∣

∣

≤
supθ∈Θ sup|x|,|y|≤aN

∣

∣

∣∂θ p̂N
θ

(x, y) − ∂θ p̄N
θ

(x, y)
∣

∣

∣

inf θ∈Θ inf |x|,|y|≤aN p̄N
θ

(x, y)

+ sup
θ∈Θ

sup
|x|,|y|≤aN

∣

∣

∣

∣

∣

∣

∂θ p̂N
θ

p̂N
θ

(x, y)

∣

∣

∣

∣

∣

∣

supθ∈Θ sup|x|,|y|≤aN

∣

∣

∣p̂N
θ

(x, y) − p̄N
θ

(x, y)
∣

∣

∣

inf θ∈Θ inf |x|,|y|≤aN p̄N
θ

(x, y)
=:

A
B
+C

D
B
, (5.2)
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where we remark that

∂θ p̂
N
θ (x, y) =

1
nh2

n
∑

k=1

K′
















Xy,(k)
(m) (θ) − z

h

















∂θX
y,(k)
(m) (θ) ,

∂θ p̄
N
θ (x, y) = E

















1
h2

K′
















Xy,(k)
(m) (θ) − z

h

















∂θX
y,(k)
(m) (θ)

















.

Therefore in order to prove the finiteness of (5.1), we need to bound
√

N
(

A
B +CD

B

)

. This
will be done in a series of Lemmas using Borel-Cantelli arguments together withthe modulus
of continuity of the quantities ¯pN

θ
and p̂N

θ
. First, we start analyzing the difficult partCD

B .

5.1 Upper bound forCD
B in (5.2)

We work in this section under the following hypotheses:
(H1). Assume that there exist some positive constantsϕ1, ϕ2, whereϕ1 is independent ofN and
ϕ2 is independent ofN and∆, such that the following holds;

inf
(x,θ)∈BN

p̄N
θ (x, y) ≥ ϕ1 exp

(

−
ϕ2a2

N

∆

)

,

where we set

BN :=
{

(x, θ) ∈ R
2 × Θ; ‖x‖ < aN

}

,

where‖ · ‖ is the max-norm.
(H2). Assume that the kernelK is the Gaussian kernel;

K(z) :=
1
√

2π
exp

(

−1
2

z2

)

.

(H3). Assume that for some constantr3 > 0 and a sequence
{

b3,N; N ∈ N
} ⊂ [1,∞), we have

that
∑∞

N=1
na

2r3
N E[|Z3,N(·)|r3]

(h2b3,N)r3 < ∞, where

Z(k)
3,N (ω) := a−2

N













sup
(x,θ)∈BN

∣

∣

∣Xx,(k)
(m) (θ, ω)

∣

∣

∣ + 1













sup
(x,θ)∈BN

∣

∣

∣∂θX
x,(k)
(m) (θ, ω)

∣

∣

∣ .

(H4). Assume that for some constantr4 > 0 and a sequence
{

b4,N; N ∈ N
} ⊂ [1,∞), we have

that
∑∞

N=1

nE
[
∣

∣

∣

∣

Z(k)
4,N(·)

∣

∣

∣

∣

r4
]

(b4,N)r4 < ∞, where

Z(k)
4,N (ω) := a−1

N













sup
(x,θ)∈BN

∣

∣

∣∂xX
x,(k)
(m) (θ;ω)

∣

∣

∣ + sup
(x,θ)∈BN

∣

∣

∣∂θX
x,(k)
(m) (θ;ω)

∣

∣

∣













.

(H5). Assume that there exists some positive constantC5 > 0 such that for allx, y ∈ R, m ∈ N

andθ ∈ Θ,
∣

∣

∣∂xp̄N
θ (x, y)

∣

∣

∣ ,
∣

∣

∣∂yp̄N
θ (x, y)

∣

∣

∣ ,
∣

∣

∣∂θ p̄
N
θ (x, y)

∣

∣

∣ ≤ C5 < +∞.
(H6). Assume thatηN andνN are sequences of positive numbers so that

∞
∑

N=1

ν3N exp

(

−(ηN)2nh2

16‖K‖∞

)

< ∞,

where‖ · ‖∞ denotes the sup-norm.
Note that from the assumption(H1), we have a lower bound ofB in (5.2).
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Lemma 5.2 Assume hypothesis(H2) and(H3), then we have that

P

(

lim sup
N→∞

{

sup
θ∈Θ

sup
|x|,|y|≤aN

∣

∣

∣

∣

∣

∣

∂θ p̂N
θ

p̂N
θ

(x, y)

∣

∣

∣

∣

∣

∣

> b3,N

})

= 0.

