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We study the problem of density estimation of a non-degenerate di�usions

using kernel functions. Thanks to Malliavin calculus techniques, we obtain

an expansion of the discretization error. Then, we introduce a new control

variate method in order to reduce the variance in the density estimation. We

prove a stable law convergence theorem of the type obtained in Jacod-Kurtz-

Protter, for the �rst Malliavin derivative of the error process, which leads us

to get a CLT for the new variance reduction algorithm. This CLT gives us a

precise description of the optimal parameters of the method.

1 Introduction

Let (Xt)0≤t≤T be d-dimensional di�usion such that XT has a smooth density, denoted by p(x). The
goal of the present article is to discuss in theoretical terms a control variate method to reduce the
variance in the Monte Carlo estimation of p(x).

To introduce the problem, �rst note that p(x) = Eδx(XT ) where δx denotes the Dirac delta
distribution function. In order to use the Monte Carlo method we have �rst to approximate the
Dirac delta function .

Consider an integrable continuous function φ : R → R such that
∫

R φ(x)dx = 1 and de�ne the
kernel functions

φh,x(y) =
1
h
φ
(y − x

h

)
, h > 0 et x ∈ R.

Note that φh,x → δx as h → 0, in a weak sense, according to the assumptions on the function φ.
The idea is then to approximate the density p(x) = Eδx(XT ) by Eφh,x(Xn

T ) where h = n−α, α > 0
and Xn denotes an approximation of X that can be simulated. At this level, a �rst problem arises.
That is, the problem of evaluating the weak error given by Eφh,x(Xn

T )− p(x).
Once this problem is solved one �xes the desired error level and from the weak error estimate

one obtains a restriction for the value of α. Nevertheless when one carries out the Monte Carlo
simulations, one �nds that usually the variance of the estimators is relatively high and therefore
variance reduction methods have to be studied in order to achieve a prescribed accuracy with less
number of calculations.

The present work is framed in this setting. In particular we study a control variate method
introduced in the regular case (that is, in the case of the approximation of Ef(XT ) for a smooth
function f) in Kebaier (2005).
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To be more precise, suppose thatX has smooth coe�cients and satis�es the Hörmander condition.
Then XT has a smooth density p(x). Let Xn denote the Euler-Maruyama scheme of time step T/n.
Under some extra conditions (see Bally and Talay (1996)) one obtains the following expansion for
the density di�usion

p(x) = pn(x) +
C

n
+ o(1/n),

where pn(x) = Eφh,x(Xn
T ) is a regularized density of the Euler scheme Xn. This regularization is

needed because under the present conditions Xn may not have a density.
In Kohatsu-Higa and Pettersson (2002), the above result is obtained under weaker conditions on

x and X0 but the expression on the expansion on the error is less explicit. Then a Monte Carlo
simulation study of Eφh,x(Xn

T ) is presented. After obtaining the variance of this estimator the
authors propose a variance reduction method using a localization function. The procedure used can
be described as follows.

Using the integration by parts formula of Malliavin calculus, Kohatsu-Higa and Pettersson (2002)
obtain that

Eφh,x(Xn
T ) = E

(
ψh,x(Xn

T )Hn

)
,

where ψh,x is the primitive function of φh,x and Hn is the weight given by the Malliavin calculus.
Using this idea, Kohatsu-Higa and Pettersson (2002) prove that

E (φh,x(Xn
T )ϕ(Xn

T − x)) = E
(
ψh,x(Xn

T )(ϕ(Xn
T − x)Hn + ϕ′(Xn

T − x)Gn

)
,

for a smooth function ϕ with ϕ(0) = 1. Explicit expressions for the random variables Hn and
Gn are obtained and the asymptotic variance is minimized with respect to ϕ obtaining as result
that the optimal ϕ is of exponential type. These results are later veri�ed trough simulations. The
disadvantage of this method is that the computation time of their algorithm is higher than that of
the method using kernel density functions.

On the other hand, in Kebaier (2005), the author considered the approximation of Ef(XT )
by a Monte Carlo algorithm where f is a given regular function and XT is a di�usion process. In
particular, the so-called statistical Romberg method is introduced and analyzed. This control variate
method gives a variance reduction if parameters are chosen appropriately. The optimal parameters
are obtained after a careful study of a central limit theorem for the error process.

In this paper, we generalize these results to the case of density approximations. That is when f
is a Dirac delta function under the Hörmander condition.

The method uses two Euler schemes Xn
T and Xm

T with m << n as follows.
Suppose for the moment that Eφh,x(Xm

T ) can be computed explicitly. Then the classical control
variate method can be applied as follows:

1
Nn,m

Nn,m∑
i=1

{φh,x(Xn
T,i)− φh,x(Xm

T,i)}+ Eφh,x(Xm
T ),

where the index i = 1, ..., Nn,m indicates independent simulations of the corresponding random
variable. As the last quantity above is in fact not known we will use an additional Nm independent
simulations to estimate this quantity. Therefore the �nal calculation scheme is given by

1
Nn,m

Nn,m∑
i=1

{φh,x(Xn
T,i)− φh,x(Xm

T,i)}+
1
Nm

Nm∑
i=1

φh,x(X̂m
T,i).

Now in order not to increase the number of simulations we simulate a large number, Nm, of sample
paths with a coarse time discretization step T/m and few additional sample paths of size Nn,m with
the �ne time discretization step T/n.

In order to choose the parameters h, n, m, Nm and Nn,m to achieve a certain desired error level,
one has to study the weak error of the above expression together with the variance behavior. This
brings us to study a central limit theorem for the error process.
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A similar study in the regular case (with one less parameter, h) is carried out in Kebaier (2005).
If one choses the same parameters as in the regular case with h given by the kernel density method
then there is explosion of variances. Even more, it is one of the conclusions of this article that there
is no variance reduction that one can achieve with this method if one uses kernels as have been
de�ned previously.

In fact, one has to use the concept of super-kernel of order s with s > 2(d+1) in order to achieve
some variance reduction (see De�nition 3.1 and Theorem 6.1).

As these kernels do not correspond exactly with the results in Bally and Talay (1996) or Kohatsu-
Higa and Pettersson (2002), we start by �nding the expansion of the weak error (see Theorem 3.1).

Our �nal aim is to �nd the optimal parameters leading to an optimal complexity of the algorithm.
In order to obtain these optimal parameters we extend a result of Jacod and Protter (1998) for the
asymptotic behavior of the law of the �rst Malliavin derivative of the error in the Euler scheme.
Using this extension we prove a CLT, for our algorithm, giving us a precise description of the choice
of the optimal parameters m, Nm and Nn,m.

The usual version of the integration by parts formula of Malliavin Calculus in dimension d, see
Nualart (1995,2006) (p.103, 2006 edition) is based on using d times the integration by parts formula.
Although it is feasible (although long) to prove the stable convergence of the high order weights, we
propose instead to use a new integration by parts formula introduced by Malliavin and Thalmaier
(2006) which signi�cantly simpli�es the proof in the general multi-dimension context.

The optimal parameters given by the CLT lead to an optimal complexity of the algorithm of
order n

5
2+(d+1)α which is less than the optimal complexity of the Monte Carlo method for the kernel

density method which is of order n3+αd, where α is the parameter tuning the window size h which
depends on the order of the superkernel. Finally, d is the dimension of the problem.

The gain obtained here is of order n
1
2−α. Consequently, we have an exact mathematical estimate

of when and how much variance reduction can be achieved. Whereas, there is less reduction than
in the regular case due to the explosion of the variance of our estimators (see section 6 for more
details).

The remainder of the paper is organized as follows. In the following section, we introduce some
basics of the Malliavin Calculus. In section 3, we study the weak discretization error. Section 4
is devoted to prove the CLT for the classical Monte Carlo method. In section 5 we prove a stable
convergence theorem for the �rst Malliavin derivative of the error in the Euler scheme. In the last
section we prove a CLT for the statistical Romberg algorithm and we give the optimal parameters
leading to an optimal complexity of the method.

In the Appendices we give the proofs of technical lemmas used throughout the proofs.

2 Malliavin Calculus

2.1 Main de�nitions and properties

We follow the notations, de�nitions and results of Nualart (1995,2006). Let (Wt)0≤t≤T be a q
dimensional standard Brownian motion de�ned on the �ltered probability space (Ω,F , (Ft),P) where
(Ft)0≤t≤T denotes the standard �ltration. D denotes the Malliavin derivative which takes values in
H := L2([0, T ]; Rq). The k-th order derivative of F for a multi-index k ∈ {1, ..., q}l, l ∈ N of length
|k| = l is denoted by DkF , it takes values in H⊗ l and is given by

Dk
t1,...,tl

F = Dk1
t1 . . . D

kl
tl
F

where k = (k1, ..., kl).
Note that the operator Dk is closable for any k ∈ {1, ..., q}l. For p ≥ 1 and l ∈ N, we denote

Dl,p(W ) the closure of the space of smooth random variables with respect to the norm ‖ · ‖l,p.
We denote D∞(W )=

⋂
p≥1

⋂
l≥1

Dl,p(W ). For F = (F 1, . . . , F d) ∈ (D∞(W ))d, we introduce γF the

Malliavin covariance matrix of F given by

γij
F = 〈DF i, DF j〉H , 1 ≤ i, j ≤ d
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2.2 Duality and integration by parts formulas

Let δ denote the adjoint operator of D, which is also called Skorokhod integral. The operator
δ is unbounded, we denote by Dom(δ) its domain (see for example De�nition 1.3.1 of Nualart
(1995,2006)). Note that if u ∈ L2

(
[0, T ]× Ω; Rq

)
is an adapted process, then (see Proposition 1.3.4

in Nualart (1995,2006)) u ∈ Dom(δ) and δ(u) coincides with the Itô integral.
If F ∈ D1,2 and u ∈ Dom(δ) then Fu ∈ Dom(δ) and we have

δ(Fu) = Fδ(u)− 〈DF, u〉H .

In such a case we have the following duality formula

E
[
〈u,DF 〉H

]
= E

[
Fδ(u)

]
. (1)

In the following we give the de�nition of a non-degenerate random vector.

De�nition 2.1. A random vector F = (F 1, . . . , F d) ∈ (D∞(W ))d is said to be non-degenerate if
the Malliavin covariance matrix of F is invertible a.s. and

(det γF )−1 ∈
⋂
p≥1

Lp(PW ).

For a nondegenerate random vector, the following integration by parts formula plays a key role.
(For a proof of the following proposition see Nualart (1998)).

Proposition 2.1. Let F ∈
(
D∞(W )

)d
be a non-degenerate random vector. Let f ∈ C∞p (Rn), and

let G ∈ D∞(W ). Fix k ≥ 1. Then for any multi-index m = (m1, . . . ,mk) ∈ {1, . . . , d}k we have

E
[
∂mf(F )G

]
= E

[
f(F )Hm(F,G)

]
,

where ∂m = ∂m1 . . . ∂mk
and the random variable Hm(F,G) is de�ned inductively as follows

H(i)(F,G) =
∑d

j=1 δ
(
DF jG(γ−1

F )ij
)

Hm(F,G) = H(mk)

(
F,H(m1,...,mk−1)(F,G)

)
.

2.3 An extension of the integration by parts formula

In the following work we will deal with a d-dimensional di�usion X = (X1, . . . , Xd) driven by a q-
dimensional Brownian motionW = (W 1, . . . ,W q). In order to regularize the Euler scheme associated
to the di�usion X, we will employ d additional noises, corresponding to X1, . . . , Xd. In order to
do that, we consider a d-dimensional Brownian motion W̄ = (W q+1, . . . ,W q+d), independent of
W = (W 1, . . . ,W q), and we set

W̃ = (W, W̄ ) = (W 1, . . . ,W q,W q+1, . . . ,W q+d).

Therefore our random vectors are de�ned on the Wiener space of dimension r = q+d, but we should
distinguish between the two Brownian motions W et W̄ which play di�erent roles in our calculation:
W drive the di�usion whereas W̄ is an additional noise used for the regularization. Hence, by using
again the notations of the preceding subsection we obtain

D̃ = (D, D̄) = (D1, . . . , Dq, Dq+1, . . . , Dq+d)

and for ũ = (u, ū) = (u1, . . . , uq, uq+1, . . . , uq+d) we have

δ̃(ũ) = δ(u) + δ̄(ū).

4



The norms ‖F‖k,p are norms de�ned on Dk,p(W̃ ), thus it involves all the derivatives D̃ = (D, D̄).
Similarly, the Malliavin covariance matrix of the random vector F is given by

γ̃F = 〈D̃F, D̃F 〉.

