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We study the problem of density estimation of a non-degenerate diffusions
using kernel functions. Thanks to Malliavin calculus techniques, we obtain
an expansion of the discretization error. Then, we introduce a new control
variate method in order to reduce the variance in the density estimation. We
prove a stable law convergence theorem of the type obtained in Jacod-Kurtz-
Protter, for the first Malliavin derivative of the error process, which leads us
to get a CLT for the new variance reduction algorithm. This CLT gives us a
precise description of the optimal parameters of the method.

1 Introduction

Let (X¢)o<i<7 be d-dimensional diffusion such that X7 has a smooth density, denoted by p(x). The
goal of the present article is to discuss in theoretical terms a control variate method to reduce the
variance in the Monte Carlo estimation of p(x).

To introduce the problem, first note that p(x) = Ed,(X71) where 6, denotes the Dirac delta
distribution function. In order to use the Monte Carlo method we have first to approximate the
Dirac delta function .

Consider an integrable continuous function ¢ : R — R such that [, ¢(z)de = 1 and define the
kernel functions | oy

d)h,m(y) - h¢( I
Note that ¢p, — 0, as h — 0, in a weak sense, according to the assumptions on the function ¢.
The idea is then to approximate the density p(z) = Edy(X7) by E¢p »(XF}) where h =n~%, a >0
and X™ denotes an approximation of X that can be simulated. At this level, a first problem arises.
That is, the problem of evaluating the weak error given by E¢y, ,(X7) — p(z).

Once this problem is solved one fixes the desired error level and from the weak error estimate
one obtains a restriction for the value of a. Nevertheless when one carries out the Monte Carlo
simulations, one finds that usually the variance of the estimators is relatively high and therefore
variance reduction methods have to be studied in order to achieve a prescribed accuracy with less
number of calculations.

The present work is framed in this setting. In particular we study a control variate method
introduced in the regular case (that is, in the case of the approximation of Ef(Xr) for a smooth
function f) in Kebaier (2005).

), h>0 et ze€R.
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To be more precise, suppose that X has smooth coefficients and satisfies the Hormander condition.
Then X has a smooth density p(z). Let X™ denote the Euler-Maruyama scheme of time step T'/n.
Under some extra conditions (see Bally and Talay (1996)) one obtains the following expansion for
the density diffusion

p(&) = pu(e) +  +o(1/n),

where p,(z) = E¢y, ., (X7) is a regularized density of the Euler scheme X™. This regularization is
needed because under the present conditions X" may not have a density.

In Kohatsu-Higa and Pettersson (2002), the above result is obtained under weaker conditions on
x and Xy but the expression on the expansion on the error is less explicit. Then a Monte Carlo
simulation study of E¢y ,(X7) is presented. After obtaining the variance of this estimator the
authors propose a variance reduction method using a localization function. The procedure used can
be described as follows.

Using the integration by parts formula of Malliavin calculus, Kohatsu-Higa and Pettersson (2002)
obtain that

Edno(X7) = E(¥no(XF)Ha ).

where 1)y, ,, is the primitive function of ¢, , and H,, is the weight given by the Malliavin calculus.
Using this idea, Kohatsu-Higa and Pettersson (2002) prove that

E (60,0 (X3) (X3 — 2)) = E(Yn.0(XP) (0(XF — @) Hy + @' (X7 —2)Ga).

for a smooth function ¢ with ¢(0) = 1. Explicit expressions for the random variables H, and
G,, are obtained and the asymptotic variance is minimized with respect to ¢ obtaining as result
that the optimal ¢ is of exponential type. These results are later verified trough simulations. The
disadvantage of this method is that the computation time of their algorithm is higher than that of
the method using kernel density functions.

On the other hand, in Kebaier (2005), the author considered the approximation of Ff(Xr)
by a Monte Carlo algorithm where f is a given regular function and X is a diffusion process. In
particular, the so-called statistical Romberg method is introduced and analyzed. This control variate
method gives a variance reduction if parameters are chosen appropriately. The optimal parameters
are obtained after a careful study of a central limit theorem for the error process.

In this paper, we generalize these results to the case of density approximations. That is when f
is a Dirac delta function under the Hérmander condition.

The method uses two Euler schemes X7 and X7 with m << n as follows.

Suppose for the moment that E¢y, ,(X7') can be computed explicitly. Then the classical control
variate method can be applied as follows:

1
Nnm

5

Nun,m
Z {Qbh,z(X%i) - ¢h,w(X§‘n,z)} + Ed)h,ac(X%n)v
i=1

where the index i = 1,..., Ny, ,, indicates independent simulations of the corresponding random
variable. As the last quantity above is in fact not known we will use an additional N,, independent
simulations to estimate this quantity. Therefore the final calculation scheme is given by

Nin,m N.

