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Abstract

We consider the asymptotic behavior of a Bayesian pararast@gnation method under
discrete stationary observations. We suppose that theitiandensity of the data is un-
known, and therefore we approximate it using a kernel dgesiimation method applied to
the Monte Carlo simulations of approximations of the théoaérandom variables generat-
ing the observations. In this article, we estimate the dyetween the theoretical estimator,
which assumes the knowledge of the transition density andgproximation which uses
the simulation. We prove the strong consistency of the afiprated estimator and find the
order of the error. Most importantly, we give a parameteirigrresult which relates the
number of data, the number of time-steps used in the appetdiimprocess, the number of
the Monte-Carlo simulations and the bandwidth size of theddedensity estimation.

1 Introduction

We consider a parameter estimation method of Bayesian type under discreteatbssr That

is, our goal is to estimate the posterior expectation of some funétgiven the observed data
Y(')\I = (Yo, Yl’ ceey YN),

[ £(0)¢a(Yp)r(6)do
[ #o(Y5)x(6)do

whereg,(Y}') is the joint-density of the model process 8} = (Yo, Y1, ..., Yn) andn(6) is a
prior distribution. This method can be applied when the joint-density;') is known a priori.
In this article, we suppose that this is not the case.

Suppose thaY; is a stationary Markov chain therefoge(y)) = wo(Yo) [Tl Po(¥i, Yis1),
wherey, is a probability density function which is the invariant measur¥ @nd py(y, 2) is the
transition density frony to z. But this expression (1.1) is still theoretical, as we do not know
the transition density,. So we propose to estimate this quantity based on the simulation of the
underlying process. Usually the underlying process is also approximated using, fqulexam
the Euler-Maruyama scheme in the case that generated by a flusion.

En[f]:= EJf[Yo, ..., Ya] := (1.1)
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Then we approximate the transition density of the Euler-Maruyama approximation through
the kernel density estimation method. Under these settings, we consider an aqapiaxiof
the posterior expectation (1.1):

J 1©)8)(Y5)x(6)de
[ ) (Y3)n(6)do

where gN(YD) := u(Yo) Hszl PY(Yi-1, Y;) and pi'(y, 2) is an approximation of the transition
density obtained using the kernel density estimation method. The problem we waldréss
is that there exists an appropriate choice of all the parameters that appleamioproximation
of the posterior expectation so that convergence is obtained. In particulagstieethat is new
in this research in comparison with previous results is that we give anastof how good
the approximation of the transition density has to be as the amount of observatiorsétre
infinity (therefore the number of argumentsgn tend to infinity). In reality one also needs
to approximate the invariant measure but this problem can be solved withrantexth. The
quality of approximation is studied in Talay [10] and the references therein.

Approximating posterior distribution can also be interpreted as a type ofrfdt@roblem
for a diffusion process. This approach is considered in a general framework by Del Moral,
Jacod, Protter [6]. Cano et al. [5] considered this problem based on Bayefgaenice for a
stochastic dterential equation with paramet@éunder similar settings to ours. They use direct
calculations through an error estimation between the transition density dfuthestochastic
differential equation and the transition density of the Euler-Maruyama approximatiem loy
Bally and Talay [1]. They prove that for fixe the approximate posterior distribution which
uses the exact density of the Euler approximation converges to the exact postérioutths
as the number of steps increase.

Yasuda [12] improved this result and gave a general framework where thefrebaver-
gence isN~¥2 under a condition of approximation for the simulated density and the density of
the approximation. This conditiori)-(b) in this article) hides the tuning relationship between
mandN. The result is stated in general terms so that it can be adapted to vaffimssodi cases.

In this article, we consider the problem of approximation the transition densisimg the
kernel density estimation method and therefore we clarify the tuning prttass required for
the convergence of approximation of posterior expectations. Therefore, we give &t expl
pression that shows how to choose parameters (number of Monte-Carlo simuo)&tandwidth
size of the kernel density estimatibrand number of approximation parameter of the process
m) based on the number of observatidhs

In this paper, we assume that observation d@t&;, ..., Yy comes from a stationary and
a-mixing process and the time interval betwegrandY,, is fixed for alli. We give the rela-
tionship between the number of data and the parameters of the transition densiiraggion
and we estimate the error as follows;

Enmlf]:=

[1]

|En[f] - Epnlfl] < as w,,
whereE is some positive random variable wiih< +oo a.s.w, @ (herew denotes the random-
ness associated with the data amndl€notes the randomness associated with the simulations).
And also we prove thdEy[ f] converges td (6p) with order71ﬁ, wheref, is the true value.

This paper is structured as follows. In Section 2, we will give the settirmuoproblem and
precisely state our main theorem. In Section 3, we will prove our maing¢nestated in Section
2 by using Laplace method dividing the proof in four estimations expressed in Prop@&sition
This decomposition plays a central role in the proof. In Section 4, we will show baleal
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with each term in the decomposition. In Section 5, we will give the tuning regith states
the relationship between the number of Monte-Carlo simulatiand the bandwidth sizewith
related toN so that a certain rate of convergence is achieved.