The proof of the Lemma follows by rewriting the fraction
∂θ p̂N
θ

p̂N
θ

and show that it can be bounded

using the upper bound ofK′

K and the derivative of the approximating process with respect toθ.

5.2 Upper bound ofD in (5.2)

In this section, we use the modulus of continuity of ˆpN
θ

and p̄N
θ

in order to find an upper bound
for B. Similar ideas appear in Theorem 2.2 in pp.49 of Bosq [4].

Lemma 5.3 Set

BN
l1l2

:=

{

(x, θ) ∈ R
2 × Θ; ‖x − xN

l1
‖ ≤ aN

νN
, |θ − θNl2 | ≤

θu − θl
νN

}

, l1 = 1, · · · , ν2N, l2 = 1, · · · , νN,

such thatB̊N
l1l2
∩ B̊N

l′1l′2
= ∅ ((l1, l2) , (l′1, l

′
2)) and appropriate set of pointsxN

l1
, θNl2 , l1 = 1, ..., ν2N

and l2 = 1, .., νN such that∪ν
2
N

l1=1 ∪
νN
l2=1 BN

l1l2
= BN. Then

sup
(x,θ)∈BN

∣

∣

∣p̂N
θ (x) − p̄N

θ (x)
∣

∣

∣ = max
1≤l1≤ν2N
1≤l2≤νN

sup
(x,θ)∈BN

l1l2

∣

∣

∣p̂N
θ (x) − p̄N

θ (x)
∣

∣

∣

≤ max
1≤l1≤ν2N
1≤l2≤νN

sup
(x,θ)∈BN

l1l2

∣

∣

∣

∣

∣

p̂N
θ (x) − p̂N

θNl2

(

xN
l1

)

∣

∣

∣

∣

∣

+ max
1≤l1≤ν2N
1≤l2≤νN

∣

∣

∣

∣

∣

p̂N
θNl2

(

xN
l1

)

− p̄N
θNl2

(

xN
l1

)

∣

∣

∣

∣

∣

+ max
1≤l1≤ν2N
1≤l2≤νN

sup
(x,θ)∈BN

l1l2

∣

∣

∣

∣

∣

p̄N
θNl2

(

xN
l1

)

− p̄N
θ (x)

∣

∣

∣

∣

∣

. (5.3)

The proof of the above Lemma is straightforward. We consider the first term of (5.3).

Lemma 5.4 Under(H2) and(H4), then we have that

P























lim sup
N→∞























max
1≤l1≤ν2N
1≤l2≤νN

sup
(x,θ)∈BN

l1l2

∣

∣

∣

∣

∣

p̂N
θ (x) − p̂N

θNl2

(

xN
l1

)

∣

∣

∣

∣

∣

>
2‖K′‖∞

h2

a2
N

νN
b4,N













































= 0.

Now we consider the third term in (5.3).

Lemma 5.5 Assume(H5), then,

max
1≤l1≤ν2N
1≤l2≤νN

sup
(x,θ)∈BN

l1l2

∣

∣

∣

∣

∣

p̄N
θNl2

(

xN
l1

)

− p̄N
θ (x)

∣

∣

∣

∣

∣

≤ 3C5
aN

νN

Finally, we consider the second term of (5.3).

Lemma 5.6 Assume(H2) and thatηN satisfies(H6), then we have that

P























lim sup
N→∞























max
1≤l1≤ν2N
1≤l2≤νN

∣

∣

∣

∣

∣

p̂N
θNl2

(

xN
l1

)

− p̄N
θNl2

(

xN
l1

)

∣

∣

∣

∣

∣

> ηN













































= 0.

Now we can conclude this section with the following upper bound forCD
B .

Theorem 5.7 Assume conditions(H2), (H4), (H5) and (H6), then there exists N big enough
such that

C
D
B
≤ b(3)

N ×
1
ϕ1

exp

(

ϕ2a2
N

∆

)

×
(

2‖K′‖∞
h2

a2
N

νN
b4,N + ηN + 3C5

aN

νN

)

.
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5.3 Upper bound for A
B in (5.2)

The proof in this case is simpler on the one hand because many of the previous estimatescan be
used. On the other hand, when considering the analogous result of Lemma 5.6 for the deriva-
tives,∂θ p̂N

θ
and∂θ p̄N

θ
, has to be reworked as the condition‖p̂N

θ
‖∞ < +∞ and‖p̄N

θ
‖∞ < +∞ are

not valid. From the condition(H1), we have

A
B
≤ 1
ϕ1

e
ϕ2a2

N
∆ × sup

θ∈Θ
sup
|x|,|y|≤aN

∣

∣

∣∂θ p̂
N
θ (x, y) − ∂θ p̄N

θ (x, y)
∣

∣

∣ .