1 : n m 1 = m

N Z {On2 (X7 ;) — bno(X70)} + N Z¢h,w(XT7i)'
nmoi_q moi—1

Now in order not to increase the number of simulations we simulate a large number, N,,, of sample
paths with a coarse time discretization step T'/m and few additional sample paths of size N,, ,, with
the fine time discretization step 7'/n.

In order to choose the parameters h, n, m, Ny, and Ny, ,,, to achieve a certain desired error level,
one has to study the weak error of the above expression together with the variance behavior. This
brings us to study a central limit theorem for the error process.



A similar study in the regular case (with one less parameter, h) is carried out in Kebaier (2005).
If one choses the same parameters as in the regular case with h given by the kernel density method
then there is explosion of variances. Even more, it is one of the conclusions of this article that there
is no variance reduction that one can achieve with this method if one uses kernels as have been
defined previously.

In fact, one has to use the concept of super-kernel of order s with s > 2(d+ 1) in order to achieve
some variance reduction (see Definition 3.1 and Theorem 6.1).

As these kernels do not correspond exactly with the results in Bally and Talay (1996) or Kohatsu-
Higa and Pettersson (2002), we start by finding the expansion of the weak error (see Theorem 3.1).

Our final aim is to find the optimal parameters leading to an optimal complexity of the algorithm.
In order to obtain these optimal parameters we extend a result of Jacod and Protter (1998) for the
asymptotic behavior of the law of the first Malliavin derivative of the error in the Euler scheme.
Using this extension we prove a CLT, for our algorithm, giving us a precise description of the choice
of the optimal parameters m, INV,,, and IV, .-

The usual version of the integration by parts formula of Malliavin Calculus in dimension d, see
Nualart (1995,2006) (p.103, 2006 edition) is based on using d times the integration by parts formula.
Although it is feasible (although long) to prove the stable convergence of the high order weights, we
propose instead to use a new integration by parts formula introduced by Malliavin and Thalmaier
(2006) which significantly simplifies the proof in the general multi-dimension context.

The optimal parameters given by the CLT lead to an optimal complexity of the algorithm of
order n3 (@D which is less than the optimal complexity of the Monte Carlo method for the kernel
density method which is of order n3+®? where « is the parameter tuning the window size h which
depends on the order of the superkernel. Finally, d is the dimension of the problem.

The gain obtained here is of order n3=e, Consequently, we have an exact mathematical estimate
of when and how much variance reduction can be achieved. Whereas, there is less reduction than
in the regular case due to the explosion of the variance of our estimators (see section 6 for more
details).

The remainder of the paper is organized as follows. In the following section, we introduce some
basics of the Malliavin Calculus. In section 3, we study the weak discretization error. Section 4
is devoted to prove the CLT for the classical Monte Carlo method. In section 5 we prove a stable
convergence theorem for the first Malliavin derivative of the error in the Euler scheme. In the last
section we prove a CLT for the statistical Romberg algorithm and we give the optimal parameters
leading to an optimal complexity of the method.

In the Appendices we give the proofs of technical lemmas used throughout the proofs.

2 Malliavin Calculus

2.1 Main definitions and properties

We follow the notations, definitions and results of Nualart (1995,2006). Let (Wi)o<i<r be a ¢
dimensional standard Brownian motion defined on the filtered probability space (2, F, (F;),P) where
(Ft)o<t<T denotes the standard filtration. D denotes the Malliavin derivative which takes values in
H := L*([0,T);R%). The k-th order derivative of F' for a multi-index k € {1, ...,q}!, I € N of length
|k| =1 is denoted by D*F, it takes values in H®'! and is given by

k _ k1 ki
Dy, F=D;...DiF

where k = (k1, ..., k).
Note that the operator D* is closable for any k € {1,...,¢}'. For p > 1 and | € N, we denote

DHP (W) the closure of the space of smooth random variables with respect to the norm | - ;.
We denote D> (W)= O\D"?(W). For F = (F',...,F?%) € (D>®(W))¢, we introduce vyr the
p>11>1

Malliavin covariance matrix of F' given by

vl =(DF',DF)y, 1<i,j<d



2.2 Duality and integration by parts formulas

Let § denote the adjoint operator of D, which is also called Skorokhod integral. The operator
0 is unbounded, we denote by Dom(d) its domain (see for example Definition 1.3.1 of Nualart
(1995,2006)). Note that if u € Lz([(), T] x £ Rq) is an adapted process, then (see Proposition 1.3.4
in Nualart (1995,2006)) u € Dom(d) and §(u) coincides with the It6 integral.