The auxiliary noise, that we will use, is given by the random vector

Zn,θ :=
W̄T

n
1
2+θ

, θ ≥ 0. (2)

In the following, we introduce the random vector F = (F1, . . . , Fd) which depends only on W =
(W 1, . . . ,W q) and the random variable G which depends only on W̃ = (W, W̄ ). The proposition
below, is a natural extension of Proposition 2.1, gives us an explicit expression of H̃i which appears
in the integration by parts formula.

Proposition 2.2. Let F ∈
(
D∞(W )

)d
be a non-degenerate random vector. Let f ∈ C∞p (Rd), and

let G ∈ Dk,2(W̃ ). Fix k ≥ 1. Then for any multi-index m = (m1, . . . ,mk) ∈ {1, . . . , d}k we have

E
[
∂mf(F + Zn,θ)G

]
= E

[
f(F + Zn,θ) H̃m(F,G)

]
, (3)

where the random variable H̃m(F,G) is given by

H̃(i)(F,G) =
d∑

j=1

δ̃
(
D̃(F + Zn,θ)jG(γ̃−1

F+Zn,θ
)ij

)

=
d∑

j=1

δ
(
G(γ̃−1

F+Zn,θ
)ijDF j

)
+

1
n

1
2+θ

d∑
j=1

δ̄
(
G(γ̃−1

F+Zn,θ
)ijD̄W̄ j

T

)
,

H̃m(F,G) = H̃(mk)

(
F, H̃(m1,...,mk−1)(F,G)

)
,

with δ̄ and δ̃ are respectively the adjoint operators of D̄ and D̃.

2.4 Malliavin Thalmaier integration by parts formula

Recently Malliavin and Thalmaier (2006) introduced a new idea of integration by parts based on
the Riesz transform. Essentially this amounts to replace the representation of the Dirac function δ0
by

δ0 = ∆Q,

where ∆ =
∑d

i=1 ∂
2
i is the Laplace operator and Qd is the fundamental solution of the Poisson

equation in the following sense. If f denotes some function, then the solution of the equation
∆u = f is given by the convolution Qd ∗ f . The explicit expressions for Qd are Q1(x) = x+,
Q2(x) = a2 ln |x| and Qd(x) = ad|x|−(d−2) for d > 2 and suitable constants ad, d ≥ 2. Then we have
a new integration by parts formula

Proposition 2.3. Let F ∈
(
D∞(W )

)d
be a non-degenerate random vector. Let G ∈ Dk,2(W̃ ) and

x ∈ Rd. Then

E[δ0(F − x)G] = E[∆Qd(F − x)G] =
d∑

r=1

E[∂rQd(F − x)H(r)(F,G)],

where H(r)(F,G) are the weights of the classical integration by parts formula (see Proposition 2.1)

Note that ∂rQd(F − x) is integrable but not bounded. Consequently, the advantage of this new
approach is that one has to make just one integration by parts, because we need to remove only one
derivative, while in the classical integration by parts formula we have to make d integration by parts
in order to remove the d derivatives in δ0(y − x) = ∂(1,...,d)1{yi≥xi; i=1,...,d}.
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3 Weak convergence of the approximate density

Let (Xt)0≤t≤T
be a Rd-valued di�usion process which is the solution of the following stochastic dif-

ferential equation

dXt = f(Xt)dYt, X0 = x ∈ Rd, (4)

where Yt = (t,W 1
t , . . . ,W

q
t )T , with W = (W 1, . . . ,W q) a q-dimensional Brownian motion de�ned

on the �ltered probability space B = (Ω,F , (Ft)t≥0, P ), where (Ft)t≥0 denotes a �ltration satisfying

the usual conditions. The function f : Rd −→ Rd×(q+1) is of class C d+3
b . In order to distinguish

clearly the drift from the di�usion term we will use indices as follows f = (fij)i=1,...,d;j=0,1,...,q. So
that j = 0 corresponds to the drift coe�cient.

The Euler scheme, denoted by Xn, associated to the di�usion X and with discretization step
δ = T/n is de�ned as:

dXn
t = f(Xn

ηn(t))dYt, ηn(t) = [t/δ]δ.

The next result gives bounds on the error of the Euler scheme in the sense of ‖ ‖l,p-norms. For
a proof of this result see Kusuoka and Stroock (1984) and ?.

Proposition 3.1. With the previous notation, the following two properties are valid:

P1) ∀t > 0, Xn
t , Xt ∈ (D∞(W ))d

P2) ∀p > 1, ∀l ∈ N∗,∃K > 0 such that:

sup
t∈[0,T ]

‖Xt‖l,p + sup
t∈[0,T ]

‖Xn
t ‖l,p ≤ K(1 + ‖x‖) (5)

and

sup
t∈[0,T ]

‖Xn
t −Xt‖l,p ≤

K√
n
. (6)

Furthermore Dk
t1,...,tl

F (t) is Lp(Ω)-continuous in (t, t1, ..., tl) for ti ≤ t, i = 1, ..., l, F = X, Xn and
any p > 1 and any multi-index k such that |k| = l.

Notation:

For a function V : Rd −→ Rd, we denote by DV the Jacobian matrix of V and by D2V , its Hessian
matrix. We suppose that the d-dimensional di�usion process (Xt)0≤t≤T

, which is the solution of (4)
has a coe�cient f , which satis�es the Hörmander condition (see Section 2.3.2 of Nualart (1995,2006)).

Therefore X admits a smooth density pT (x0, x) (see Kusuoka and Stroock (1985)) and in order
to simplify the notation, we denote

pT (x0, x) := p(x).

We note here that the Hörmander condition is not enough to guarantee that the Malliavin
covariance matrix associated to the Euler scheme Xn, is invertible (this would be true under an
ellipticity condition).

To deal with this problem we will regularize the Euler scheme using Xn + Zn,θ instead of Xn,
Zn,θ denotes a independent random variable de�ned in Section 2.3 through the relation

Zn,θ =
W̄T

n
1
2+θ

where W̃ is a d-dimensional Brownian motion independent of W . Then we have the following result.
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Proposition 3.2. For λ ∈ [0, 1] we introduce

Xn,λ
T = XT + λ(Xn

T −XT ).

Then for all p ≥ 1 there exists a constant KT > 0 and parameters p′, p′′ ≥ 1 such that

sup
n

∥∥∥ (
det γ̃

Xn,λ

T
+Zn,θ

)−1
∥∥∥

p
≤ KT

∥∥∥(det γ
X

T
)−1

∥∥∥p′′

p′
<∞.

Proof. We have that E
(
det γ̃

Xn,λ

T
+Zn,θ

)−p= An +Bn with

An := E
{(

det γ̃
Xn,λ

T
+Zn,θ

)−p
1∣∣det γ̃

Xn,λ

T
+Zn,θ

−det γ
X

T

∣∣< 1
2 det γ

X
T

}
and

Bn := E
{(

det γ̃
Xn,λ

T
+Zn,θ

)−p
1∣∣det γ̃

Xn,λ

T
+Zn,θ

−det γ
X

T

∣∣≥ 1
2 det γ

X
T

}
As the di�usion X is non-degenerated in the sense of de�nition 2.1, we deduce that

sup
n
An ≤ 2pE

(
det γ

X
T

)−p
< +∞.

On the other hand, we have that

γ̃
Xn,λ

T
+Zn,θ

= γ
Xn,λ

T

+
T

n1+2θ
Id.

As γ
Xn,λ

T

is a positive de�nite matrix we deduce that

det γ̃
Xn,λ

T
+Zn,θ

≥
(

T

n1+2θ

)d

.

Therefore, one obtains that

Bn ≤
(

T

n1+2θ

)−dp

P
(∣∣det γ̃

Xn,λ

T
+Zn,θ

− det γ
X

T

∣∣ ≥ 1
2

det γ
X

T

)
.

Therefore using the Markov inequality, we have that

Bn ≤ 2k

(
T

n1+2θ

)−dp

E
{

(det γ
X

T
)−1

∣∣det γ̃
Xn,λ

T
+Zn,θ

− det γ
X

T

∣∣}k

≤ 2k

(
T

n1+2θ

)−dp ∥∥∥∣∣det γ̃
Xn,λ

T
+Zn,θ

− det γ
X

T

∣∣k∥∥∥
2

∥∥(det γ
X

T
)−k

∥∥
2

Therefore from the inequalities (5) and (6), we obtain that∥∥∥∣∣det γ̃
Xn,λ

T
+Zn,θ

− det γ
X

T

∣∣k∥∥∥
2
≤ Ck

n
k
2

where Ck is a given constant. Finally, if we take k = 2dp(1 + 2θ) we obtain that

sup
n
Bn <∞.
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In what follows we are interested in considering the approximation of the marginal density p(x)
of the di�usion X using kernel density estimation methods.

De�nition 3.1. Let φ ∈ C∞b (R; R), we say that φ is a super-kernel of order s > 2 if∫
R
φ(x) dx = 1,

∫
R
xiφ(x) dx = 0, ∀ i = 1, . . . , s− 1, and

∫
R
xsφ(x) dx 6= 0.

In what follows, we suppose that φ satis�es the following properties:

a)

∫
R
|x|s+1|φ(x)| dx <∞, where s denotes the order of the kernel,

b)

∫
R
|φ′(x)|2 dx <∞,

∫
R
|φ(x)|ldx <∞, for l = 1, 2, 3.

For h > 0, we de�ne

φh,x(y) =
1
h
φ
(y − x

h

)
.

The parameter h is called the window size of the kernel.
We extend the previous concepts to Rd as follows: Let φi : R 7→ R, for i = 1, . . . , d be one

dimensional super kernels. We set

φ(u1, . . . , ud) = φ1(u1)× · · · × φd(ud).

We say that φ is a super kernel of order s if the functions φi, i = 1, . . . , d are one dimensional super
kernels of order s. Furthermore, we de�ne

φh,x(y) =
1
hd
φ
(y − x

h

)
=

d∏
i=1

φi,h,x(yi)

In the calculations to follow, we will also use other kernels that stem from φ. So, we de�ne for
l = 1, 2, 3

φl
h,x(y) =

1
hdφl

∣∣∣φ(y − x

h

)∣∣∣l, φl =
∫

Rd

|φ(u)|l du.

These positive functions are integrable and integrate to one. Additionally, we de�ne

φ(2),h,x(y) =
1

hφ(2)

[
φ′

(y − x

h

)]2

, φ(2) =
∫
|φ′(x)|2 dx

Remark 1. One can construct super kernels of in�nite order in the following way. We take a
symmetric function ψ ∈ S (where S denotes the class of smooth functions rapidly decreasing to
zero at in�nity) so that ψ(x) = 1 in a neighborhood of zero. Next, we de�ne φ as the inverse Fourier
transform of ψ. That is,

φ(x) :=
1
2π

∫
R
eixξψ(ξ) dξ, x ∈ R.

Due to the symmetric property of ψ, φ is a real valued function.
Then the Fourier transform of φ is ψ given by

ψ(ξ) =
∫

R
e−ixξφ(x) dx, ξ ∈ R.

As ψ(k)(0) = 0, for all k ∈ N we conclude also that
∫

R x
kφ(x) dx = 0 for all k ∈ N and as

ψ(0) = 1 we have that
∫

R φ(x) dx = 1. The inverse Fourier transform sends the functions S into
S . Therefore φ ∈ S and consequently, it veri�es the conditions a) and b) above.

Also, one can easily construct polynomials on compacts which lead to super kernels of order
s which are not of order s + 1. That is, the coe�cients of the high order polynomial are deter-
mined by equations requiring the smoothness properties and the moment conditions required to the
polynomial.
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For a multi-index α ∈ {1, ..., d}l, l ∈ N, we de�ne

cα(φ) =
∫

Rd

l∏
i=1

uαiφ(u) du =
l∏

i=1

∫
Rd

upi
αi
φi(ui) dui,

with pi = card{j : αj = i}. Note in particular, that cα = 0 for |α| = l < s. The property that will
interest us in the calculations to follow is that the super kernel of order s approximate the Dirac
delta function up to the order s+ 1. More precisely, we have the following result.

Lemma 3.1. 1. Let φ be a d-dimensional super kernel of order s. Let f ∈ Cs+1
b (Rd; R). Then∣∣∣f(x)−

∫
Rd

f(y)φh,x(y) dy − hs

s!

∑
|α|=s

cα(φ)∂αf(x)
∣∣∣ ≤ C hs+1,

where ∂αf denotes the derivative of f corresponding to the multi-index α = (α1, . . . , αl), of
length |α| = l. Whereas the constant C is given by

C = cs‖f (s+1)‖∞
∫

Rd

‖u‖s+1|φ(u)| du

where cs is a universal constant depending on s and ‖f (s+1)‖∞ is the sup norm of derivatives
of order s+ 1 of f .