The proofs of various statements are involved and therefore we have triecetthgimain
line of thought in the proofs in this article. One can find proofs of Theorems, Propositidns a
Lemmas of this paper in Kohatsu-Higa et al. [8] and Yasuda [12]. And also one caarfind
example, the Ornstein-Uhlenbeck process case, of this paper in Kohatsu-ldigfét

2 Settings and Main Theorem

2.1 Settings

First we recall the definition at-mixing process;

Definition 2.1 (Billingsley [2], p.315) For a sequence; XX, ... of random variables, let,, be
a number such that

IP(AN B) — P(A)P(B)| < an

for A € o(Xy, ..., Xx), B € 0o(Xkin» Xkini1, -..) @and k n € N. Suppose that, — 0as n— oo, then
we call the sequence; XXy, ..., @-mixing process.

For convenience, we set = 1.

Here we consider the following setting: Lt e © := [6',6"], (¢' < ¢") be a parameter that
we want to estimate, Whe®|s a compact subset IR andg, € O, Where® denotes the interior
of the set® and®, = © — {6p}. Let (O, F,Py,), (Q,F,P) and Q. F, P) be three probability
spaces, where the probablllty meastyg is parametrized by,. A > 0 is a fixed parameter
that represents the time between observations. The probability SpageR,,) is used for the
observations @, 7, P) is used for the process that defines the process witlPleand the space
(Q, ¥, P) is used for the simulations that are used in estimating the transitiortgensi

(). (Observation process) et {Yix}i-01...n be a sequence &f + 1-observations of a Markov

.....

chain having transition density, (Y, 2), ¥, z € R and invariant measuge,. This sequence
is defined on the probability spac@,(F, Py,). We writeY; := Y, fori =0,1,...,N.

(if). (Model process)Denote byXY(#) a random variable defined on the probability space
(Q, 7, P) such that its law is given bgy(y, -).

(iii). Denote by Q, F, P) the probability space which generates the simulation of the random
variablexY(6).

(iv). (Approximating process) Denote be(m)(e) the simulation of an apprOX|matlon of the

model proces¥(#), which is defined on(g, F, P) (Ht = % ® F satisfies the usual
condition.mis the parameter that determines the quality of the approximapliy, -) =
P (y, -; m(N)) is the density for the random variabl%‘n)(e).

(v). (Approximated transition density) LetK : R — R, be a kernel which satisfiqu(x)dx =
1 andK(x) > O for all x. Denote bypf'(y, 2), the kernel density estimation pf'(y, z) based

on n simulation (independent) c)((m)(e) which are defined oncy, 7, P). The outcomes
of nsimulations are denoted B¢;{(6), k = 1,.....n. Forh(N) > 0,

n(N) XY(k) 0, —
B (v.2) := P (v.z & m(N). h(N). n(N)) := n(N)lh(N)Z ( (m(N);m((N;U) ]
k=1
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(vi). For givenm, we introduce the “average” transition density over all trajectori¢is sespect
to the kernekK;

Pi'(v.2) = P,z m(N).h(N)) = E[p}/(v.9] = E

1 Xaiop(6:) = 2
h(N) h(N) ’

whereE means the expectation with respecfto

As it can be deduced from the above set-up, we have preferred to state our pioblem
abstract terms without explicitly defining the dynamics that genetg#® or how the approxi-

mationx(ym)(e) is defined. This is done in order not to obscure the arguments that follow and to

avoid making the paper excessively long. All the properties that will be reqtoreg), are 5}
that will be satisfied for a subclass ofttlision processes.

Remark 2.2  (i). Without loss of generality, we can consider the product of the above three
probability spaces so that all random variables are defined on the same probability space.
We do this without any further mentioning.

(ii). Note that from the definition and the properties of the kernepi(y, -) satisfies for all
fe®andyeR

fﬁeN(y,Z)dZ:l and py(y,2 >0 forallzeR.

Our purpose is to estimate the posterior expectation of some funttio€!(®) given the
data:
In(F) [ F(O)¢a(Y5)n(6)d6
IND) [ u(Y))n(6)de

Enlf] 1= EflfIYo .. Ya] =

wheregy (YY) = ¢o(Yo. ... Yn) = pg,(Yo) 1‘[]“‘:1 Po,(Yj-1, Yj) is the joint density of Yo, Y1, ..., Yn).
We propose to estimate this quantity based on the simulation of the process:

Rm(F) g [ 1@} (Y))n(6)de
Mm@ [oN(Y)n(6)de

whereg) (YY) := uo(Yo) [T}y By (Yi-1. Y)).

Enmlf]:=

2.2 Main Theorem

Assumption 2.3 We assume the following

(1). (Observation process)Y;}i—o1...n IS @na-mixing process withy, = O(n™).

(2). (The prior distribution) The prior distributions is continuous ir. And the support is
0, that is, for allg € ©, 7(6) > O.

(3). (Density regularity) The transition densities, p™ € C>%°(@xR?; R,), and for allg € ©,
y,z € R, we have thatnin{pg(y, 2), Py (Y, z)} > 0. And p admits an invariant measure

p e CO xR;R,), and for allg € ®, uy(y) > 0 for every ye R.
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(4). (Identifiability) Assume that there exist and ¢ : R — (0, o) such that for alld € 0,
inf f l0s(Y. 2) — Gy, (¥ DIdz > Ci(Y)I6 - 6o,
and G(6) = [ ci(y)’ua,(y)dy € (0, +o0) fori = 1,2 and ¢ = py and ¢ = p}.