Here we consider the sup-term as before.

Lemma 5.8 We use the same notations as the previous section. Then we have

sup
θ∈Θ

sup
|x|,|y|≤aN

∣

∣

∣∂θ p̂
N
θ (x) − ∂θ p̄N

θ (x)
∣

∣

∣

≤ max
1≤l1≤ν2N
1≤l2≤νN

sup
(x,θ)∈BN

l1l2

∣

∣

∣

∣

∣

∂θ p̂
N
θ (x) − ∂θ p̂N

θNl2

(

xN
l1

)

∣

∣

∣

∣

∣

+ max
1≤l1≤ν2N
1≤l2≤νN

∣

∣

∣

∣

∣

∂θ p̂
N
θNl2

(

xN
l1

)

− ∂θ p̄N
θNl2

(

xN
l1

)

∣

∣

∣

∣

∣

+ max
1≤l1≤ν2N
1≤l2≤νN

sup
(x,θ)∈BN

l1l2

∣

∣

∣

∣

∣

∂θ p̄
N
θNl2

(

xN
l1

)

− ∂θ p̄N
θ (x)

∣

∣

∣

∣

∣

. (5.4)

As in previous sections, we define that

Ż(k)
4,N := a−1

N

(

hsup
θ∈Θ

sup
|x|≤aN

∣

∣

∣∂x∂θX
x,(k)
(m) (θ)

∣

∣

∣ + hsup
θ∈Θ

sup
|x|≤aN

∣

∣

∣∂θ∂θX
x,(k)
(m) (θ)

∣

∣

∣

+

(

Z(k)
4,N + 1

)

sup
θ∈Θ

sup
|x|≤aN

∣

∣

∣∂θX
x,(k)
(m) (θ)

∣

∣

∣

)

.

Note that{Ż(k)
4,N}k=1,2,... is a sequence of independent and identically distributed random variables.

Then we set the following hypothesis.
(H4’). Assume that for some constant ˙r4 > 0 and a sequence{ḃ4,N; N ∈ N} ⊂ [1,∞), we have

that
∑∞

N=1

nE
[
∣

∣

∣

∣

Ż(k)
4,N

∣

∣

∣

∣

ṙ4
]

(ḃ4,N)ṙ4
< ∞.

Lemma 5.9 Under the above hypothesis and(H4’) , we have that

P























lim sup
N→∞























max
1≤l1≤ν2N
1≤l2≤νN

sup
(x,θ)∈BN

l1l2

∣

∣

∣

∣

∣

∂θ p̂
N
θ (x) − ∂θ p̂N

θNl2

(

xN
l1

)

∣

∣

∣

∣

∣

≥ ‖K
′‖∞ ∨ ‖K′′‖∞

h3

a2
N

νN
ḃ4,N













































= 0.

We consider the third term of (5.4).

max
1≤l1≤ν2N
1≤l2≤νN

sup
(x,θ)∈BN

l1l2

∣

∣

∣

∣

∣

∂θ p̄
N
θNl2

(

xN
l1

)

− ∂θ p̄N
θ (x)

∣

∣

∣

∣

∣

≤ aN

νN
max
1≤l1≤ν2N
1≤l2≤νN

sup
(x,θ)∈BN

l1l2

{

sup
0≤ε≤1

∣

∣

∣

∣

∂x∂θ p̄
N
θ

(

εx+ (1− ε)xN
l1
, y

)

∣

∣

∣

∣

+ sup
0≤ε≤1

∣

∣

∣

∣

∂y∂θ p̄
N
θ

(

xN
l1
, εy+ (1− ε)yN

l1

)

∣

∣

∣

∣

+ sup
0≤ε≤1

∣

∣

∣

∣

∣

∂θ∂θ p̄
N
εθ+(1−ε)θNl2

(

xN
l1

)

∣

∣

∣

∣

∣

}

.