2. Let ϕ : Rd → R be a positive integrable and bounded function. Suppose that
∫

Rd ϕ(x)dx = 1.

Let ϕh,x(y) = 1
hdϕ

(
y−x

h

)
, then for every continuous and bounded function f we have

lim
h→0

∫
Rd

f(y)ϕh,x(y) dy = f(x).

Proof. We have that∫
Rd

f(y)φh,x(y) dy − f(x) =
∫

Rd

φh,x(y)(f(y)− f(x)) dy

=
∫

Rd

φ(u)(f(x+ uh)− f(x)) du

Using a Taylor series expansion of order s for f we obtain∫
Rd

f(y)φh,x(y) dy − f(x) =
s∑

k=1

hk

k!

∑
|α|=k

cα(φ)∂αf(x)

+
hs+1

s!

∑
|α|=s+1

∫
Rd

∫ 1

0

(1− λ)s∂αf(x+ λuh)
s+1∏
i=1

uαiφ(u) dλ du.

Since (φj)j=1,...,d are super kernels of order s, we conclude that cα(φ) = 0, for |α| < s. Consequently,∫
Rd

f(y)φh,x(y) dy − f(x) =
hs

s!

∑
|α|=s

cα(φ)∂αf(x)

+
hs+1

s!

∑
|α|=s+1

∫
Rd

∫ 1

0

(1− λ)s∂αf(x+ λuh)
s+1∏
i=1

uαi
φ(u) dλ du.
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In the following we evaluate the remainder term.∣∣∣∫
Rd

∫ 1

0

(1− λ)s∂αf(x+ λuh)
s+1∏
i=1

uαiφ(u) dλ du
∣∣∣ ≤ ‖f (s+1)‖∞

∫
Rd

‖u‖s+1|φ(u)| du.

According to property a) of De�nition 3.1, the right side of the inequality is �nite and therefore the
result follows. The proof of the second assertion follows from the Lebesgue theorem.

The main theorem of this section gives us an expansion of order 1 of the weak error in the
approximation of the density of the hypoelliptic di�usion X.

Before this we study the error process in a form that will also be useful when studying the stable
convergence problem.

The error process Un = (Un
t )0≤t≤T , de�ned by

Un
t = Xt −Xn

t ,

satis�es the equation

dUn
t =

q∑
j=0

(ḟn
t,j).(Xt −Xn

ηn(t)) dY
j
t ,

where

ḟn
t,j =

∫ 1

0

∇fj

(
Xn

ηn(t) + λ(Xt −Xn
ηn(t))

)
dλ.

Therefore the equation satis�ed by Un can be written as:

Un
t =

∫ t

0

q∑
j=0

ḟn
s,j dY

j
s .U

n
s +Gn

t , (7)

with

Gn
t =

∫ t

0

q∑
j=0

ḟn
s,j .(X

n
s −Xn

ηn(s)) dY
j
s . (8)

Note that

Xn
s −Xn

ηn(s) =
q∑

j=0

f̄n
s,j(Y

j
s − Y j

ηn(s)), (9)

with f̄n
s,j = fj(Xn

ηn(s)). In the following let (Zn
t )0≤t≤T be the Rd×d valued solution of

Zn
t = Id +

∫ t

0

q∑
j=0

ḟn
s,j dY

j
s .Z

n
s .

From Theorem 56 p.271 in Protter (1990) we obtain that there exists (Zn
s )−1 for all s ≤ T which

satis�es

(Zn
t )−1 = Id −

∫ t

0

(Zn
s )−1

q∑
j=1

(ḟn
s,j)

2ds−
∫ t

0

(Zn
s )−1

q∑
j=0

ḟn
s,jdY

j
s

and that

Un
t = Zn

t

{∫ t

0

(Zn
s )−1dGn

s −
∫ t

0

(Zn
s )−1

q∑
j=1

(ḟn
s,j)

2(Xn
s −Xn

ηn(s)) ds
}
.

We de�ne Zt = DxXt and therefore we have that it satis�es

Zt = Id +
∫ t

0

q∑
j=0

ḟs,j dY
j
s .Zs .
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with ḟt,j = ∇fj(Xt).
Furthermore Z−1

t exists and satis�es the following explicit linear stochastic di�erential equation

(Zt)−1 = Id −
∫ t

0

(Zs)−1

q∑
j=1

(ḟs,j)2ds−
∫ t

0

(Zs)−1

q∑
j=0

ḟs,jdY
j
s .

Then using the same techniques as in the proof of existence and uniqueness for stochastic di�erential
equations with Lipschitz coe�cients (i.e. Gronwall inequality) and its Malliavin derivatives (see e.g.
Section 2.2.2 in Nualart (1995,2006)), we obtain that

Lemma 3.2. For any t ∈ [0, T ] Zn
t , Zt, (Zn

t )−1, (Zt)−1 ∈ (D∞(W ))d×d

∀p ≥ 1, l ≥ 0 lim
n→∞

sup
0≤t≤T

‖Zn
t − Zt‖l,p = 0,

and
∀p ≥ 1 l ≥ 0 lim

n→∞
sup

0≤t≤T

∥∥∥(Zn
t )−1 − (Zt)−1

∥∥∥
l,p

= 0.

Furthermore Dk
t1,...,tl

F (t) is Lp(Ω)-continuous in (t, t1, ...., tl) for ti ≤ t, i = 1, ..., l, p > 1 and any
multi-index k with |k| = l and for F = Z, Zn, (Z)−1, (Zn)−1.

Now we are ready to give the main theorem in this section.

Theorem 3.1. Let (Xt)0≤t≤T be a d-dimensional process solution of (4) satisfying the Hörmander
condition and with density function p. We denote by Xn the Euler scheme associated to X and Zn,θ

the auxiliary noise introduced in (2).

1. Let φ be a super-kernel of order s > 2 satisfying the properties a) and b) of De�nition 3.1.
Then, there exists a constant Cs

φ,x > 0 depending on φ, p(x) and s such that

E
[
φh,x

(
Xn

T + Zn,θ

)]
− p(x) =

Cs
φ,x

n
+ o

(
1
n

)
, with h = n−α, α ≥ 1/s

2. let ϕ ∈ C∞b (Rd; R) be a positive bounded and integrable function with bounded derivatives.
Suppose that

∫
Rd ϕ(x)dx = 1. Let

ϕh,x(y) =
1
hd
ϕ
(y − x

h

)
, h = n−α with α > 0,

then we have
lim
n→0

Eϕh,x(Xn
T + Zn,θ) = p(x).

Proof. First we give the proof of the �rst assertion. We write the weak approximation error as
follows

E
[
φh,x

(
Xn

T + Zn,θ

)]
− p(x) =E

[
φh,x

(
Xn

T + Zn,θ

)]
− E

[
φh,x

(
XT + Zn,θ

)]
+ E

[
φh,x

(
XT + Zn,θ

)]
− E

[
φh,x

(
XT

)]
+ E

[
φh,x

(
XT

)]
− p(x).

•Step 1:

We study the last term given by: E
[
φh,x

(
XT

)]
− p(x). Using Lemma 3.1 for the function p (we

recall that under our hypothesis this is a C∞b function) we obtain

E
[
φh,x

(
XT

)]
− p(x) =

hs

s!

∑
|β|=s

cβ(φ)∂βp(x) + o(hs),
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where ∂βp is the partial derivative of p corresponding to the multi-index β. Note that for h =
n−α, α ≥ 1/s we have o(hs) = o(1/n).
•Step 2:

The second term is given by: E
[
φh,x

(
XT + Zn,θ

)]
− E

[
φh,x

(
XT

)]
. Using Taylor's expansion, we

have

E
[
φh,x

(
XT + Zn,θ

)]
− E

[
φh,x

(
XT

)]
=

1
2

E
∫ 1

0

(1− λ)
(
Zn,θ.∇

)2
φh,x

(
XT + λZn,θ

)
dλ.

Since Zn,θ and X are independent we obtain, after applying the integration by parts formula d+ 2
times, that

E
[(
Zn,θ.∇

)2
φh,x

(
XT + λZn,θ

)]
= E

∫
Rd

(
Zn,θ.∇

)2
φh,x

(
y + λZn,θ

)
p(y) dy

= E
∫

Rd

ψh,x

(
y + λZn,θ

)(
Zn,θ.∇

)2
∂(1,...,d)p(y) dy

where ψh,x(y) :=
∫∏d

i=1(−∞,yi)
φh,x(t) dt. Since ψh,x is bounded we obtain that

∣∣∣E ∫
Rd

φh,x

(
y + λZn,θ

)(
Zn,θ.∇

)2
p(y) dy

∣∣∣ ≤ c

n1+2θ
.

The last inequality is immediate using the de�nition of Zn,θ and that ∇2∂(1,...,d)p is integrable,
since p decreases exponentially fast (see Corollary 3.25 in Kusuoka and Stroock (1985)). The result
follows.
•Step 3:

Now we deal with the �rst term given by

An = E
[
φh,x

(
Xn

T + Zn,θ

)]
− E

[
φh,x

(
XT + Zn,θ

)]
.

In fact, we have

An =
∫ 1

0

E
(
∇φh,x

(
Xn,λ

T + Zn,θ

)
.Un

T

)
dλ,

where Xn,λ
T = XT + λ(Xn

T − XT ). In what follows we use the ideas contained in Clement et al.
(2006). Recalling equations (7), (8) and (9) we have that

An =
q∑

j,k=0

∫ 1

0

E
(
∇φh,x

(
Xn,λ

T + Zn,θ

)
Zn

T

∫ T

0

(Zn
s )−1Fn

jk(s)(Y j
s − Y j

ηn(s))dY
k
s

)
dλ

where Fn
jk(s) = ḟn

s,j f̄
n
s,k. If we de�ne D

0 = I (the identity operator) then using the duality formula
(1) two times, one obtains

An =
q∑

j,k=0

∫ 1

0

E
(∫ T

0

Dk
s{∇φh,x

(
Xn,λ

T + Zn,θ

)
Zn

T }(Zn
s )−1Fn

jk(s)
∫ s

ηn(s)

dY j
u ds

)
dλ

=
q∑

j,k=0

∫ 1

0

E
(∫ T

0

∫ s

ηn(s)

Dj
u

{
Dk

s{∇φh,x

(
Xn,λ

T + Zn,θ

)
Zn

T }(Zn
s )−1Fn

jk(s)
}
duds

)
dλ.

Next, if we apply the stochastic derivative operators one obtains that the above is a sum of terms
of the type

E
(∫ 1

0

∫ T

0

∫ s

ηn(s)

∂rφh,x

(
Xn,λ

T + Zn,θ

)
Gn,r,j,k

u,s dudsdλ
)
, (10)
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where j, k = 0, ..., q and r is a multi-index of order 1 up to order 3. The random variables Gn,r,j,k
u,s

are given by(
Dj

u

{
Dk

s{Zn
T }

}
(Zn

s )−1Fn
jk(s) +Dk

s{Zn
T }Dj

u

{
(Zn

s )−1Fn
jk(s)

})a
if r = (a)

(Dk
s{X

n,λ
T })a

(
Dj

u{Zn
T }(Zn

s )−1Fn
jk(s)

)b
+ (Dk

s{X
n,λ
T })a

(
Zn

TD
j
u{(Zn

s )−1Fn
jk(s)}

)b
+

(Dj
u{X

n,λ
T })a

(
Dk

s{Zn
T }(Zn

s )−1Fn
jk(s)

)b
if r = (a, b)

(Dj
u{X

n,λ
T })a(Dk

s{X
n,λ
T })b(Zn

T (Zn
s )−1Fn

jk(s))c if r = (a, b, c).

Here a, b, c ∈ {1, ..., d} denote the component of the corresponding vector. Next for each term one
applies the integration by parts formula (3) to obtain that each term of the type (10) can be written
as

Bn(r, j, k) := E
(∫ 1

0

∫ T

0

∫ s

ηn(s)

ψh,x

(
Xn,λ

T

)
H̃r+(Xn,λ

T + Zn,θ, G
n,r,j,k
u,s )dudsdλ

)
,

where r+ = (r, 1, ..., d) and ψh,x(y) :=
∫∏d

i=1(−∞,yi)
φh,x(t) dt.

The proof of An = C/n+ o(1/n) follows using the following two lemmas. The proof of the �rst
one is just a straightforward analysis exercise and the second lemma is proved in the appendix.

Lemma 3.3. Let g, gn : {(u, s) ∈ [0, T ]2; u ≤ s} → R, n ∈ N. Suppose that

i) g is continuous on the compact set {(u, s) ∈ [0, T ]2; u ≤ s}.

ii) sup
0≤u≤s≤T

|gn(u, s)− g(u, s)| −→
n→∞

0.