(5). (Regularity of the log-density)We assume that for,G= ps,p))

12
supsupff(% In gy, z)) Pao (Vs 2ptg,(Y)dydz< 400, fori=0,1,2,

N 6eO

supsup

t[<m%uan%mam&qu<+m

supsu —In Z
upsup f f ‘ % (Y, 2

60
where 50y = go.

Ph (Y, e, (y)dydz< +oc0, fori=0,1,

(6). (Parameter tuning)

(a). We assume the following boundedness condition;

SUpsuUp|——
N 0c®

< +o0 a.S

VN & Z (_ In B3 (Y, Yisa) - In Py (Y, Y|+1))

(b). Assume that for each < R, there exists a factor My, z) and G(y, 2) such that
[Py, 2) = Phy(y. 2)] < CY'(y. 2au(N),
wheresup, CY(y, 2) < +o0 and a(N) — 0as N— oo, and
C(y:221(N) VN < ci(y, 2),

where g satisfies the following;

0
supsu — InpM(y, z
Npeee)pff‘ae Py (¥.2

(c). There exist some functio'g R?> — R and constant gN), which depends on N,
such that for allyze R

C1(Ys, 2, (y)dydz< +oo.

L0 512~ o In puly.2)] < 19 D),

sup 90

0e®

wheresup Eg,[|gN(Yo, Y1)I*] < +o0 and &(N) — 0as N— oo.

Remark 2.4  (i). Assumption 2.34) is needed in order to be able to obtain that the density
can be used in order to discern the valugdfom the observations. This type of assump-
tion is natural in statistics and can be assured in the case of one dimensional stochastic
differential equations under glerentiability of the cogicients. Assumption 2(5) will be
satisfied under enough regularity of the transition density functipangl its approxima-
tion p}'. This can be achieved with Malliavin Calculus techniques in the casgfo$idin
equations.

The power 12 is needed to prove a central limit theorem (Rsitipa 4.4.).
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(ii).

(iii).

Assumption 2.86)-(a) will be crucial in what follows and it is the property that will de-
termine the rate of convergence and the tuning properties. Note that all other hypothesis
deal with the transition density,r the average of its approximatiqp)). Therefore the
needed properties essentially follow from similar properties pampd some limit argu-
ments. Assumption 2(®)-(a) is the only condition that deals with the approximation
itself P}, which is random. In particular, obtaining a lower bound fp}' will be the
important problem to solve. This will be further discussed in Section 5.

In this problem, we need to study two approximation problems, one ifastice be-
tween the transition densities of the observation process and the approximated process
and the other is a gference of the transition density of the approximated process and the
expectation for the approximation based on kernel density estimation. Assumption 2.3
(6)-(b) and (c) state the rate of convergence of the density of the approximation and its
derivatives. This problem was studied in Bally, Talay [1] and Guyon [7], and the sec-
ond approximation problem can be dealt using the kernel density estimation theory. For
example, in the case that the ddd} comes from a stochastic/tiirential equation, the
Euler-Maruyama approximation is most commonly used. And in that case, we have the
following results. Assume that the drift andfdsion cogficients belong to £(R), and

the djfusion cogicient satisfies the uniform ellipticity condition. Then fgp € N, there
existg > 0and ¢ > Osuch that for all N> 1, A € (0,1]and y,z€ R,

1 . m(N)
- (N)ayaf;mo(A, Y2 +Tg (A.Y:2),

where let D be a gferential operator and };3(y, 2) be the transition density of;,Yset

30, B4, (¥, D) = 959, Pay(y. 2) <

ra(AY.2) 1= f f P (v WD(PE (- 2)(W)dwds

and

1 1 Coly — Z°
™Ay, )| < ClWA# exp(— — -

For more details, see Proposition 1 in Guyon [7].

For the second problem, in the case that the kernel K satigﬁ!el{(x)dx = 0 and

[XK()dx < +oo, if By, (¥> 2) is uniformly bounded in,y € R and N € N and twice
continuously dferentiable with respect to z for all¢ R and Ne N, then we have, for all
ye Rand Ne N,

0* By
072
For more details, see Wand, Jones [11].

Therefore roughly speaking; @) = ﬁ + h(N)2. And the choice for N) = VN will
satisfy Assumption 2 (®)-(b).

P2 - B0-2) = ShN22002) [ KO+ oh(N)?).

Now we state the main result of the paper.

Theorem 2.5 Under Assumption 2.3, there exists some positive random vari&blech that
E < +o0 a.s. and

—
(=)
[l

a.s.
N

[En[f] - ERnlf]] <
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And also, we have

—

IEN[] = f(80)| < \7—% as and [ER[f]- f(60)| < \7—% as.,

whereZ; is some positive random variable wij < +c0 a.s. andZ, is some positive random
variable with=, < +co a.s.