(H5’). Assume that there exists some positive constantĊ5 > 0 such that for allx, y ∈ R, m ∈ N

andθ ∈ Θ,
∣

∣

∣∂x∂θ p̄
N
θ (x, y)

∣

∣

∣ ,
∣

∣

∣∂y∂θ p̄
N
θ (x, y)

∣

∣

∣ ,
∣

∣

∣∂2
θ p̄

N
θ (x, y)

∣

∣

∣ ≤ Ċ5 < +∞.
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Lemma 5.10 Assume(H5’) . Then, we have

max
1≤l1≤ν2N
1≤l2≤νN

sup
(x,θ)∈BN

l1l2

∣

∣

∣

∣

∣

∂θ p̄
N
θNl2

(

xN
l1

)

− ∂θ p̄N
θ (x)

∣

∣

∣

∣

∣

≤ 3Ċ5
aN ∨ (θu − θl)

νN
.

Finally, we consider the second term of (5.4). Set

Ẇ( j),x
m,h (θ) :=

1
h2

K′
















Xx,( j)
(m) (θ) − y

h

















∂θX
x,( j)
(m) (θ) − 1

h2
E

















K′
















Xx,(1)
(m) (θ; ·) − y

h

















∂θX
x,(1)
(m) (θ)

















.

Note that{Ẇ( j),x
m,h (θ)} j=1,2,... is a sequence of independent and identically distributed random vari-

ables withE
[

Ẇ( j),x
m,h (θ)

]

= 0.

(H6’). There existsĊ6 > 0 andα̇6 > 0 and a sequence of positive numbersḃ6,N such that
∑∞

N=1 ν
3
N exp

(

− n(ηN)2h4

2‖K′‖2∞(ḃ6,N)2a2
N

)

{

1+ Ċ6

n1+α̇6

}n
< ∞.

(H6a’). Assume that there exists ˙r6 > 0 and a sequence of positive numbersḃ6,N in (H6’) satisfy,

such that
∑∞

N=1 n
E
[

|Ż6,N|ṙ6
]

(ḃ6,N)ṙ6
< ∞ for

Ż( j)
6,N := a−1

N sup
θ∈Θ

sup
|x|≤aN

{∣

∣

∣∂θX
x,( j)
(m) (θ)

∣

∣

∣ + E
[∣

∣

∣∂θX
x,(1)
(m) (θ)

∣

∣

∣

]}

.

(H6b’). Assume that for some ˙q6 > 1, supN∈N E
[∣

∣

∣Ż6,N

∣

∣

∣

q̇6
]

< +∞ and forα̇6 > 0, Ċ6 > 0 andḃ6,N

given in(H6’) the following is satisfied















ηNh2

(‖K′‖∞daN,m)2aN
exp















− (ηN)2

2(‖K
′‖∞

h2 ḃ6,NaN)2





























q̇6

≤ Ċ6

n1+α̇6
.

Applying Lemma 6.2 in Appendix, we obtain the following important Lemma.

Lemma 5.11 Assume(H6), (H6a’) and(H6b’) . Then there exists N big enough such that

max
1≤l1≤ν2N
1≤l2≤νN

∣

∣

∣

∣

∣

∂θ p̂
N
θNl2

(

xN
l1

)

− ∂θ p̄N
θNl2

(

xN
l1

)

∣

∣

∣

∣

∣

≤ ηN.

Theorem 5.12 Assume conditions(H1), (H2), (H4’) , (H5’) , (H6’) , (H6a’) and (H6b’) . Then
we have that for a.s.ω, there exists N0 ≡ N0(ω) such that for all N≥ N0 we have

A
B
≤ 1
ϕ1

e
ϕ2a2

N
∆ ×

(

‖K′‖∞ ∨ ‖K′′‖∞
h3

a2
N

νN
ḃ4,N + ηN + 3Ċ5

aN

νN

)

.

Finally putting all our results together, we have (see Theorem 5.7).

Theorem 5.13 Assume conditions(H0), (H1), (H2), (H3), (H4), (H5), (H6), (H4’) , (H5’) ,
(H6’) , (H6a’) and(H6b’) . Then for a.s.ω, there exists N0 ≡ N0(ω̂) such that for all N≥ N0 we
have

√
N

(A
B
+C

D
B

)

≤ 6
√

N
1
ϕ1

e
ϕ2a2

N
∆ ×

(

‖K′‖∞ ∨ ‖K′′‖∞
h2

a2
N

νN

(

ḃ4,N

h
+ b4,Nb3,N

)

+

(

ηN +
C5 ∨ Ċ5

νN

)

b3,N

)
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5.4 Conclusion: Tuning for n and h

We need to find now a sequence of values forn andh such that all the hypothesis in the previous
Theorem are satisfied and that the upper bound is uniformly bounded inN. We rewrite some
needed conditions that are related to the parametersn andh. We assume stronger hypothesis
that may help us understand better the existence of the right choice of parametersn andh.