Then ∫ T

0

∫ s

ηn(s)

gn(u, s) du ds =
1
2n

∫ T

0

g(s, s) ds+ o(1/n).

Lemma 3.4. Under the previous notations we obtain

Bn(r, j, k) =
1
2n

∫ T

0

E
(
1{XT >x}Hr+

(
XT , G

r,j,k
s,s

))
ds+ o

(
1
n

)
, (11)

with Gr,j,k
u,s is the limit process given by (here Fjk(s) = ḟs,jfk(Xt))(

Dj
u

{
Dk

s{ZT }
}

(Zs)−1Fjk(s) +Dk
s{ZT }Dj

u

{
(Zs)−1Fjk(s)

})a
if r = (a)

(Dk
s{XT })a

(
Dj

u{ZT }(Zs)−1Fjk(s)
)b

+ (Dk
s{XT })a

(
ZTD

j
u{(Zs)−1Fjk(s)}

)b
+

(Dj
u{XT })a

(
Dk

s{ZT }(Zs)−1Fjk(s)
)b

if r = (a, b)

(Dj
u{XT })a(Dk

s{XT })b(ZT (Zs)−1Fjk(s))c if r = (a, b, c).

The proof of the second assertion of the Theorem follows as the �rst assertion with the exception
that the rate is not 1/n but 1/n2α if α < 1/2. We mention here that in the proof of the third
step above we only need the integrability of φ and that

∫
Rd φ(x)dx = 1. Consequently, the results

obtained in this step remain valid in the context of the second assertion of the theorem.

4 Approximations of non-degenerated di�usions

through the Monte Carlo method

Let X be a hypoelliptic di�usion, solution of the stochastic di�erential equation (4). The goal of
this section is to study an approximation of the density p(x) of X(T ) using a Monte Carlo method
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together with a kernel density estimate. That is, in order to evaluate p(x):

• One discretizes the di�usion X through an Euler scheme Xn of step T/n regularized as Xn +Zn,θ

where Zn,θ is an independent Gaussian random variable of mean zero and standard deviation
n−1/2−θ.
• one approximates the distribution y 7→ δx(y) by the super-kernel φh,x(y) of order s , where h
denotes the window size.
• then �nally one estimates Eφh,x(Xn

T +Zn,θ) using the Monte Carlo method. This procedure gives
the classical kernel estimator given by

Sn,N :=
1
N

N∑
i=1

φh,x(Xn
T,i + Zi

n,θ)

where (Xn
T,i)1≤i≤N and (Zi

n,θ)1≤i≤N are i.i.d. copies of Xn
T and Zn,θ. In what follows, we prove a

central limit theorem analogue to a similar result proved by Du�e and Glynn (1995) which gives
a precise choice for the sample size N for the Monte Carlo method. Their choice depends on the
step size parameter n from the Euler scheme and is valid for the case where instead of φh,x one has
a smooth function uniformly in h. Here we extend this result to the degenerate case. That is φh,x

tends to the delta distribution function as h → 0. This problem is somewhat more complex as we
have to decide the optimal values of N and h in function of n.

In what follows we let N = nγ , h = n−α where γ > 0 and α ≥ 1/s

Theorem 4.1. With the previous de�nitions and if we let γ = 2 + αd then

n(Sn,N − p(x)) ⇒ σG+ Cs
φ,x

with σ2 = φ2 p(x), G is a standard Gaussian random variable and Cs
φ,x is the constant in the error

expansion given in Theorem 3.1 and φ2 =
∫

Rd |φ(u)|2 du.

Proof. We have that

n(Sn,N − p(x)) =
1

nγ−1

nγ∑
i=1

{
φh,x(Xn

T,i + Zi
n,θ)− E

[
φh,x(Xn

T + Zn,θ)
]}

+ n
[
E

[
φh,x(Xn

T + Zn,θ)
]
− p(x)

]
.

From Theorem 3.1, we have that

n
[
E

[
φh,x(Xn

T + Zn,θ)
]
− p(x)

]
−→

n→∞
Cs

φ,x

Therefore it remains to prove a central limit theorem for 1
nγ−1

∑nγ

i=1 ζ
n

i where

ζ
n,h

i :=
{
φh,x(Xn

T,i + Zi
n,θ)− E

[
φh,x(Xn

T + Zn,θ)
]}
.

We start considering the characteristic function of the previous sum

E
[
exp

( iu

nγ−1

nγ∑
k=1

ζ
n

k

)]
=

[
E exp

( iuζn

nγ−1

)]nγ

=
[
1 +

1
nγ

( −u2

2nγ−2
E |ζ

n

|2 + ECn(ω)
)]nγ

.

Here

|ECn(ω)| ≤ u3

6n2γ−3
E |ζ

n

|3.
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To study the above terms recall from de�nition 3.1, the de�nition of φl
h,x for l = 2, 3.

Therefore from the second assertion of Theorem 3.1 we have

E
[
φi

h,x(Xn
T + Zn,θ)

]
= p(x) + εi,n(x), i = 2, 3.

with limn εi,n(x) = 0 for i = 2, 3.
Let us start studying the term given by E |ζn |2. We have that

E |ζ
n

|2 = E
[
φh,x(Xn

T + Zn,θ)2
]
−

{
E

[
φh,x(Xn

T + Zn,θ)
]}2

=
φ2

hd
E

[
φ2

h,x(Xn
T + Zn,θ)

]
−

{
E

[
φh,x(Xn

T + Zn,θ)
]}2

.

Therefore,

E |ζ
n

|2 =
φ2

hd
ε2(x) +

φ2

hd
p(x) +

{Cs
φ,x

n
+ o

( 1
n

)
+ p(x)

}2

where Cs
φ,x is the constant in the error expansion given in Theorem 3.1. Therefore, for h = n−α,

γ = 2 + αd and α ≥ 1/s we have

1
nγ−2

E |ζ
n

|2 −→
n→∞

φ2 p(x).

On the other hand, we have that

E |ζ
n

|3 = E
∣∣∣φh,x(Xn

T + Zn,θ)− E
[
φh,x(Xn

T + Zn,θ)
]∣∣∣3

≤ E
∣∣φh,x(Xn

T + Zn,θ)
∣∣3 + 3E

∣∣φh,x(Xn
T + Zn,θ)

∣∣2∣∣Eφh,x(Xn
T + Zn,θ)

∣∣
+ 4

∣∣Eφh,x(Xn
T + Zn,θ)

∣∣3.
Therefore, as before, we obtain that

E |ζ
n

|3 ≤ h−2dφ3Eφ3
h,x(Xn

T + Zn,θ) + 3h−dφ2Eφ2
h,x(Xn

T + Zn,θ)
∣∣Eφh,x(Xn

T + Zn,θ)
∣∣

+ 4
∣∣Eφh,x(Xn

T + Zn,θ)
∣∣3

Finally,

E |ζ
n

|3 ≤ h−2dφ3(p(x) + ε3,n(x)) + 3h−dφ2
∣∣∣p(x) + ε2,n(x)

∣∣∣∣∣∣Cs
φ,x

n
+ o

( 1
n

)
+ p(x)

∣∣∣
+ 4

∣∣∣Cs
φ,x

n
+ o

( 1
n

)
+ p(x)

∣∣∣3.
for h = n−α, γ = 2 + αd and α ≥ 1/s. This leads to

1
n2γ−3

E |ζ
n

|3 −→
n→∞

0.

which �nishes the proof.

The interpretation of the above result leads to the previously announced result. That is, in order
to approximate the density p(x) through a Monte Carlo method with a tolerance error of order 1/n,
the optimal asymptotic choice of parameters are h = n−α and N = n2+αd with α ≥ 1/s where s
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denotes the order of the super kernel used for the estimation. This leads to the following algorithmic
complexity (that is, number of calculations) of

CMC = C × nN = C × n3+αd,

for a given C > 0 (here the unit of calculation is one simulation of a random variable). Therefore
the optimal complexity of this algorithm is given by

C?
MC = C × n3+ d

s .

Therefore we conclude that if the order s of the kernel is bigger then the complexity is smaller.
Nevertheless, one should keep in mind that the constant Cs

φ,p(x) depends on s and the imple-
mentation of this algorithm for high order kernels carries some problems, such as the possibility
of non-positive values for Sn,N and big constants in the error expansions. Therefore the practical
choice of super kernel remains an open problem from the practical point of view.

5 Asymptotic behavior of the Malliavin derivative of the nor-

malized error

5.1 Malliavin derivative of the error process

In the following we denote W̌n the d× d-dimensional process de�ned by

W̌n,ij
t =

√
2
T

∫ t

0

(W i
s −W i

ηn(s)) dW
j
s .

According to the Theorem 3.2 of Jacod and Protter (1998), the process
√
nW̌n converge stably in

law to a d × d-dimensional Brownian motion W̌ independent from W and the couple
√
n(W̌n, Un)

converge stably in law to the couple (W̌ , U) where the Rd×d-valued process U is solution to

Ut =
q∑

j=0

∫ t

0

ḟs,j .Us dY
j
s +

√
T

2

q∑
i,j=1

∫ t

0

ḟs,j .fi(Xs) dW̌ ij
s . (12)

In order to obtain the equation satis�ed by the Malliavin derivative of the error process with
respect to W i, i = 1, ..., q, we derive the equation (7):

Di
sU

n
t =

q∑
j=0

∫ t

s

Di
s(ḟ

n
j,v.U

n
v ) dY j

v + ḟn
s,iU

n
s 1{s≤t} +Di

sG
n
t . (13)

Note that the above derivative exists due to the regularity properties of the coe�cients of the
equation for X. Furthermore, using (8) and (9), we have that

Di
sG

n
t = ḟn

s,i.(X
n
s −Xn

ηn(s))1{s≤t} +
q∑

j=0

∫ t

s

Di
s

[
ḟn

u,j .(X
n
u −Xn

ηn(u))
]
dY j

u

and

Di
s

[
ḟn

u,j .(X
n
u −Xn

ηn(u))
]

=
q∑

k=0

Di
s(ḟ

n
u,j .f̄

n
u,k)(Y k

u − Y k
ηn(u)) + ḟn

u,j .f̄
n
u,i1{ηn(u)≤s≤u}

As DsZ = 0 for Z, which is Fu-measurable (u < s), the relation (13) becomes for s ≤ t,

Di
sU

n
t = ḟn

s,i(U
n
s +Xn

s −Xn
ηn(s)) +

q∑
j=0

∫ t

s

ḟn
v,jD

i
sU

n
v dW

j
v + G̃n,i

s,t , (14)
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with

G̃n,i
s,t =

q∑
j=0

∫ t

s

Di
sḟ

n
v,j U

n
v dY

j
v +

q∑
j,k=0

∫ t

s

Di
s(ḟ

n
u,j f̄

n
u,k)(Y k

u − Y k
ηn(u)) dY

j
u

+
q∑

j=0

∫ t

s

ḟn
u,j f̄

n
u,i1{ηn(u)≤s≤u} dY

j
u . (15)

From Theorem 56 p.271 in Protter (1990), it follows that (14) becomes for t ≥ s,

Di
sU

n
t = Zn

t (Zn
s )−1ḟn

s,i(U
n
s +Xn

s −Xn
ηn(s))

+ Zn
t

{∫ t

s

(Zn
u )−1 dG̃n,i

s,u −
q∑

j=0

∫ t

s

(Zn
u )−1ḟn

u,jd〈G̃n,i
s,. , Y

j〉u
}
. (16)

5.2 Convergence in law for the normalized Malliavin derivative of the

error

The Malliavin derivative of Un
T is a random vector taking values in the Hilbert space H = L2([0, T ]).

The aim of this section is to establish the convergence in law for the sequence
√
nDUn

T . Note that
the process U , limit of

√
nUn, is an adapted process with respect to the �ltration of W and W̌ .

Using (12), we can compute the derivatives DUt with respect to the Wiener processes W and obtain
that DUt satis�es for 0 ≤ s ≤ t ≤ T ,

Di
sUt = ḟs,iUs +

q∑
j=0

∫ t

s

ḟv,jD
i
sUv dY

j
v +

q∑
j=0

∫ t

s

Di
sḟv,iUv dY

j
v

+

√
T

2

q∑
j,k=1

∫ t

s

Di
s(ḟv,jfv,k)dW̌ kj

v , (17)

or using again Theorem 56 p.271 in Protter (1990), we obtain for 0 ≤ s ≤ t ≤ T that,

DsUt = Zt(Zs)−1ḟs,iUs + Zt

{∫ t

s

(Zu)−1dGi
s,u −

q∑
j=0

∫ t

s

(Zu)−1ḟu,j d〈Gi
s,., Y

j〉u
}
, (18)

with

Gi
s,t =

q∑
j=0

∫ t

s

Di
sḟv,jUv dY

j
v +

√
T

2

q∑
j,k=1

∫ t

s

Di
s(ḟv,jfv,i) dW̌ kj

v . (19)

Theorem 5.1. Let (Hi
t)0≤t≤T be a continuous sequence of R-valued process (possibly non adapted).