3 Idea of the Proof of Theorem 2.5

First we introduce some notation. Lptq : R> — R, be strictly positive functions of two
variables. Then let

HP0) =[] (In P 2)aty Dundydz
N-1
Z4(6) = i%gymmwwmo—m@m@}
g®) = H(ps» Pa) — H(Peo> Poo)s
Bn(O) == Zn(6) — Zn(6o).
And also we set;
. 1 N-1
W0 = Z; (In B (Y6, Yie) = H (D). BY))

o) = (A - H (L 7).
ﬁN(H) = ZN(H) - ZN(Go)

Set®q := 0\ {6p}. The following proposition states the properties that are needed to achieve
the proof of Theorem 2.5

Proposition 3.1 Under Assumption 2.3, we have the following results.
(). There exist some strictly negative constanigcsuch that

. &(0) £(0)
c < inf <su <c,<0.
1= 00y (0 — Bg)% ~ 6e®£)(9 —6)? 2=

(ii). There exist some random variablesdb such that

Bn(6) Bn(6)

d; < inf inf < supsup

<d, as.
N 6e00 0 — O N 6e@, 0 — 6o

(iif). There exist some strictly negative constantg£such that

L () N )
C3 < inf inf < supsu <cy <0
3= N 6€®q (9 — 90)2 - Npge@E) (0 — 90)2 =

(iv). There exist some random variablegd} such that

Bn(6) Bn(6)

d; < inf inf < supsup

<d, as.
N 6e60 6 — bp N 6e@, U — o




September 18, 2010 Kohatsu, Vayatis, Yasuda (Second Ygrsio 8

We will give an idea of the proof of this proposition after this section. We give tbefpof
Theorem 2.5 using the results of Proposition 3.1.
Idea of the Proof of Theorem 2.B/e decompose the approximation error as follows;

(m(f) - f(eo>|N<1)) ) (m,m(f) - f(eo)m,ma))
In(1) % m(1) '

The goal is then to prove that there exists some random vaa@aedC, such that

|N(f)—f(90)|N(1)‘< C. (R n(F) = F ()7 (1) _ G
In() B INEN " WN

Enlf] - ERnlf] =

a.s, and

a.s.

Indeed, we can writéy(f) and IA,Q’m(f) as follows;

In(f) = eNHPo-Po)t NZu(o) [ () Ne@)+ VNBNE) v ) r(6) o),
©o

e (Pl P+ VNZ() [ ¢ () eNete)+ VBN () 1 (o) (6) .
(G}

()

Then by using the Laplace method and Proposition 3.1, we have our conclusion. In fict, as

goes to infinity the leading term in the quotleﬁl% and N”‘El; are determined by(#) ande(6)

due to Proposition 3.1. Their behaviors are similar to Gaussian integrals Wieekariance
tends to zero and therefore the integrals will tend to the value in theiatiinghich in this case

is 6y as it follows from Proposition 3.1. Details can be found in Kohatsu-Higa ¢8hIl

4 Proof of Proposition 3.1

4.1 Ideas for the proof of Proposition 3.1 (i) and (iii)

In order to prove the upper bounds for the statements in Proposition 3.1 (i) andr{@ilyses
the Pinsker’s inequality;

02— P2 0] < [ Pel:D b 0. 2dz
Po(Y, 2)

and the identifiability condition. Therefore under Assumptions ()3 we obtain the upper
bound in (i) and under Assumption 248) and(5), we obtain the upper bound in (iii).
For the lower bounds, we give a useful lemma for the first derivative(@f, py,) in 6;

Lemma 4.1 Let g be a transition density, which depends on a parameté/e assume that for
all €0,

% [ navzn e zemoryiz= [[ (5 inar.z.0)av.z vz

Then
0
= || nav.zen ey zuodyad  ~o
6=0o

Using the above Lemma together with Taylor’'s expansion we obtain the lower bouny for (
under Assumption 2.@), (4) and(5), and under Assumption 2(&) and(5) for (iii).
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4.2 ldeas for the proof of Proposition 3.1 (ii)

In this section, we consider Proposition 3.1 (ii). We prove this boundedness by usimgral
limit theorem InC(®; R*). Note thatC(®; R*) is a complete and separable metric space with
metricn defined as follows; Fox = (X1, X, ...), ¥ = (Y1, Y2, ...) € C(O; R*),

“ 1
,Y) = —{Ix(0) — V(6 1}.
n(x.y) §g®p; 5 1X(0) = %i(O) A 1)

ForN € N, set
Z -Z .
) ,HBN_(Z) _ N(Qg_eN(eo) if 0% 6,
S © ez
89 NA\Y0 — V0.

And setyy := (Bn.Bn-1s -, 1, 0,...) € C(®;R®). The reason why we need to uB€ in the
above setting can be seen from the following Lemmas. In fact, in orderoigepghe bound-
edness ofiy(6) in N, we need to consider another random vector which has the same “joint’-
distribution asyy when we apply the Skorohod representation theorem.

The idea of the proof consists of proving that the sequeR@nverges weakly i€(®; R®).
Therefore the limity = (y*,9?, - --) should satisfy that there exist some random variathed,
such that

dy <infy*(0) < supy'(¥) <d, as.
0e® 0c®

Now, without loss of generality we can use the Skorohod representation theortirat the first
componentyy, = By of yn will satisfy a similar property. And finally, from the convergence, we
obtain the boundednessgy in N. In particular, we use the following lemmas.

Lemma 4.2 Let X = (X3, Xz,...), Y = (Y1, Y2,...) € C(®; R*) be random variables such that
X 2 Y. Then we have

d
supsup|Xn(6)| = supsuplYn(6)I.
n 60O n 60c®
Lemma 4.3 Let(S,| - ||) be a complete, separable metric normed space. Let X be an S-valued
random variable on a probability spa¢e, 7, P) and let Y be an S -valued random variable on

a probability spacgQ’, 7', P’). Supposed that % Y and there exists aR*-valued random
variable d on(QY’, 7', P’) such that

IY(o)]] € d(’) forallw € Q.
Then there exists a positive random variable M(&)¥, P) such that
[IX(w)|| < M(w) as w e Q.