As we are only interested in the relationship betweenn andh with N, we will denote byC1,
C2 etc., various constants that may change from one equation to next. These constants depend
on K, ∆ andΘ. They are independent ofn, h and N but they depend continuously on other
parameters.

(i). There exists some positive constantCK,∆,Θ ≥ 0, which depends onK,∆,Θ, and is inde-
pendent ofN such that

√
Ne

ϕ2a2
N
∆ ×

(

a2
N

νNh2

(

b4,Nb3,N +
ḃ4,N

h

)

+

(

ηN +
aN

νN

)

b3,N

)

≤ CK,∆,Θ. (5.5)

(ii). (Borel-Cantelli forYi , (H0))

mc1 := E[ec1|Y1|2] < +∞ for some constantc1 > 0 and{aN}N∈N ⊂ [θu − θl ,∞) is a sequence
such that for the samec1,

∑∞
N=1

N
exp(c1a2

N)
< +∞.

(iii). (Borel-Cantelli forZ(k)
3,N (ω), (H3)) For somer3 > 0,

∞
∑

N=1

na2r3
N

(h2b3,N)r3
< +∞ and sup

N∈N
E

[∣

∣

∣Z3,N (·)
∣

∣

∣

r3
]

< +∞ for each fixedm ∈ N.

(iv). (Borel-Cantelli forZ(k)
4,N (ω), (H4)) For somer4 > 0,

∞
∑

N=1

n
(b4,N)r4

< +∞ and sup
N∈N

E
[∣

∣

∣Z4,N (·)
∣

∣

∣

r4
]

< +∞ for each fixedm ∈ N.

(v). (Borel-Cantelli for|p̂N
θ
(x) − p̄N

θ
(x)|, (H6))

∞
∑

N=1

ν3N exp

(

−(ηN)2nh2

16‖K‖∞

)

< +∞.

(vi). (Borel-Cantelli forŻ(k)
4,N (ω), (H4’) ) For some ˙r4 > 0,

∞
∑

N=1

n

(ḃ4,N)ṙ4
< +∞ and sup

N∈N
E

[∣

∣

∣Ż4,N (·)
∣

∣

∣

ṙ4
]

< +∞ for each fixedm ∈ N.

(vii). (Borel-Cantelli for|∂θ p̂N
θ
(x) − ∂θ p̄N

θ
(x)|, (H6’) ) For some ˙α6 > 0, and a constanṫC6,

∞
∑

N=1

ν3N exp













− n(ηN)2h4

2‖K′‖2∞ (ḃ6,N)2a2
N













{

1+
Ċ6

n1+α̇6

}n

< +∞.
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(viii). (Borel-Cantelli forŻ(k)
6,N(ω), (H6a’)) For some ˙r6 > 0,

∞
∑

N=1

n

(ḃ6,N)ṙ6
< +∞ and sup

N∈N
E

[∣

∣

∣Ż6,N(·)
∣

∣

∣

ṙ6
]

< +∞ for each fixedm ∈ N.

(ix). ((H6b’) ) For some ˙q6 > 1,














ηNh2

(‖K′‖∞ḃ6,N)2aN

exp















− (ηN)2

2(‖K
′‖∞

h2 ḃ6,NaN)2





























q̇6

≤ Ċ6

n1+α̇6
and sup

N∈N
E

[∣

∣

∣Ż6,N(·)
∣

∣

∣

q̇6
]

< +∞.

whereĊ6 andα̇6 are the same as(vii) above.

5.4.1 Parameter Tuning

SetaN :=
√

c2 ln N for some positive constantc2. Setn = C1Nα1 for α1,C1 > 0 andh = C2N−α2

for α2,C2 > 0.
For (ii) to be satisfied, we need to have

∞
∑

N=1

N
exp(c1c2 ln N)

=

∞
∑

N=1

1
Nc1c2−1

.

Then we needc1 >
2
c2

. Note that if we choosec2 large enough, thenc1 can be chosen as small
as needed.