The random vector (
√
nUn

T ,
√
n

∫ T

0
Hi

sD
i
sU

n
T ds) converges stably in law to (UT ,

∫ T

0
Hi

sD
i
sUT ds) where

DiUT is the Malliavin derivative of U with respect to W i and solution of (18).

In order to prove this theorem, we use the two technical lemmas below. The proofs of these
lemmas are given in the Appendix 9 (See Jacod and Protter (1998) for related results).

Lemma 5.1. Let (Hn
t = (H1,n

t , ...,Hd,n
t ))0≤t≤T be a tight sequence of continuous processes (possibly

non adapted) taking values in Rd. The sequence of random vectors (
√
n

∫ T

0
Hi,n

s (Y j
s − Y

j
ηn(s)) ds; i ∈

{1, ..., d}, j ∈ {0, ..., q})n∈N converge in probability to 0.

Lemma 5.2. Let (Ht)0≤t≤T be a continuous R-valued process (possibly non adapted) and let (Kn
u )0≤u≤T

be a sequence of adapted and continuous processes taking values in Rd and such that supn E
∫ T

0
‖Kn

u‖2 du <

∞. Then the sequence (
√
n

∫ T

0
Hs(

∫ T

0
1{ηn(u)≤s≤u}K

n
u dY

j
u )ds)n∈N converge in probability to 0.
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Lemma 5.3. Let Hi, Ki, Li be three real processes with continuous trajectories on [0, T ] and
let (ξij

s,u)0≤s≤u≤T , (ζijk
s,u )0≤s≤u≤T be two adapted processes (wrt u), taking values in Rd×d, with

continuous trajectories and such that

E
∫ T

0

∫ u

0

(
max

j
‖ξij

s,u‖p + max
j,k

‖ζijk
s,u‖p

)
dsdu <∞ for p > 2, i = 1, ..., q.

Then

√
n
(
Un

T ,

∫ T

0

Hi
sU

n
s ds,

∫ T

0

Ki
s

( q∑
j=1

∫ T

s

ξij
s,uU

n
u dW

j
u

)
ds,

∫ T

0

Li
s

( q∑
j,k=1

∫ T

s

ζijk
s,u dW̌

n,kj
u

)
ds; i = 1, ..., q

)
stably converge in law to

(
UT ,

∫ T

0

Hi
sUs ds,

∫ T

0

Ki
s

( q∑
j=1

∫ T

s

ξij
s,uUu dW

j
u

)
ds,

∫ T

0

Li
s

( q∑
j,k=1

∫ T

s

ζijk
s,u dW̌

kj
u

)
ds, i = 1, ..., q

)
Proof of Theorem 5.1. Using the relation (16), we have∫ T

0

Hi
sD

i
sU

n
T ds = Zn

T

∫ T

0

Hi
s(Z

n
s )−1ḟn

s,i(U
n
s +Xn

s −Xn
ηn(s)) ds+ Zn

T I
n,i, (20)

where

In,i =
∫ T

0

Hi
s

(∫ T

s

(Zn
u )−1dG̃n,i

s,u −
q∑

j=0

∫ T

s

(Zn
u )−1ḟn

u,j d〈G̃n,i
s,. , Y

j〉u
)
ds.

Using (18) ∫ T

0

Hi
sD

i
sUT ds = ZT

∫ T

0

Hi
s(Zs)−1ḟs,iUs ds+ ZT I

i

with

Ii =
∫ T

0

Hi
s

(∫ T

s

(Zu)−1dGi
s,u −

q∑
j=0

∫ T

s

(Zu)−1ḟu,j d〈Gi
s,., Y

j〉u
)
ds.

Now, let us prove that∫ T

0

Hi
s(Z

n
s )−1ḟn

s,i(U
n
s +Xn

s −Xn
ηn(s)) ds =

∫ T

0

Hi
s(Zs)−1ḟs,iU

n
s ds+ ξn,i (21)

with P limn→∞
(√
nξn,i) = 0, where we use the notation P lim for convergence in probability.

In fact, the tightness of
√
nUn (see Theorem 3.2 of Jacod and Protter (1998)) and

P lim
n→∞

sup
0≤s≤T

|(Zn
s )−1ḟn

s,j − (Zs)−1ḟs,j | = 0

give that

P lim
n→∞

√
n

∫ T

0

Hi
s

[
(Zn

s )−1ḟn
s,i − (Zs)−1ḟs,i

]
Un

s ds = 0.

In the other hand, we can write

√
n

∫ T

0

Hi
s(Z

n
s )−1ḟn

s,i(X
n
s −Xn

ηn(s)) ds =
√
n

q∑
j=0

∫ T

0

Hi
s(Z

n
s )−1ḟn

s,if̄
n
s,j(Y

j
s − Y j

ηn(s)) ds.
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Then as Hi
· (Z

n
· )−1ḟn

·,if̄
n
·,j is a tight sequence of continuous process we obtain from Lemma 5.1 that

the above integral converges to zero in probability and therefore P limn→∞
(√
nξn,i) = 0.

Let's study now the sequence (In). First, note that using (15) we obtain that

In,i =
q∑

j=0

∫ T

0

Hi
s

∫ T

s

(Zn
u )−1

{
An,i,j

s,u Un
u +

q∑
k=0

Bn,i,j,k
s,u (Y k

u −Y k
η(u))+Cn,i,j

u 1{ηn(u)≤s≤u}

}
dY j

u ds (22)

where

An,i,j
s,u = Di

sḟ
n
u,j − 1{j=0}

q∑
l=1

ḟn
u,lD

i
sḟ

n
u,l

Bn,i,j,k
s,u = Di

s(ḟ
n
u,j f̄

n
u,k)− 1{k=0}

q∑
l=1

ḟn
u,lD

i
s(ḟ

n
u,lf̄

n
u,k)

Cn,i,j
u = ḟn

u,j f̄
n
u,i − 1{j=0}

q∑
l=1

ḟn
u,lḟ

n
u,lf̄

n
u,i.

Now we study each of the three terms in (22). First, the third term in (22) satis�es that

q∑
j=0

√
n

∫ T

0

Hi
s

∫ T

s

(Zn
u )−1Cn,i,j

u 1{ηn(u)≤s≤u}dY
j
u ds

with supn E
∫ T

0
‖(Zn

u )−1Cn,i,j
u ‖2du <∞. Therefore this term tends to zero due to Lemma 5.2. Now,

consider the second term with jk = 0. Note that
q∑

j,k=0;jk=0

√
n

∫ T

0

Hi
s

∫ T

s

(Zn
u )−1Bn,i,j,k

s,u (Y k
u − Y k

η(u))dY
j
u ds

tends to zero as jk = 0. Next, if we de�ne Bi,j,k
s,u = Di

s(ḟu,jfu,k)

q∑
j,k=1

√
n

∫ T

0

Hi
s

∫ T

s

((Zn
u )−1Bn,i,j,k

s,u − (Zu)−1Bi,j,k
s,u )(Y k

u − Y k
η(u))dY

j
u ds

tends to zero in L1(Ω) as
√
nW̌n,kj is bounded uniformly in Lp(Ω) and (Zn

u )−1Bn,i,j,k
s,u −(Zu)−1Bi,j,k

s,u

converges to zero in Lp(Ω×[0, T ]2), therefore this term also converges to zero. Then for the remaining

q∑
j,k=1

√
nT

2

∫ T

0

Hi
s

∫ T

s

(Zu)−1Bi,j,k
s,u dW̌n,kj

u ds,

we will apply Lemma 5.3 at the end together with the analysis for the �rst term of (22). For that
�rst term, consider as previously

q∑
j=0

√
n

∫ T

0

Hi
s

∫ T

s

((Zn
u )−1An,i,j

s,u − (Zu)−1Ai,j
s,u)Un

u dY
j
u ds,

where Ai,j
s,u = Di

sḟu,j−1{j=0}
∑q

l=1 ḟu,lD
i
sḟu,l. Again this term goes to zero in L1(Ω) as the sequence√

nUn is bounded uniformly in Lp(Ω) and (Zn
u )−1An,i,j

s,u − (Zu)−1Ai,j
s,u converges to zero in Lp(Ω×

[0, T ]2). Now the only terms that have been left are

q∑
j,k=1

√
nT

2

∫ T

0

Hi
s

∫ T

s

(Zu)−1Bi,j,k
s,u dW̌n,kj

u ds+
q∑

j=1

√
n

∫ T

0

Hi
s

∫ T

s

(Zu)−1Ai,j
s,uU

n
u dY

j
u ds.

For this term is clear how to de�ne ξij
s,u and ζijk

s,u which satisfy the required conditions in Lemma
5.3. Note that one has to apply Lemma 5.3 to the term above and the �rst term on the right of
(21). Therefore the proof is �nished.
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6 An optimal control variate method for density estimation

The aim of this section, is to analyze the statistical Romberg method as a control variate introduced
in Kebaier (2005) in the case of density estimation. In order to reduce variance in the density
estimation of a non-degenerate d-dimensional di�usion (Xt)0≤t≤T , we will use another estimation of
the same density using less steps and slightly more simulation paths.

That is, we discretize the di�usion by two Euler schemes with time steps T/n and T/m (m << n).
Under the Hörmander condition, the statistical Romberg method approximates the density p(x) of
the di�usion (Xt)0≤t≤T by

1
Nm

Nm∑
i=1

φh,x(X̂m
T,i + Ẑi

m,θ) +
1

Nn,m

Nn,m∑
i=1

{
φh,x(Xn

T,i + Zi
n,θ)− φh,x(Xm

T,i + Zi
m,θ)

}
,

where X̂m
T is a second Euler scheme with step T/m and such that the Brownian paths W , used

for Xn
T and Xm

T have to be independent of the Brownian paths (denoted by Ŵ ) used in order to

simulate X̂m
T . Furthermore

Zn,θ =
W̄T

n
1
2+θ

, Ẑm,θ =
W̆T

m
1
2+θ

, θ ≥ 0,

where W̄ and W̆ are two independent d-dimensional Brownian motions independent of W and Ŵ .
In order to run the statistical Romberg algorithm, we have to optimize the parameters in the

method. In the same manner as in Kebaier (2005), we establish a central limit theorem which will
lead to a precise description of how to choose the parameters Nm, Nn,m, m and h as functions of
n. The essential di�erence with the problem studied in Kebaier (2005) is that the variance of the
estimators explode. This issue will be resolved through an appropriate renormalization procedure
and an appropriate decomposition of the derivatives of the kernel function.

In the following, we suppose that for a given 0 < β < 2/3 we have

m = nβ , Nm = nγ1 , Nn,m = nγ2 , h = n−α,

where γ1, γ2 > 0, and α ≥ 1/s (the parameter s denotes the order of the super-kernel φ). We set

Vn :=
1
nγ1

nγ1∑
i=1

φh,x(X̂nβ

T,i + Ẑi
nβ ,θ) +

1
nγ2

nγ2∑
i=1

{
φh,x(Xn

T,i + Zi
n,θ)− φh,x(Xnβ

T,i + Zi
nβ ,θ)

}
.

Note that the �rst derivatives of the kernel function φ have the following decomposition

∂φ

∂xi
(x) = φ1

i (x)− φ2
i (x)

where, φ1
i (x) :=

(
∂φ
∂xi

(x)
)
+
and φ2

i (x) :=
(

∂φ
∂xi

(x)
)
−. We prefer this notation because it will be easier

to handle in the coming calculations. The condition
∫

Rd |∇φ(x)|2dx <∞ (see De�nition 3.1) implies

that
∫

Rd |φj
i (x)|2dx < +∞, for i = 1, ..., d and j = 1, 2. In the following we de�ne the

constant

Cj j′

i i′ =
∫

Rd

φj
i (x)φ

j′

i′ (x) dx, j, j′ ∈ {1, 2}, i, i′ ∈ {1, ..., d}.

Theorem 6.1. Let

σ̃2 :=
2∑

j,j′=1

d∑
i,i′=1

(−1)j+j′Cj j′

i i′

{
E

[
δx(XT )U i

TU
i′

T

]
+ Tδii′p(x)1{θ=0}

}
,

where δx(.) stands for the Dirac delta function and δii′ is the Kroeneker delta function. Assume that
h = n−α, γ1 = 2 + αd, γ2 = (d+ 2)α+ 2− β and 1/s ≤ α < β/(d+ 2) with 0 < β < 2/3.