In order to prove the weak convergenceyqfwe extend Theorem 7.1 and Theorem 7.3 in
Billingsley [3] which imply that it is enough to prove convergence of marginatstaghtness of
the sequencey.

In order to prove convergence of marginals, we use Assumptio(l2&hd(5), so that for
everyr € Nandé,...,0, € O, (yn(61), ..., yn(6;)) converges weakly. The proof uses thé@er-
Wold device and the following extension of the Central limit theoremafenixing processes
(the proof is an extension of Theorem 27.5 in Billingsley [2], p.316.)
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Proposition 4.4 Suppose that XX, ... is stationary ande-mixing witha,, = O(n™°), where
we setag = 1 and f is aB(R?)-measurable function which satisfieg flEXg, X;)] = 0 and
E[f(Xo, X1)*?] < +o0. If we set f:= f(X;, Xi,1) and S, := fy +--- + f,, then

(o8]

%Vad&Q—ecﬁ::E[ﬁ]+2§:E[hth
k=1

where the series converges absolutely. A%%ld: M, where M is a normal distributed random
variable with mear® and variances2. If o = 0, we define M= 0.

To prove the tightness ofy, we use Assumption 2.3), (3) and(5). One needs to prove
that for alle > O,

lim lim supPHO[ sup Z {|Brn-i+1(0) = Br-i-a(9)

N—oo0 |0-0'|<6 i—1

AQZ%:Q

In the proof, the basic ingredient is the Garsia, Rodemich, Rumsey lemma.

4.3 Decomposition for the Estimation for Proposition 3.1 (iv)

Set
1 N-1 1 AN pe
—r— Y, Y °(Y:, Y, 0+06
J]_(Q) _ \/N - 0 — 90{ 9( i |+1) peo( i |+1) 0
) L\ 9 Agl(Y Yii1) 6=06
- = an g\l Ti+1 s = 0o,
VN i=0 69 ﬁgl 0=0o
VN NP I B o) dydz 0+6
2 - Q—(y, 2) { Pl — Puo} (¥ Dptao(y)dydz 6 # 6o
N B 0
VN[ inplea)] (Pl e 0. 2mtidydz 0= 6
1 N-1(1In 52' In pGO(Y_ v )
\/N -~ 0 — 9 is Ti+1
InpN - In pY
30 - - [ v 2 e icyz 6% to
1 N-1 N
Z 2 In BY(Ys Yie) f f NPYY.2)|  PulyduaO)dydzy, 6=,
N - 6=00 6=00

Then we define:

Bn(6)

TG = WO - 30 + R(6)

We can easily prove boundedness of the first tdtif@) from Assumption 2.36)-(a), and also
we can easily prove boundednessJ§fé) from Assumption 2.36)-(b). Finally we consider
the third termJ3 (6). To prove boundedness & (), we prove a weak convergence by using the
similar argument as Section 4.2. Then we can prove Proposition 3.1 (iv).
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5 Parameter Tuning and the Assumption 2.3 (6)-(a)

This section is devoted to proving that Assumption g63-(a) is satisfied under shicient
smoothness hypothesis on the random variables and processes that appear in the groblem a
well as the correct parameter tuning. That is, we need to prove that the ifajl@endition
(Assumption 2.36)-(a) in Section 2.2) is satisfied

\/_ Z (_ In By (Vi Yisa) — % In pj) (Yi,Yi+1))

In order to understand the role of all the approximation parameters, we r@jrated p) as
follows

<400 as (5.1)

pl'(v.2) = hZ =

)
G
m

hK[ h ]

Herem = m(N), n = n(N) andh = h(N) are parameters that dependnn is the number
of Monte Carlo simulations used in order to estimate the densitynaiglthe parameter of
approximation (in the Euler scheme this is the number of time steps used in thatsomwaf
X(yng)l)(e)) andh is the bandwidth size associated to the kernel density estimation method. In
this sense we will always think of hypotheses in term&dadlthough we will drop them from
the notation and just use, n andh. The goal of this section is to prove that under certain
hypotheses, there is a choicemfn andh that ensures that condition (5.1) is satisfied.

As the main problem is to obtained upper and lower boundg/fdiof random arguments,
we will first restrict the values for the random variab¥s = 0, ...., N -1 to a compact set. This
is obtained using an exponential type Chebyshev’s inequality and the Borel-Cantetiid.em

(Theorem 4.3 in pp.53 of Billingsley [2]) as follows

n (XV(")(Q) —z

p@ (y’ Z) = E

Lemma 5.1 Assume the following hypothesis
(HO). m, := sup E[e"F] < oo for some constant,c> 0. Furthermore let g > 6 — ¢ be a

sequence of strictly positive numbers such fhgt; N exp(—claﬁ,) < 0o,
Then we have that for a.s € Q, there exists N big enough such tmaax_; n|Yi| < an.
That is, for

Ay ={weQ; di=1,.. Nst Y] > ay}
we have

P(Iim supAN) =0.