If F € DV2 and u € Dom(§) then Fu € Dom(§) and we have

0(Fu) = Fo(u) — (DF,u)g.
In such a case we have the following duality formula
IE[(%DF)H} = E[Fo(u)]. (1)

In the following we give the definition of a non-degenerate random vector.

Definition 2.1. A random vector F = (F!,...,F%) € (D>®(W))? is said to be non-degenerate if
the Malliavin covariance matriz of F' is invertible a.s. and

(detyp) ™" € (LP(PY).

p=>1

For a nondegenerate random vector, the following integration by parts formula plays a key role.
(For a proof of the following proposition see Nualart (1998)).

Proposition 2.1. Let F € (]D)OO(W))d be a non-degenerate random vector. Let f € C;°(R™), and
let G € D>®(W). Fiz k > 1. Then for any multi-index m = (mq,...,my) € {1,...,d}* we have

E[0m f(F)G] = E[f(F)H,(F,G)],

where Opy, = Oy « - . Om,, and the random variable H,,(F, G) is defined inductively as follows

Hiy(R.G) =Y, 0(DFiGHRYY)
H,,(F,G) =Hq (F.Hin,, . m, ) (FG)).

2.3 An extension of the integration by parts formula

In the following work we will deal with a d-dimensional diffusion X = (X*,..., X9) driven by a ¢-
dimensional Brownian motion W = (W,... W4Y). In order to regularize the Euler scheme associated
to the diffusion X, we will employ d additional noises, corresponding to X*,..., X%, In order to
do that, we consider a d-dimensional Brownian motion W = (Wat! ... We+td) independent of
W = (W' ... ,W9), and we set

W=WW)=W?!. .. wiwitt  witd),

Therefore our random vectors are defined on the Wiener space of dimension » = g+ d, but we should
distinguish between the two Brownian motions W et W which play different roles in our calculation:
W drive the diffusion whereas W is an additional noise used for the regularization. Hence, by using
again the notations of the preceding subsection we obtain

D= (D,D)=(D',..., D, D . Ditd)
and for @ = (u,u) = (u',...,u?,udtt ... uit?) we have

5(a) = 6(u) + 5(a).



The norms || F||, are norms defined on D*? (W), thus it involves all the derivatives D = (D, D).
Similarly, the Malliavin covariance matrix of the random vector F' is given by

3p = (DF, DF).
The auxiliary noise, that we will use, is given by the random vector
Wr
Znp = pesv 6> 0. (2)

In the following, we introduce the random vector F' = (Fi,..., Fy) which depends only on W =
(W*,...,W?) and the random variable G which depends only on W = (W, W). The proposition
below, is a natural extension of Proposition 2.1, gives us an explicit expression of H; which appears
in the integration by parts formula.

Proposition 2.2. Let F' € (]D)°°(W))d be a non-degenerate random vector. Let f € C]‘D’O(Rd), and
let G € D¥2(W). Fiz k > 1. Then for any multi-index m = (my,...,my) € {1,...,d}* we have

E [0 f(F + Zn,0)G] = E[f(F + Zno) Hn(F, G)], (3)

where the random variable H,,(F,G) is given by

M=

H;)(F,G) = S(D(F + Zn0) G(iriz, )" )

1

<.
Il

d
5(Gt, )JIDF) + JZS(G(&;}FZWWDW%),

1
nz2 i1

Il
.
Il Mn.
L

i

I:Im(F; G) = H(mk)(FvI:I(ml,...ﬂnk,l)(FvG )7

with & and 0 are respectively the adjoint operators of D and D.

2.4 Malliavin Thalmaier integration by parts formula

Recently Malliavin and Thalmaier (2006) introduced a new idea of integration by parts based on
the Riesz transform. Essentially this amounts to replace the representation of the Dirac function g
by

60 = AQa

where A = Zle 0? is the Laplace operator and @, is the fundamental solution of the Poisson
equation in the following sense. If f denotes some function, then the solution of the equation
Au = f is given by the convolution Q4 * f. The explicit expressions for Q4 are Q1(z) = x4,
Q2(x) = agIn|z| and Q4(x) = ag|x|~(*~2 for d > 2 and suitable constants a4, d > 2. Then we have

a new integration by parts formula

Proposition 2.3. Let F € (]D)°°(W))d be a non-degenerate random vector. Let G € D*2(W) and
xr € Ry. Then

d
E[bo(F — 2)G] = E[AQu(F — 2)G] = 3 E[0,Qu(F — 2)H () (F, G,

r=1
where H,\(F,G) are the weights of the classical integration by parts formula (see Proposition 2.1)