Then
n
(
Vn − p(x)

)
⇒ σ̃G+ Cs

φ,x

where G is a standard Gaussian r.v. and Cs
φ,x is the discretization constant of Theorem 3.1.

20



Before proving the theorem we introduce an essential result about the rate of explosion of the
variances of the estimators. In what follows we extend the previous notation to

φ1
i,h,x(y) =

1
hd
φ1

i (
y − x

h
), φ2

i,h,x(y) =
1
hd
φ2

i (
y − x

h
).

Lemma 6.1. Under the notation and assumptions of the above theorem, we have

1. nβ−α(2+d)E
[
φh,x(Xnβ

T + Znβ ,θ)− φh,x(XT )
]2

−→
n→∞

σ̃2.

2. nβ−α(2+d)E
[
φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
]2

−→
n→∞

σ̃2.

We remark here that the assertion 1 above is satis�ed also for β ≥ 2/3.

Proof. As θ is constant throughout the proof we sometimes use some notations where θ is not
explicitly written. Let's prove the �rst assertion of the lemma.
•Step 1:

The Taylor formula gives

φh,x(Xnβ

T + Znβ ,θ)− φh,x(XT ) =
d∑

i=1

∂φh,x

∂xi
(XT )

(
Unβ ,i

T + Zi
nβ ,θ

)
+

1
2

d∑
i,i′=1

∂2φh,x

∂xi∂xi′
(ξn,ii′

T )
(
Unβ ,i

T + Zi
nβ ,θ

)(
Unβ ,i′

T + Zi′

nβ ,θ

)
where Unβ

T = Xnβ

T −XT and ξn
T ∈

∏d
i=1[X

i
T , X

nβ ,i
T + Zi

nβ ,θ]. Note that∥∥∥ ∂2φh,x

∂xi∂xi′

∥∥∥
∞
≤ h−(d+2)‖φ′′‖∞,

where ‖φ′′‖∞ = maxi,i′ supx∈Rd

∣∣∣ ∂2φ(x)
∂xi∂xi′

∣∣∣. Then there exists a constant CT > 0 such that

n
β−α(2+d)

2

∥∥∥∥ ∂2φh,x

∂xi∂xi′
(ξn,ii′

T )
(
Unβ ,i

T + Zi
nβ ,θ

)(
Unβ ,i′

T + Zi′

nβ ,θ

)∥∥∥∥
2

≤ CTn
−α(2+d)−β

2 h−(d+2)‖φ′′‖∞

= CTn
α(2+d)−β

2 ‖φ′′‖∞−→ 0 as n→∞.

Consequently, in order to obtain the �rst assertion of the lemma it su�ces to prove that

n
β−α(2+d)

2

∥∥∥∥ d∑
i=1

∂φh,x

∂xi
(XT )

(
Unβ ,i

T + Zi
nβ ,θ

)∥∥∥∥
2

−→ σ̃ as n→∞. (23)

• Step 2: We have∥∥∥∥ d∑
i=1

∂φh,x

∂xi
(XT )

(
Unβ ,i

T + Zi
nβ ,θ

)∥∥∥∥2

2

=
d∑

i,i′=1

E
{
∂φh,x

∂xi
(XT )

∂φh,x

∂xi′
(XT )

(
Unβ ,i

T + Zi
nβ ,θ

)(
Unβ ,i′

T + Zi′

nβ ,θ

)}

=
2∑

j,j′=1

d∑
i,i′=1

E
{

(−1)j+j′

h2+d
φj

i,h,x(XT )φj′

i′,h,x(XT )Y nβ

ii′

}
,

where Y nβ

ii′ ≡ Y nβ

ii′ (θ) :=
(
Unβ ,i

T + Zi
nβ ,θ

)(
Unβ ,i′

T + Zi′

nβ ,θ

)
and

∂φh,x

∂xi
(y) =

1
h

[
φ1

i,h,x(y)− φ2
i,h,x(y)

]
.
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Then∥∥∥∥ d∑
i=1

∂φh,x

∂xi
(XT )

(
Unβ ,i

T + Zi
nβ ,θ

)∥∥∥∥2

2

=
2∑

j,j′=1

d∑
i,i′=1

(−1)j+j′Cj j′

i i′

h2+d
E

[
ϕj j′

i i′,h,x(XT )Y nβ

ii′

]
, (24)

where
ϕj j′

i i′,h,x(y) = (Cj j′

i i′ )−1hdφj
i,h,x(y)φj′

i′,h,x(y).

In order to evaluate the limit of the last quantity, one needs to use an integration by parts
formula. We use the Malliavin-Thalmaier integration by parts formula introduced in Proposition
2.3. However, to apply this formula we �rst make appear a Dirac function inside the expectation in
24.

More precisely, let (ξj j′

i i′,h){i,i′=1...d, j,j′=1,2.} be random vectors independent of all other random

variables, so that their density is given by ϕj j′

i i′,h,x(.). Consequently, we have that

ξj j′

i i′,h → x a.s. as h→ 0.

Then

nβ−α(2+d)

∥∥∥∥ d∑
i=1

∂φh,x

∂xi
(XT )

(
Unβ ,i

T +Zi
nβ ,θ

)∥∥∥∥2

2

= nβ
2∑

j,j′=1

d∑
i,i′=1

(−1)j+j′Cj j′

i i′ E
[
δ0

(
XT−ξj j′

i i′,h

)
Y nβ

ii′

]
,

Applying the integration by parts formula in Proposition 2.3, we obtain

nβ−α(2+d)

∥∥∥∥ d∑
i=1

∂φh,x

∂xi
(XT )

(
Unβ ,i

T + Zi
nβ ,θ

)∥∥∥∥2

2

= nβ
d∑

r=1

2∑
j,j′=1

d∑
i,i′=1

(−1)j+j′Cj j′

i i′ E
[
∂rQd

(
XT − ξj j′

i i′,h

)
H(r)

(
XT , Y

nβ

ii′
)]
,

To deal with the last obtained quantity, we need the following technical lemma which is proved in
the Appendix.

Lemma 6.2. Let Fh be a d-dimensional random vector, independent of XT such that

Fh → x a.s. as h→ 0.

Assume that Fh have a density function ρh,x(y) = 1
hρ(

y−x
h ) where ρ is a density function. Then, for

r = 1, ..., d

1. ∂rQd

(
XT − Fh) → ∂rQd

(
XT − x) a.s. as h→ 0.

2. For any 0 < δ < (d− 1)−1, we have suph>0 E
∣∣∣∂rQd

(
XT − Fh

)∣∣∣1+δ

<∞.

We only need to study the behavior of

nβE
[
∂rQd

(
XT − x

)
H(r)

(
XT , Y

nβ

ii′
)]

in order to prove relation (23). This will be the aim of the next step.
• Step 3:

We have that

H(r)

(
XT , Y

nβ

ii′
)

= Y nβ

ii′ H(r)(XT , 1)−
d∑

j,k=1

(γ−1
XT

)jr

∫ T

0

Dk
sX

j
TD

k
sY

nβ

ii′ ds
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According to Theorem 5.1 we have that

nβ/2Y nβ

ii′ ⇒stably Yii′,θ := (U i
T + W̄ i

T 1{θ=0})(U i′

T + W̄ i′

T 1{θ=0}).

Therefore as s 7→ DsXT is continuous for s ∈ [0, T ], we have that

nβ H(r)

(
XT , Y

nβ

ii′

)
⇒stably Yii′ H(r)(XT , 1)− 2

d∑
j,k=1

(γ−1
XT

)jr

∫ T

0

Dk
s (U i

TU
i′

T )Dk
sX

j
T ds

= H(r)

(
XT , Yii′

)
.

As the di�usion X and the associated Euler scheme satis�es Proposition 3.1 and using Proposition
7.1 we have that

nβ sup
n

∥∥∥H(r)

(
XT , Y

nβ

ii′
)∥∥∥

l,p
<∞.

Therefore, according to the Lemma 6.2, the sequence nβ∂rQd(XT − x)H(r)

(
XT , Y

nβ

ii′

)
is uni-

formly integrable and therefore

nβ
d∑

r=1

E
{
∂rQd(XT − x)H(r)

(
XT , Y

nβ

ii′

)}
−→

n→∞

d∑
r=1

E

{
∂rQd(XT − x)H(r)

(
XT , Yii′

)}
= E

{
δx(XT )Yii′

}
.

The last equality follows from an application of the integration by parts formula. As W̄T is inde-
pendent from (W, W̌ ), we have that

E
(
δx(XT )U i

T W̄
j
T

)
= 0,

E
(
δx(XT )W̄ i

T W̄
j
T

)
= E

(
δx(XT )

)
Tδij = Tp(x)δij .

Therefore
E

{
δx(XT )Yii′

}
= E

{
δx(XT )U i

TU
i′

T

}
+ Tp(x)1{θ=0}δii′

Therefore we �nally obtain that

nβ−α(2+d)
∥∥∥ d∑

i=1

∂φh,x

∂xi
(XT )(Unβ ,i

T + Zi
nβ ,θ)

∥∥∥
2
−→

n→∞
σ̃2,

from which the �rst assertion of the Lemma follows.
The second assertion is a consequence of the �rst. In fact using the triangular inequality, we

have that

n
β−α(2+d)

2

∣∣∣∣∥∥∥φh,x(Xn
T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
∥∥∥

2
−

∥∥∥φh,x(Xnβ

T + Znβ ,θ)− φh,x(XT )
∥∥∥

2

∣∣∣∣ ≤
n

β−α(2+d)
2

∥∥∥φh,x(Xn
T + Zn,θ)− φh,x(XT )

∥∥∥
2
.

As the �rst assertion is also valid for β′ ∈ (β, 1). We apply this �rst assertion noting that α ≤ β
d+2 <

β′

d+2 which gives

lim
n→∞

n
β′−α(2+d)

2 ‖φh,x(Xn
T + Zn,θ)− φh,x(XT )‖2 = σ̃.

From here it follows that

n
β−α(2+d)

2

∥∥∥φh,x(Xn
T + Zn,θ)− φh,x(XT )

∥∥∥
2
−→

n→∞
0.

From here the proof of the second assertion follows.
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Proof of Theorem 6.1. We have

n
(
Vn − p(x)

)
:=

1
nγ1−1

nγ1∑
i=1

ζn
i +

1
nγ2−1

nγ2∑
i=1

ζ̃n
i + n

(
Eφh,x(Xn

T + Zn,θ)− p(x)
)

with
ζn = φh,x(X̂nβ

T + Ẑnβ ,θ)− Eφh,x(X̂nβ

T + Ẑnβ ,θ)

and

ζ̃n = φh,x(Xn
T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)− E
{
φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
}
.

From Theorem 4.1 and for γ1 = 2 + αd we have that

1
nγ1−1

nγ1∑
i=1

ζn
i ⇒ N(0, σ2) with σ2 = φ2p(x)

where φ2 =
∫

Rd φ
2(u) du. Therefore to �nish the proof it is enough to prove a central limit theorem

for 1
nγ2−1

∑nγ2

i=1 ζ̃
n
i , as the random variables ζn and ζ̃n are independent. As in the proof of Theorem

4.1 we have that

E
[
exp

( iu

nγ2−1

nγ2∑
k=1

ζ̃n
k

)]
=

[
1 +

1
nγ2

( −u2

2nγ2−2
E |ζ̃

n,h

|2 + E C̃n(ω)
)]nγ2

,

with

|E C̃n(ω)| ≤ u3

6n2γ2−3
E |ζ̃n|3.

Now we prove that
1

nγ2−2
E |ζ̃n|2 −→

n→∞
σ̃2

and
1

n2γ2−3
E |ζ̃n|3 −→

n→∞
0,

which will give as in the proof of Theorem 4.1

1
nγ2−1

nγ2∑
i=1

ζ̃n
i → σ̃G

where G is a standard Gaussian random variable.
Let's start with the term E |ζ̃n|2. We have that

E |ζ̃n|2 = E
[
φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
]2 − {Cs

φ,x

n
−
Cs

φ,x

nβ
+ o

( 1
nβ

)}2

,

where Cs
φ,x is the constant given in Theorem 3.1 associated to the kernel φ. Also from Lemma 6.1

and for γ2 = (d+ 2)α+ 2− β we have that

1
nγ2−2

E |ζ̃n|2 −→
n→∞

σ̃2.