N—oo

The decomposition that we will use in order to prove (5.1) is the same decomposition a
the proof of Theorem 3.2 in pp.73 of Bosq [4]. That is,

0y pg (x.y) - Hpg
Py
- SURco SUR<a G (X y) — 8oPh (X, Y)|
if ge INf i jy<ay P} (X Y)
9o ) SURco SURx yi<ay |I@9N (xy) - p) (x, Y)| A
P infgeq iNfixy<ay Ph (X Y) B

sup sup

00 |Xlyl<an

(X, y)‘

+C

Wl O

+ sup sup (xy) , (5.2

0€0 |x,lyl<an
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where we remark that

) 1 & (X0 -2
ApP (%, y) = = K'[”— 3% (6),

nh? £ h (m
1, (X @ -2
3P} (y) = E| 5K [“”)— X ©)].

Therefore in order to prove the finiteness of (5.1), we need to bmﬁﬁc@’g + C%). This
will be done in a series of Lemmas using Borel-Cantelli arguments togethetheittnodulus
of continuity of the quantitiep) andp)). First, we start analyzing theftlicult partC%.

5.1 Upper bound forC2 in (5.2)

We work in this section under the following hypotheses:
(H1). Assume that there exist some positive constants,, wherey; is independent oN and
¢, is independent o andA, such that the following holds;

022
e P Py (% Y) > 1 eXp( x )

where we set
={(x.0) e R x ©; [Ix|| < ay},

where|| - || is the max-norm.
(H2). Assume that the kernél is the Gaussian kernel,

1 1
K(2) == ——ex ——22).
=m0
(H3). Assume that for some constant> 0 and a sequenddsn; N € N} c [1, o), we have

2r3 ('3
thaty % < o0, Where

20,0 7 sup 00 +3) s i o
,0)e

(x.0)eBN ™ ™
(H4). Assume that for some constant> 0 and a sequendd,n; N € N} c [1, ), we have

7K
that y N _; M < o0, Where

4N)4

(m) (m)

28, = a5 sup X o+ sup [0 o)
(x,0)eBN (x,0)eBN

(H5). Assume that there exists some positive congtant 0 such that for alk,y e R, me N
andd € 0,

055 (%, V)| » [0y (6 V)] [P} Y)| < Cs < +oo.
(H6). Assume thatyy andvy are sequences of positive numbers so that

> s _(77N)2nh2
Z N exp( 161K ) < o0,

N=1

where| - ||, denotes the sup-norm.
Note that from the assumptigril), we have a lower bound @& in (5.2).
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Lemma 5.2 Assume hypothegfbl2) and(H3), then we have that

Og
pe > b3 N}) 0.
oA

The proof of the Lemma follows by rewriting the fracticgiéi2 and show that it can be bounded

P(Iim sup{sup sup (xy)

N—oo 0€0 |x,lyl<an

using the upper bound (ﬁ and the derivative of the approximating process with respett to

5.2 Upper bound ofD in (5.2)

In this section, we use the modulus of continuityp}ff&nd p}) in order to find an upper bound
for B. Similar ideas appear in Theorem 2.2 in pp.49 of Bosq [4].

Lemma 5.3 Set

BN

Il -

v — ¢
{(XQ)G]RZXG) IIx — xI ||< , |0 - 9||< } li=2,--- V3, la=1-- v,
YN

such thatBINI N BN =0 ((Il, 2) # (17, 2)) and appropriate set of pointg), &), 11 = 1,...,%}

andb=1,.., vy such thatu, ', UM, BN =BVN. Then

l1l2

sup |p9 (x) - Py (X)| max  sup |p9 (xX) - py (X)|

(x,6)eBN L9 (x, e)eBI |
1<lo<vy 1'2

< max sup |By (x) - Pl (X|1) + max
1<|1<vN (x, H)EB Iy 1<|1<v

1<ly<vy l1l2 1<|2<vN

A () - P ). (5.3)

I2

paN (Xll) pel'; (X{\ll)

+ max sup

2
1<'1<VN (x, 9)eB
1<l

The proof of the above Lemma is straightforward. We consider the first term of (5.3).
Lemma 5.4 Under(H2) and(H4), then we have that

| N e (o L 2K s B _
Pllimsupy max sup |f; (X) — Py (X|1) > >——banp|=0.
N—oco l<|l<v’2\‘ (X H)EB Iy h VN
1<ly<vy
Now we consider the third term in (5.3).
Lemma 5.5 AssumgH5), then,
a
max sup |plk (x) - B ()| < 3Cs—
hoy (x, 0)eBy), 2 YN

1<ly<vy

Finally, we consider the second term of (5.3).
Lemma 5.6 AssumgH?2) and thatny satisfieqH6), then we have that

peN (Xl ) peg (Xll\ll)

Now we can conclude this section with the following upper bountﬁ@r
Theorem 5.7 Assume conditionfH2), (H4), (H5) and (H6), then there exists N big enough

such that
D 902aN 2||K'||oo an
< b® % .
B < by 901 exp 3 2 b + N + 3Cs VN

P[limsupy max
N—ooo 1<Il<v
1<|2<vN

> 1N =0.
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5.3 Upper bound for £ in (5.2)

The proof in this case is simpler on the one hand because many of the previous estandies

used. On the other hand, when considering the analogous result of Lemma 5.6 for the deriva-
tives, d,p) andd,p)), has to be reworked as the conditipf])[l. < +c0 and||p}ll. < +oo are

not valid. From the conditio(H1), we have

2
gS_er T X SUp Sup |00} (%) — 3aih (x.Y)|-
("1 0e® |xl,lyl<an
Here we consider the sup-term as before.