Note that 0,Qq(F — x) is integrable but not bounded. Consequently, the advantage of this new
approach is that one has to make just one integration by parts, because we need to remove only one
derivative, while in the classical integration by parts formula we have to make d integration by parts
in order to remove the d derivatives in §o(y — ) = 8(1’“'@)1{%2% i=1,...,d} -



3 Weak convergence of the approximate density

Let (Xt),.,., be a R-valued diffusion process which is the solution of the following stochastic dif-
ferential equation

dX; = f(X)dY;, Xo=xz R, (4)

where Y; = (t, W},..., W7, with W = (W', ...,W?) a g-dimensional Brownian motion defined
on the filtered probability space B = (2, F, (Fi)i>0, P), where (F;);>0 denotes a filtration satisfying
the usual conditions. The function f : R? — R+ ig of class %b‘”?’. In order to distinguish
clearly the drift from the diffusion term we will use indices as follows f = (fi;)i=1,....d;j=0,1,....,q- S0
that j = 0 corresponds to the drift coefficient.

The Euler scheme, denoted by X", associated to the diffusion X and with discretization step
0 =T/n is defined as:

AXP = (X7 )dYe, m(t) = [t/05.

The next result gives bounds on the error of the Euler scheme in the sense of || ||; ,-norms. For
a proof of this result see Kusuoka and Stroock (1984) and ?.

Proposition 3.1. With the previous notation, the following two properties are valid:
P,) Vt>0, X, X;c (D>(W))4
Py) Vp > 1, Vi € N* 3K > 0 such that:

sup || Xilip+ sup [|X71p < K(1+ []]) (5)
te[0,T] t€[0,T
and
sup || X7 — Xillip < —.
te[0,7) ¢ v \/H
Furthermore Dy, F(t) is LP()-continuous in (t,ty,....,t;) fort; <t,i=1,..,1, F=X, X" and
any p > 1 and any multi-index k such that |k| = .

(6)

Notation:
For a function V : R? — R?, we denote by DV the Jacobian matrix of V and by D2V, its Hessian
matrix. We suppose that the d-dimensional diffusion process (X;),_,_,., which is the solution of (4)
has a coefficient f, which satisfies the Hormander condition (see Section 2.3.2 of Nualart (1995,2006)).
Therefore X admits a smooth density pr(zg,z) (see Kusuoka and Stroock (1985)) and in order
to simplify the notation, we denote
pr(zo, ) := p(x).

We note here that the Hormander condition is not enough to guarantee that the Malliavin
covariance matrix associated to the Euler scheme X™, is invertible (this would be true under an
ellipticity condition).

To deal with this problem we will regularize the Euler scheme using X" + Z,, 4 instead of X",
Zy.¢ denotes a independent random variable defined in Section 2.3 through the relation

Zno =
n, n%Jre

where W is a d-dimensional Brownian motion independent of W. Then we have the following result.



Proposition 3.2. For A € [0,1] we introduce
XN = Xp 4+ MXP — X7p).
Then for all p > 1 there exists a constant K1 > 0 and parameters p',p"” > 1 such that
p//
< o0.
pl

< K H det -1
b= T ( ’YXT)

‘ (det’y

sup )71
A
" X242, 0

Proof. We have that E (detd “P= A, + B,, with
f ( ,YX;”\+ZH,0)

A, '——E{(detfy )_pl }
: A 5 - 1
Xp e ’demx;’uzna detrx <3 ety

and
—det v Z%det'y }
XT ‘ XT

,_ < -p
= E{(dewX;:MZnﬂ) Yoo,

T T

As the diffusion X is non-degenerated in the sense of definition 2.1, we deduce that

sup A,, < 2PE ( det 'yXT)7P< +00.

On the other hand, we have that

Vyen =Vynr T —132p La-
XT’*+Z”,9 XT*)‘ nlt+20
As Vyn 18 @ positive definite matrix we deduce that
T

det ~ > 7T ’
€ FYX;;A+Z”19 =\ 1426 :

Therefore, one obtains that
T \ " 1
B, < (n1+20> ]P’(|det7 7, —det'yXT > §det7XT)'

Therefore using the Markov inequality, we have that

LT " . B k
B, <2 (711‘*‘29) E{(det 'yXT) |det ’YX;;*+ZM9 — det ’yXT |}

T \ "% . k _
<2t (nme) et s, = dete, ], et 741,

Therefore from the inequalities (5) and (6), we obtain that

Ck
Tk
nz

k
det ~ —det H
H| Txriz, , x|, <

where CY is a given constant. Finally, if we take k = 2dp(1 4 26) we obtain that

sup B,, < 0.
n



In what follows we are interested in considering the approximation of the marginal density p(z)
of the diffusion X using kernel density estimation methods.