On the other hand,

E |ζ̃n|3 ≤ 4E
∣∣∣φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
∣∣∣3 +

∣∣∣E [
φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
]∣∣∣3

+ 3E
∣∣∣φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
∣∣∣2×∣∣∣E [

φh,x(Xn
T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
]∣∣∣.
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Also using Theorem 3.1 we obtain

E |ζ̃n|3 ≤ 4E
∣∣∣φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
∣∣∣3 +

∣∣∣Cs
φ,x

n
−
Cs

φ,x

nβ
+ o

( 1
nβ

)∣∣∣3

+ 3E
∣∣∣φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
∣∣∣2∣∣∣Cs

φ,x

n
−
Cs

φ,x

nβ
+ o

( 1
nβ

)∣∣∣.
Applying again Lemma 6.1 we have that for γ2 = (d+ 2)α+ 2− β

1
n2γ2−3

E
∣∣∣φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
∣∣∣2 −→

n→∞
0.

Therefore it remains to prove that

1
n2γ2−3

E
∣∣∣φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
∣∣∣3 −→

n→∞
0.

As φh,x is a Lipschitz function with Lipschitz constant of c/hd+1 for c > 0, we obtain

1
n2γ2−3

E
∣∣∣φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
∣∣∣3 ≤ c

n2γ2−3h3(d+1)

[
E|Xn

T −Xnβ

|3 + E|Zn,θ − Znβ ,θ|3
]

≤ c

n2γ2−3h3(d+1)
× CT

n
3β
2

=
cCT

n−(d−1)α+1− β
2

→ 0.

The last convergence is true if 0 < α < β/(d + 2) and 0 < β < 2/3. This �nishes the proof of the
Theorem.

Like in the case of the Monte Carlo method one can interpret the previous result as follows: In
order to approach the density p(x) using a control variate method of the Romberg type with a global
tolerance error of order 1/n, the parameters needed to use the algorithm are h = n−α, N1 = n2+αd

N2 = n(d+2)α+2−β with β/(d + 2) > α ≥ 1/s where s denotes the order of the superkernel φ.
Therefore the complexity (number of calculations) needed for this algorithm is

CRS = C ×mN1 + (n+m)N2

' C × nβ+αd+2 + n(d+2)α−β+3, where β/(d+ 2) > α ≥ 1/s.

For β = 1
2 + α we obtain that the complexity of the Romberg method is given by

C?
RS ' C × n

5
2+(d+1)α.

Here note that the optimal complexity for the Monte Carlo method is given by

C?
MC ' C × n3+αd.

Therefore the Romberg control variate method reduces the complexity by a factor of of order n1/2−α.
Therefore taking into account that β/(d + 2) > α ≥ 1/s we see that if one uses super-kernels of
order s > 2(d+ 1) we obtain a theoretical asymptotic optimal parameter choice of the method.

7 Appendix 1

In this appendix we prove some estimates that are useful to estimate the norms of the weights in
the integration by parts formula. In order to simplify the notation we suppose that c is a positive
constant that may change from one line to the next.
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Lemma 7.1. For all l > 1, p > 1 there exists positive constants k2, p1, p2, γ1 and γ2 and a positive
constant c independent of n, θ and F such that

‖(γ̃−1
F+Zn,θ

)ij‖l,p ≤ c ‖(det γ̃F+Zn,θ
)−1‖γ1

p1
‖F + Zn,θ‖γ2

k2,p2
,

Proof. The proof is done by induction on l = |k|. The case l = 0 is a direct consequence of the
Cramer formula for the inverse of a given matrix.

In general, as Dr
{
γ̃F+Zn,θ

γ̃−1
F+Zn,θ

}
= 0 for any multi-index r, we have that

Dr(γ̃−1
F+Zn,θ

)lm =
d∑

i,j=1

∑
k∈A(r)−{r}

(γ̃−1
F+Zn,θ

)liDr−kγ̃ij
F+Zn,θ

Dk(γ̃−1
F+Zn,θ

)jm.

Here A(r) denotes all the subsets of indices of any order taken from elements of r. Then the result
follows from the inductive hypothesis.

Proposition 7.1. Let G ∈ D∞(W̃ ), then

1. Let F ∈ (D∞(W ))d such that F + Zn,θ is a non-degenerate random vector. For p > 1 and for
all multi-index m we have

‖ H̃m(F,G)‖p ≤ c‖G‖r,r′‖(det γ̃F+Zn,θ
)−1‖a′

a

[
‖F‖b′

b,l +
1

n( 1
2+θ)l′

]
where c is a constant depending on p, m and d, whereas r, r′, a, a′, b, b′, l and l′ are param-
eters depending on m, p and d.

2. Let F1, F2 ∈ (D∞(W ))d such that F1 +Zn,θ and F2 +Zn,θ are non-degenerate random vectors.
For a �xed multi-index m, any l ≥ 1 and p > 1, there exists c, a positive constant depending
on p, m and d, whereas ki, si, βi, pi, γi, for i = 1, 2, k0, s0, γ0, k̄0 and s̄0 are parameters
depending on m, p and d such that

‖ H̃m(F1, G)− H̃m(F2, G)‖l,p ≤ c
2∏

i=1

(1 + ‖Fi‖γi

ki,si
)(1 + ‖(det γ̃Fi+Zn,θ

)−1‖βi
pi

)

× ‖F1 − F2‖γ0
k0,s0

‖G‖k̄0,s̄0

3. Let F ∈ (D∞(W ))d be a non-degenerate random vector. For a �xed multi-index m, any l ≥ 1
and p > 1, there exists a constant c and parameters ri, ki, µi, for i = 1, 2, 3 depending on p,
m and d such that

‖ H̃m(F,G)−Hm(F,G)‖l,p ≤
c

n( 1
2+θ)µ

‖G‖k1,r1(1+ ‖F +Zn,θ‖µ2
k2,r2

)(1+ ‖(det γ̃F+Zn,θ
)−1‖µ3

r3
).

Proof. Again the proof is done by induction on the length of the multi-index m. In fact, using the
de�nition of H̃ and the continuity of the adjoint operator δ, we have

‖ H̃m(F,G)‖l,p ≤
∑
r∈m

d∑
j=1

‖D̃(F + Zn,θ)j H̃m−{r}(F,G)(γ̃−1
F+Zn,θ

)rj‖l+1,p.

Then the proof �nishes by using Hölder's inequality, Lemma 7.1 and the inductive hypothesis.
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The proof of the second assertion is as the previous one, done by induction on the order of the
multi-index m

‖ H̃m(F1, G)− H̃m(F2, G)‖l,p ≤
∑
r∈m

d∑
j=1

‖D̃(F1 − F2)j H̃m−{r}(F1, G)(γ̃−1
F1+Zn,θ

)rj‖l+1,p

+
∑
r∈m

d∑
j=1

‖D̃(F2 + Zn,θ)j(H̃m−{r}(F1, G)− H̃m−{r}(F2, G))(γ̃−1
F1+Zn,θ

)rj‖l+1,p

+
∑
r∈m

d∑
j=1

‖D̃(F2 + Zn,θ)j H̃m−{r}(F2, G)((γ̃−1
F1+Zn,θ

)rj − (γ̃−1
F2+Zn,θ

)rj)‖l+1,p.

For the �rst term one applies the Hölder's inequality, the �rst assertion and Lemma 7.1. For the
second, Hölder's inequality, Lemma 7.1 and the inductive hypothesis. For the third, note that

(γ̃−1
F1+Zn,θ

)rj − (γ̃−1
F2+Zn,θ

)rj =
d∑

k,k′=1

(γ̃−1
F2+Zn,θ

)rk
[
(γ̃F2+Zn,θ

)kk′ − (γ̃F1+Zn,θ
)kk′

]
(γ̃−1

F1+Zn,θ
)k′j (25)

Note that γ̃
F1+Z

n,θ
= γ

F1
+ γ̄

Z
n,θ

and γ̃
F2+Z

n,θ
= γ

F2
+ γ̄

Z
n,θ

. Consequently, it follows that

(γ̃F2+Zn,θ
)kk′ − (γ̃F1+Zn,θ

)kk′ = 〈DF k
2 −DF k

1 , DF
k′

2 〉H + 〈DF k
1 , DF

k′

2 −DF k′

1 〉H .

From here the result follows.
In the same way as before, we prove the last relation for an index m. We have

H̃m(F,G)−Hm(F,G) =
m∑

j=1

δ
(
GDF j

[
(γ̃−1

F+Zn,θ
)mj − (γ̃−1

F )mj
])
,

+
1

n
1
2+θ

d∑
j=1

δ̄
(
G(γ−1

F+Zn,θ
)ijD̄W̄ j

T

)
Therefore the result follows applying (25) and the same arguments as in the previous proofs of

assertions 1 and 2.

8 Appendix 2

Proof of Lemma 3.4. In order to prove the relation (11) is enough to prove that

sup
0≤u≤s≤T

|∆n(u, s)| := sup
0≤u≤s≤T

|∆1
n(u, s) + ∆2

n(u, s)| → 0

with
∆1

n(u, s) := E
[(
ψh,x

(
Xn,λ

T + Zn,θ

)
− 1{XT >x}

)
Hr+

(
XT , G

r,j,k
u,s

)]
and

∆2
n(u, s) := E

[
ψh,x

(
Xn,λ

T + Zn,θ

){
H̃r+

(
Xn,λ

T , Gn,r,j,k
u,s

)
−Hr+

(
XT , G

r,j,k
u,s

)}]
,

with h = n−α. Since for every p ≥ 1 we have that

ψh,x

(
Xn,λ

T + Zn,θ

) Lp

−→ 1{XT >x}

and
sup

0≤u≤s≤T

∥∥Hr+

(
XT , G

r,j,k
u,s

)∥∥
p
<∞
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then we deduce that
sup

0≤u≤s≤T
|∆1

n(u, s)| → 0.

In addition we have

sup
0≤u≤s≤T

|∆2
n(u, s)| ≤ c sup

0≤u≤s≤T

∥∥∥H̃r+

(
Xn,λ

T , Gn,r,j,k
u,s

)
−Hr+

(
XT , G

r,j,k
u,s

)∥∥∥
2

sup
0≤u≤s≤T

|∆2
n(u, s)| ≤ c sup

0≤u≤s≤T

∥∥∥H̃r+

(
Xn,λ

T , Gn,r,j,k
u,s

)
− H̃r+

(
Xn,λ

T , Gr,j,k
u,s

)∥∥∥
2

+ c sup
0≤u≤s≤T

∥∥∥H̃r+

(
Xn,λ

T , Gr,j,k
u,s

)
− H̃r+

(
XT , G

r,j,k
u,s

)∥∥∥
2

+ c sup
0≤u≤s≤T

∥∥∥H̃r+

(
XT , G

r,j,k
u,s

)
−Hr+

(
XT , G

r,j,k
u,s

)∥∥∥
2
.

Note that∥∥∥H̃r+

(
Xn,λ

T , Gn,r,j,k
u,s

)
− H̃r+

(
Xn,λ

T , Gr,j,k
u,s

)∥∥∥
2

=
∥∥∥H̃r+

(
Xn,λ

T , Gn,r,j,k
u,s −Gr,j,k

u,s

)∥∥∥
2
.

Since Xn,λ
T + Zn,θ is uniformly non-degenerate, we conclude using the �rst assertion of Proposition

7.1 and Proposition 3.1 as well as Lemma 3.2, that

sup
0≤u≤s≤T

∥∥∥H̃r+

(
Xn,λ

T , Gn,r,j,k
u,s −Gr,j,k

u,s

)∥∥∥
2
→ 0, (n→∞).

In the same way, since Xn,λ
T + Zn,θ and XT are non-degenerate, we conclude using the second

assertion of Proposition 7.1 and relations (5) and (6), that

sup
0≤u≤s≤T

∥∥∥H̃r+

(
Xn,λ

T , Gr,j,k
u,s

)
− H̃r+

(
XT , G

r,j,k
u,s

)∥∥∥
2
→ 0, (n→∞).

Finally, according to the third assertion of Proposition 7.1 we obtain that

sup
0≤u≤s≤T

∥∥∥H̃r+

(
XT , G

r,j,k
u,s

)
−Hr+

(
XT , G

r,j,k
u,s

)∥∥∥
2
→ 0, (n→∞).

We conclude that
sup

0≤u≤s≤T
|∆2

n(u, s)| → 0, (n→∞).

The continuity of

g(u, s) = E
(
1{XT >x}Hr+

(
XT , G

r,j,k
u,s

))
follows from Proposition 3.1 as well as Lemma 3.2.