Lemma 5.8 We use the same notations as the previous section. Then we have

sup sup |95 (x) — depy (X))

0€0 |xlyl<an

< max sup |3,p) (x) - agpgN (xI )|+ max agpeN (x|l) o Py (x|'\‘l)
Ihof (x, 0)eBy, Lo 2
1<|2< 1<|2<VN
+ max sup 69@:N (xlNl) N (x)‘. (5.4)
2

1<|1<VN (X H)E B
1<lo<vy

As in previous sections, we define that
Z® = ay (h supsup |8.9,X;5’ (6)] + hsup sup 10605 X5 (©)]

€0 |X|<an €0 |X|<

K L(K

+(z8 + 1)§u®p sup|aeX;’ (9)|).
c® |X|<an

Note that{Z( K lk=12... 1S @ sequence of independent and identically distributed random variables.

Then we set the following hypothesis. _
(H4’). Assume that for some constaipt> 0 and a sequend®,n; N € N} C [1, ), we have

. nellz® [
thatZNzl —([lw—u]

Lemma 5.9 Under the above hypothesis atd4’), we have that

< 00,

K oo V1K floo 8 ;
—b =0.
- h3 VN 4N

P{limsupsy max sup

2
N—oo [ 1sli=vy (x, e)eB
1<ly<vy

3Py (x) = duPlys ()| 2
2

We consider the third term of (5.4).

0uPly (x) - 9o} (x)‘

max sup

Loy (x, 08y,
1<lo<vy

dydoly (X ey + (1 - oY)

(H5"). Assume that there exists some positive constant 0 such that for alk,y e R, me N
andd € 0,

3x0 D)) (sx +(1-&)X, y)| + sup

O<e<1

an
<= max sup { sup
VN 1<|1<VN (X, H)GBN O<e<1
1<ly<vy

+ Sup |90y P, Peos(1- &)l (X'Nl)

O<e<l

(X y)| |69 pg (X, Y)| < C5 < +00.

|5x39521
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Lemma 5.10 AssumdH5’). Then, we have

an V(6" - )
YN

max sup

2
l<|1<vN (X 9)€B
1<lp<vy

69p (X|1) 09p9 (X)‘ < 3Cs

Finally, we consider the second term of (5.4). Set

x*U g
Wr(T{)X ©) = (M] X(J)(g) _ ﬁ

x (1) _
h Xm < (W] aexzﬁf)l)(g)} '

yeue

ables W|thE [\/\/‘ni)hX (9)]

(H6'). There exist£s > 0 andas > 0 and a sequence of positive numbbg[s such that
0 n(mn)2h? Ce "
I eXp(_zuK'é?bﬁ,N)zaﬁ){l * nl*?ye} < o0

(H6a’). Assume that there exists > 0 and a sequence of positive numtiiag,g in (H6’) satisfy,

el
such that,{_; n T oo for

6.N)'6

24, = ayt supsup{[a,X; (6)] + E[|0:X5 @)} -

m
€0 |X|<an m

(H6b"). Assume that for somes > 1, Sup,.y E [|26,N|qe] < +o0 and forag > 0,Cg > 0 andbg
given in(H6’) the following is satisfied

UNhZ exp| — (nN)Z * < C6
(”K,HoodaN’m)zaN 2(|IK lloo bG,NaN)2 = nltas’

Applying Lemma 6.2 in Appendix, we obtain the following important Lemma.

Lemma 5.11 AssuméH6), (H6a’) and(H6b"). Then there exists N big enough such that

max
1<|1<v2
1<|2<VN

1IN-

Oo Py (<) = WPy EHE

Theorem 5.12 Assume condition@H1), (H2), (H4’), (H5"), (H6’), (H6a") and (H6b’). Then
we have that for a.sw, there exists N= Ny(w) such that for all N> Ny we have

A 1wa2 K/l V IK” || @ - . a
P! 1K lleo V [IK”]] @b4N+nN+3C5_N .
B ng h3 VN ’ VN

Finally putting all our results together, we have (see Theorem 5.7).

Theorem 5.13 Assume conditionéH0), (H1), (H2), (H3), (H4), (H5), (H6), (H4"), (H5),
(H6’), (H6@’) and(H6bL’). Then for a.sw, there exists N= No(@) such that for all N> Ny we
have

A D 1 e K'llo V IK”|l @ (b CsvC
\/N(— + C—) < 6\/N e 2 T ” ” ” ” N (2N + b4,Nb3’N +|7N + > > bg,N
B B 1 h? VN h VN
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5.4 Conclusion: Tuning fornand h

We need to find now a sequence of valuesfandh such that all the hypothesis in the previous
Theorem are satisfied and that the upper bound is uniformly bounddd WWe rewrite some
needed conditions that are related to the parametarslh. We assume stronger hypothesis
that may help us understand better the existence of the right choice of parameatelis

As we are only interested in the relationship betweamdh with N, we will denote byC,,
C, etc., various constants that may change from one equation to next. These constants depend
on K, A and®. They are independent of h and N but they depend continuously on other
parameters.

(). There exists some positive const&@i,e > 0, which depends oK, A, ®, and is inde-
pendent olN such that

2% aZ ban an
\/Ne A X b4,Nb3,N +—+|Nnt+ — b3N < CKA@ (55)

VN h2 h VN

(i). (Borel-Cantelli fory;, (HO))

m, = E[e""] < +o0 for some constart; > 0 and{ay}ney C [0 — 6', ) is a sequence
(] N
such that for the sama, > \_; soe) < o
(iii). (Borel-Cantelli forz{%, (w), (H3)) For somers > 0,

2I’3

Z (h2b3 e T and '\ilIJNFE [|Z3,N (-)|r3] < +oo for each fixedn e N.