With the above specifications, we can check that all the conditions in Section5.4 are satisfied
if the following parameter condition is satisfied forN sufficiently large

(

4α2 + 2
α1 + γ̇6

ṙ6
+
ϕ2c2

∆
+

1
2
+
γ3

r3
+
α1

r3

)

q̇6 > α1, (5.6)

which has to be satisfied together with

α1

(

1− 2
r3
− 2

ṙ6

)

> 8α2 + 1+
4ϕ2c2

∆
+

2γ̇3

r3
+ 2
γ̇6

ṙ6
. (5.7)

Notice that the above two inequalities will be satisfied if we takec2 or c big enough. Here for
(iii) , we assume that there exist somer3 > 0, γ3 > 1 and some constantC3 , 0 such that

n(c2 ln N)r3

(h2b3,N)r3
=

C3

Nγ3
and thereforeb3,N =

C3(Nγ3n)
1
r3 c2 ln N

h2
.

And for (viii) , we assume that there exists some ˙r6 > 0, γ̇6 > 1 and some constanṫC6 , 0 such
that

n

(ḃ6,N)ṙ6
=

Ċ6

Nγ̇6
and therefore ḃ6,N =

(

Ċ6nNγ̇6
)

1
ṙ6 .

For (iv) and(vi), we assume that forg = b4,N, ḃ4,N, there exists somerg > 0, γg > 1 and
some constantCg , 0 such that

n
(g)rg

=
Cg

Nγg
.

These constants do not appear in the main restriction but the fact that the convergence is of the
above form is used in the proof of the following theorem.
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Theorem 5.14 Assume that the constants are chosen so as to satisfy c1 >
2
c2

, (5.6) and (5.7).
Also assume that the moment conditions stated in(ii) , (iii) , (iv), (vi), (viii) and (ix) above are
satisfied. Then(H0), (H3), (H4), (H4’) , (H6), (H6’) , (H6a’) and(H6b’) are satisfied. Further-
more, if we assume(H1), (H2), (H5) and(H5’) , then Assumption 2.3(6)-(a) is satisfied.

And also if all other conditions on Assumption 2.3 are satisfied then there exist some positive
finite random variablesΞ, Ξ1 andΞ2 such that

|EN[ f ] − f (θ0)| ≤
Ξ1√

N
a.s. and

∣

∣

∣En
N,m[ f ] − f (θ0)

∣

∣

∣ ≤ Ξ2√
N

a.s.,

and therefore

∣

∣

∣EN[ f ] − En
N,m[ f ]

∣

∣

∣ ≤ Ξ
√

N
a.s.

Remark 5.15 (i). In (5.7), r3 andṙ6 represent moment conditions on the derivatives of Xx
(m)(θ),

ϕ−1
2 represents the variance of Xx

(m)(θ), ∆ represents the length of the time interval between
observations. Finally c2 > 2c−1

1 expresses a moment condition on Yi. In (5.6), recall that
q̇6 determines a moment condition on Xx

(m)(θ).

(ii). Roughly speaking, if r3, ṙ6 andq̇6 are big enough (which implies a condition on n), and we
chooseα1 > 8α2 + 1+ 4ϕ2c2

∆
, m=

√
N, h = C2N−α2 and n= C1Nα1, then Assumption 2.3

(6)-(a)and(6)-(b) are satisfied. Then conditions contain the main tuning requirements.

6 Appendix

6.1 Refinements of Markov’s inequalities

In this section we state a refinement of Markov’s inequality that is appliedin this article. For
λ > 0, let Sn :=

∑n
i=1 Xi whereXi is a sequence of independent and identically distributed

random variables withE[Xi] = 0.

Lemma 6.1 Let X be a random variable with E[X] = 0. Then, forλ ∈ R, c > 0 and p :=
P(|X| < c), we have

E
[

eλX1 (|X| < c)
]

≤ −eλc − e−λc

2c
E[X1(|X| ≥ c)] + pe

λ2c2
2 .

Lemma 6.2 Let q−1
1 + q−1

2 = 1 and assume that E[|Xi |q1] < C̄q1, then for all 0 < ε < 1 and
{ fn}n∈N ⊂ R+ satisfying thatε f −1

n ≤ K we have

P (|Sn| > nε; |Xi | < fn, i = 1, · · · , n) ≤ 2e
− nε2

2 f 2
n

{

1+ (q2 − 1)

(

q−1
2 K1

ε

f 2
n

C̄
q−1

1
q1 e

− ε2
2 f 2

n

)q1
}n

. (6.1)

Here K1 = max
{

1, eK−e−K

2K

}

.
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