Proof of Lemma 6.2. The case d = 1 is trivial, so we will assume for the rest of the proof that
d ≥ 2. It is clear that the function ∂rQ is continuous except at the origin. Since the random vector
Fh → x as h→ 0 a.s., the �rst assertion of the lemma follows. Now we prove the second assertion.
For a > 0, we have that

E
∣∣∂rQd(XT − Fh)

∣∣1+δ = E
{∣∣∂rQd(XT − Fh)

∣∣1+δ
1{|XT − Fh| ≤ 2a}

}
+ E

{∣∣∂rQd(XT − Fh)
∣∣1+δ

1{|XT − Fh| > 2a}
}
. (26)

•Step 1: First consider the �rst term on the right of (26). Then we have

E
{∣∣∂rQd(XT − Fh)

∣∣1+δ
1{|XT − Fh| ≤ 2a}

}
=

∫
Rd

∣∣∂rQd(y)
∣∣1+δ

1{|y| ≤ 2a}ph(y)dy
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where ph denotes the density of the random vector XT − Fh. If we have that

sup
h

sup
|y|≤2a

ph(y) ≤ Cx,

then it follows immediately that

E
{∣∣∂rQd(XT − Fh)

∣∣1+δ
1{|XT − Fh| ≤ 2a}

}
≤ Cx

∫
|y|≤2a

∣∣∂rQd(y)
∣∣1+δ

dy.

As
∣∣∂rQd(y)

∣∣1+δ ≤ Cd/|y|(d−1)(1+δ). Therefore we obtain

sup
h
E

{∣∣∂rQd(XT − Fh)
∣∣1+δ

1{|XT − Fh| ≤ 2a}
}
<∞,

for δ < (d− 1)−1.

•Step 2: Now, we prove that
sup

h
sup
|y|≤2a

ph(y) ≤ Cx.

Since Fh and X are independent, we have that

ph(y) =
∫

Rd

ρh,x(u− y)p(u) du,

where ρh,x denotes the density of Fh and p denotes the density of XT . Then it follows that

ph(y) ≤ sup
u∈Rd

p(u)
∫

Rd

ρh,x(u− y) du

= sup
u∈Rd

p(u).

According to Corollary 3.25 in Kusuoka and Stroock (1985) we have that,

p(y) ≤ C

T l
exp(−|y − x|2

CT
), for some C > 0, and l > 0.

In particular, it follows that p is bounded and therefore the result follows.

•Step 3: Now we are able to deal with the second term of equality (26). We have

E
{∣∣∂rQd(XT − Fh)

∣∣1+δ
1{|XT − Fh| > 2a}

}
=∫

Rd×Rd

∣∣∂rQd(y − z)
∣∣1+δ

1{|y − z| > 2a}p(y)ρh,x(z)dz dy.

Using again that
∣∣∂rQd(y)

∣∣1+δ ≤ Cd/|y|(d−1)(1+δ) and the Kusuoka-Stroock estimate mentioned
previously, we have that∫

Rd×Rd

∣∣∂rQd(y − z)
∣∣1+δ

1{|y − z| > 2a}p(y)ρh,x(z)dz dy

≤ CdC

(2a)(d−1)(1+δ)T l

∫
Rd

exp(−|y − x|2

CT
)dy

∫
Rd

ρh,x(z)dz <∞.

This completes the proof of the lemma.
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9 Appendix 3

In the following we prove Lemmas 5.1, 5.2 and 5.3.

Proof of Lemma 5.1. The proof uses the same ideas of Jacod and Protter (1998). Note that for

0 ≤ t < t′ ≤ T , the sequence
(√

n
∫ t′

t
(W j

s −W j
ηn(s)) ds

)
n∈N

tends to 0 in L2(Ω). In fact, we have

E
(∫ t′

t

(W j
s −W j

ηn(s)) ds
)2

≤ c

n2
, c > 0.

Therefore we have∫ T

0

Hi,n
s (W j

s −W j
ηn(s)) ds =

∫ T

0

(Hi,n
s −Hi,n

m,s)(W
j
s −W j

ηn(s)) ds+
∫ T

0

Hi,n
m,s(W

j
s −W j

ηn(s)) ds

with

Hi,n
m,s =

m∑
k=1

Hi,n
kT
m

1{ (k−1)T
m <s≤ kT

m }.

It follows that∣∣∣∫ T

0

Hi,n
s (W j

s −W j
ηn(s)) ds

∣∣∣ ≤ sup
0<s≤T

|Hi,n
s −Hi,n

m,s|
∫ T

0

|W j
s −W j

ηn(s)|ds

+
∣∣∣∫ T

0

Hi,n
m,s(W

j
s −W j

ηn(s)) ds
∣∣∣.

Since the sequence
√
n

∫ T

0
|W j

s −W
j
ηn(s)| ds is tight, after some work we deduce the conclusion of the

lemma.

Proof of Lemma 5.2. Without loss of generality, we assume that T ≤ 1 throughout this proof. We
denote by

H �Kn =
∫ T

0

Hs

(∫ T

0

1{ηn(u)≤s≤u}K
n
u dY

j
u

)
ds

and suppose in a �rst time that H is deterministic then

H �Kn =
∫ T

0

Kn
u

(∫ T

0

1{ηn(u)≤s≤u}Hs ds
)
dY j

u

=
∫ T

0

Kn
u

(∫ u

ηn(u)

Hs ds
)
dY j

u .

It follows that

‖H �Kn‖2
2 ≤ E

∫ T

0

‖Kn
u‖2

(∫ u

ηn(u)

Hs ds
)2

du

≤ |H|2∞E
∫ T

0

‖Kn
u‖2(u− ηn(u))2 du

≤ |H|2∞T 2

n2
E

∫ T

0

‖Kn
u‖2 du,

and consequently (
√
nH �Kn)n∈N tends to 0 in L2(Ω). Now let H to be arbitrary. We have that H ∈

C ([0, T ]), so there exists a sequence H l∈ C ([0, T ]) of piecewise functions such that |H −H l|∞ → 0
and |H l|∞ ≤ l a.s.. We have

|(H −H l) �Kn| ≤ |H −H l|∞
∫ T

0

∣∣∣∫ T

0

1{ηn(u)≤s≤u}K
n
u dY

j
u

∣∣∣ds.
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It is obvious that the sequence

(
√
n

∫ T

0

∣∣∣∫ T

0

1{ηn(u)≤s≤u}K
n
u dY

j
u

∣∣∣ds)
n∈N

is tight, (because it is bounded in L2). Consequently:

P
(√

n|H �Kn| ≥ ε
)
≤ P

(√
n|(H −H l) �Kn| ≥ ε

2

)
+ P

(√
n|H l �Kn| ≥ ε

2

)
≤ P

(
|H −H l|∞ ≥ ε

2δ

)
+ P

(√
n

∫ T

0

∣∣∣∫ T

0

1{ηn(u)≤s≤u}K
n
u dY

j
u

∣∣∣ds ≥ δ
)

+ P
(√

n|H l �Kn| ≥ ε

2

)
.

For a �xed l and for a good choice of δ and n we obtain that for a given ρ > 0,

lim sup
n→∞

P
(√

n|H �Kn| ≥ ε
)
≤ ρ+

l2T 2

n2
E

∫ T

0

‖Kn
u‖2du+ P

(
|H −H l|∞ ≥ ε

2δ

)
.

Since ρ is arbitrary and |H −H l|∞ → 0 a.s., we conclude that

lim sup
n→∞

P
(√

n|H �Kn| ≥ ε
)

= 0.

Which completes the proof.

Proof of Lemma 5.3. We split the proof of the lemma into two steps
•Step 1: We suppose �rst Hi, Ki and Li are deterministic. Then we have:∫ T

0

Ki
s

( q∑
j=1

∫ T

s

ξij
s,uU

n
u dW

j
u

)
ds =

∫ T

0

(∫ u

0

Ki
sξ

ij
s,uds

)
Un

u dW
j
u

=
q∑

j=1

∫ T

0

K̄ij
u U

n
u dW

j
u

with K̄ij
u =

∫ u

0
Ki

sξ
ij
s,u ds. In the same manner:∫ T

0

Li
s

(∫ T

s

q∑
j,k=1

ζijk
s,u dW̌

n,kj
u

)
ds =

q∑
j,k=1

∫ T

0

L̄ijk
u dW̌n,kj

u ,

with L̄ijk
u =

∫ u

0
Li

sζ
ijk
s,uds. Therefore we need to prove that

√
n
(
Un

T ,

∫ T

0

Hi
sU

n
s ds,

q∑
j=1

∫ T

0

K̄ij
u U

n
u dW

j
u ,

q∑
j,k=1

∫ T

0

L̄ijk
u dW̌n,kj

u

)
stably converge in law to

(
UT ,

∫ T

0

Hi
sUs ds,

q∑
j=1

∫ T

0

K̄ij
u Uu dW

j
u ,

q∑
j,k=1

∫ T

0

L̄ijk
u dW̌ kj

u

)
Since the process Hi is deterministic and the processes K̄ij and L̄ijk are continuous and adapted

as in Lemma 5.1, we deduce, using an approximation argument, that proving the convergence above
can be carried into proving that

∑m
i=1 ZiV

n
i stably converge in law to

∑m
i=1 ZiVi where Z1, . . . , Zm
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are random matrices and (V n
1 , . . . , V

n
m) are random vectors converging stably to (V1, . . . , Vm). This

is a classical property of the stable convergence. In fact, (Z,Z1, . . . , Zu, V
n
1 , . . . , V

n
m) converge to

(Z,Z1, . . . , Zu, V1, . . . , Vm), it follows that (Z,
∑m

i=1 ZiV
n
i ) stably converge in law to (Z,

∑m
i=1 ZiVi),

(see Jacod and Shiryaev (2003) chapter VIII �5.c and Theorems 2.3 and 3.2 in Jacod and Protter
(1998)).

•Step 2: Suppose now Hi, Ki and Li are arbitrary. Since the processes Hi, Ki and Li have
continuous trajectories on [0, T ], we can approach them by three piecewise functions Hi

l , K
i
l , L

i
l. In

the following we introduce the following notations

Hi.Un =
∫ T

0

Hi
sU

n
s ds Ki ? Un =

∫ T

0

Ki
s

(∫ T

s

q∑
j=1

ξs,uU
n
u dW

j
u

)
ds

(Li|W̌n,kj) =
∫ T

0

Li
s

(∫ T

s

n∑
j,k=1

ζijk
s,u dW̌

n,kj
u

)
ds.

We have
√
n‖Hi.Un −Hi

l .U
n‖ ≤ |Hi −Hi

l |∞
∫ T

0

√
n‖Ūn

s ‖ds where | |∞ denotes the uniform norm
on the space C ([0, T ]). Similarly, we have

√
n‖Ki ? Un −Ki

l ? U
n‖ ≤ |Ki −Ki

l |∞
∫ T

0

√
n
∥∥∥ q∑

j=1

∫ T

s

ξij
s,uU

n
u dW

j
u

∥∥∥ds
and

√
n‖(Li|W̌n,kj)− (Li

l|W̌n,kj)‖ ≤ |Li − Li
l|∞

∫ T

0

√
n
∥∥∥∫ T

s

q∑
j,k=1

ζijk
s,u dW̌

n,kj
u

∥∥∥ds.
Consequently, in order to prove the statement of the lemma, we have just to prove the tightness of

∫ T

0

√
n‖Un

s ‖ ds, P i
n =

∫ T

0

√
n
∥∥∥∫ T

s

q∑
j=1

ξij
s,uU

n
u dW

j
u

∥∥∥ ds
and Qi

n =
∫ T

0

√
n
∥∥∥∫ T

s

q∑
j,k=1

ζijk
s,u dW̌

n,kj
u

∥∥∥ds.
The tightness of the sequence

∫ T

0

√
n‖Un

s ‖ ds, follows from the convergence of the law of
√
nUn. For

P i
n and Qi

n, this is a consequence of the hypothesis on ξ
ij
s,u, ζ

ijk
s,u . In fact :

‖P i
n‖2 ≤

∫ T

0

∥∥∥∫ T

s

√
n

q∑
j=1

ξij
s,uU

n
u dW

j
u

∥∥∥
2
ds

=
∫ T

0

√
n
∥∥∥(∫ T

s

‖
q∑

j=1

ξij
s,uU

n
u ‖2du

)1/2∥∥∥
2
ds

≤
√
T

(
E

∫ T

0

∫ T

s

‖
q∑

j=1

ξij
s,u

√
nUn

u ‖2duds
)1/2

≤ q
√
T

(
E

∫ T

0

[∫ u

0

max
j
‖ξij

s,u‖2ds
]
‖
√
nUn

u ‖2du
)1/2

,

Using that supn E
∫ T

0
‖
√
nUn

u ‖qdu <∞ for q ≥ 1 and that

E
∫ T

0

du

∫ u

0

ds
(
max

j
‖ξij

s,u‖p
)
<∞ for p > 2.
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we obtain that
sup

n
‖Pn‖2 <∞.

In the same manner we obtain that supn ‖Qn‖2 <∞ which completes the proof of the lemma.
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