(iv). (Borel-Cantelli forZ{, (w), (H4)) For somer, > 0,

Z "_ i and su;E[|Z4N()| ]<+ooforeachfixedneN.

(v). (Borel-Cantelli for|p}!(x) — p}) ()], (H6))

iv o ( Tglf%)““

=1

(vi). (Borel-Cantelli forz{, (w), (H4’)) For somer; > 0,

>

N=1 (b4 N

< 400 and supE [|Z4N (- )| ] < +oo for each fixedm € N.
(vii). (Borel-Cantelli for|d, p) (x) — dsp) (X)I, (H6")) For somevs > 0, and a constart,

[eN) 2h4 C n
Z vy eXp(— n(ZN)- ) {1 + = ° } < +oo.
2|IK|IZ, (bsn)?ad n-ae

N=1
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(viii). (Borel-Cantelli forZ{},(w), (H6a’)) For somerg > 0,

&

N=1 (bG N

< +c0 and supE[|ZGN()| ]< +oo for each fixedne N.

(ix). ((H6b")) For someys > 1,

h? o\ G -
; e <—— and s : _
[(HK'umbe,N)ZaN Xp( 2(ebeyan)z)) SUEE [[Zon ()] < +o0

whereCg andas are the same ggii) above.

5.4.1 Parameter Tuning

Setay = VcyIn N for some positive constags. Setn = C;N for a1, C; > 0 andh = C,N~2
for a2, Cy > 0.
For (ii) to be satisfied, we need to have

i _ N _v_1
£ expCiczInN) - £ Neweed
Then we need; > é Note that if we choose, large enough, theg, can be chosen as small
as needed.
With the above specifications, we can check that all the conditions in Sécti@me satisfied
if the following parameter condition is satisfied fdrsuficiently large

ar+vys @€ 1 ys  ar).
day + 2— —+ =+ , 5.6
( 2+ P + 3 +2+r3+r3)qe>al (5.6)
which has to be satisfied together with
2 2 4¢202 2ys Y6
1-———|>8a+ +2—. 5.7
al( I3 re) > 2 ¥ A I3 r6 ( )

Notice that the above two inequalities will be satisfied if we teker c big enough. Here for
(i), we assume that there exist sorge- 0, y; > 1 and some consta@ # 0 such that

n(c;InN)=  Cj C3(N”*2n)'s B coIn N
W = m and therefore bg’N = he

And for (viii), we assume that there exists sorge- 0,y > 1 and some constaf # 0 such
that
n CG . . C N

: = — d therefore bgy = (CgnN”e)'e .
By N and therefore bg (Gn )

For (iv) and(vi), we assume that fay = by, b4,N, there exists somg, > 0, y4 > 1 and
some constar€y # 0 such that
n Cy

(9 TN

These constants do not appear in the main restriction but the fact that thegsomeers of the
above form is used in the proof of the following theorem.
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Theorem 5.14 Assume that the constants are chosen so as to sa{isfy%, (5.6) and (5.7).
Also assume that the moment conditions state@)in(iii) , (iv), (vi), (viii) and(ix) above are
satisfied. TheigHO), (H3), (H4), (H4"), (H6), (H6’), (H6a") and (H6bL’) are satisfied. Further-
more, if we assum@l), (H2), (H5) and(H5’), then Assumption 2.®)-(a) is satisfied.

And also if all other conditions on Assumption 2.3 are satisfied then there exist sonieposit
finite random variable&, E; and=, such that

IEN[] = F(60)| < \7—% as and [ER.[f]- f(60) < :/_ZN as,
and therefore

—
=
—_—

as.
N

[En[f] - ERnlf]] <

Remark 5.15 (i). In(5.7), z andrg represent moment conditions on the derivatives{gi(%,
¢, represents the variance o%((@), A represents the length of the time interval between

observations. Finally £> 2c;! expresses a moment condition qn Ivi (5.6), recall that
(s determines a moment condition OW(@)'

(ii). Roughly speaking, ikrrs andge are big enough (which implies a condition on n), and we
choosear; > 8ay + 1 + 4%”, m= VN, h = C,N2 and h= C;N®, then Assumption 2.3
(6)-(a) and(6)-(b) are satisfied. Then conditions contain the main tuning requirements.

6 Appendix

6.1 Refinements of Markov’s inequalities

In this section we state a refinement of Markov’s inequality that is apphehis article. For
A1 >0, letS, = Y1, X whereX; is a sequence of independent and identically distributed
random variables witlE[X] = O.

Lemma 6.1 Let X be a random variable with[K] = 0. Then, ford € R, ¢ > Oand p:=
P(IX] < ¢), we have

c_ g1

eﬂz—E[Xl(|X| > Q)] + pe'r .

Ele™1(X| < )| < - .

Lemma 6.2 Let ' + g;* = 1 and assume that [EX|®] < C,, then for all0 < & < 1 and
{folen € R, satisfying that f-! < K we have

ne? o 2\% n
P(Sq > ne; [Xi| < fn, i=1,---,n) < 2e 2% {1+ (- 1) (qglKlé(fgile W) } . (6.1)
n

Here K; = max{l, %}
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