Definition 3.1. Let ¢ € C;°(R;R), we say that ¢ is a super-kernel of order s > 2 if

/cﬁ(x)dmzl, /x%(m)dx:(), Vi=1,...,s—1, and /ms(b(x)dx;éo.
R R R

In what follows, we suppose that ¢ satisfies the following properties:
a) / |z|**!|é(x)| dx < co, where s denotes the order of the kernel,
R

b) /|¢)’(:c)|2dx < 00, / |p(z)|'de < oo, forl=1, 2, 3.
R R

For h > 0, we define

1 ry—=x
Ona(y) = 30(5)-
The parameter h is called the window size of the kernel.

We extend the previous concepts to R? as follows: Let ¢; : R — R, for i = 1,...,d be one
dimensional super kernels. We set

P(ur, ... ug) = ¢1(ur) X -+ X ga(ua).

We say that ¢ is a super kernel of order s if the functions ¢;, i = 1,...,d are one dimensional super
kernels of order s. Furthermore, we define

d
bn,z(y) = %Cf)(y ; x) = H@hx(yz)
i=1

In the calculations to follow, we will also use other kernels that stem from ¢. So, we define for
1=1,2,3

ohat) = aglo () o= [ ot au

These positive functions are integrable and integrate to one. Additionally, we define

b0) = g [0 ()] 6= [ W@

Remark 1. One can construct super kernels of infinite order in the following way. We take a
symmetric function ¢ € . (where . denotes the class of smooth functions rapidly decreasing to
zero at infinity) so that ¢(z) = 1 in a neighborhood of zero. Next, we define ¢ as the inverse Fourier
transform of ¢. That is,

é(x) == %/Re”%(g) d¢, z eR.

Due to the symmetric property of v, ¢ is a real valued function.
Then the Fourier transform of ¢ is ¥ given by

Y(&) = /Refmggb(x) dx, £eR.

As () (0) = 0, for all k € N we conclude also that [, z¥¢(z)dz = 0 for all k € N and as
¥(0) = 1 we have that [, ¢(x)de = 1. The inverse Fourier transform sends the functions .7 into
. Therefore ¢ € . and consequently, it verifies the conditions a) and b) above.

Also, one can easily construct polynomials on compacts which lead to super kernels of order
s which are not of order s 4+ 1. That is, the coefficients of the high order polynomial are deter-
mined by equations requiring the smoothness properties and the moment conditions required to the
polynomial.



For a multi-index « € {1,...,d}!, | € N, we define

l
/]R Hua u) du = H/Rd U?jﬁbz(uz) du;,
i=1

d
1=1

with p; = card{j : a; = i}. Note in particular, that ¢, = 0 for |a| = < s. The property that will
interest us in the calculations to follow is that the super kernel of order s approximate the Dirac

delta function up to the order s + 1. More precisely, we have the following result.

Lemma 3.1. 1. Let ¢ be a d-dimensional super kernel of order s. Let f € C;H(Rd;R). Then

/ FW)onaly)dy — "0 3 cald)0f(a)] < O,

lee|=s

where 0% f denotes the derivative of f corresponding to the multi-index o = (a1,...,qp), of

length |o| = 1. Whereas the constant C is given by

C =l Dl [l ()] du

where cs is a universal constant depending on s and || fC1Y || is the sup norm of derivatives

of order s+ 1 of f.

2. Let o : R — R be a positive integrable and bounded function. Suppose that fRd o(z)dx

Let oy . (y) = %g@(y;f”), then for every continuous and bounded function f we have

lim f( Yone(y) dy = f(x).

h—0

Proof. We have that
[ 1@onady = 5@ = [ onc0)70) = 1)y
R4
» ¢(u)(f(z 4 uh) — f(x)) du

Using a Taylor series expansion of order s for f we obtain

[ 1@y 1) =3 3 eal)

k=1 " |a|=k
s+1

|a]=s+1 =1

hs+1
// )°0° f (& + Auh) [ ] tar, &(w0) dX duc.

=1.

Since (¢;);=1,....q are super kernels of order s, we conclude that c,(¢) = 0, for |o| < s. Consequently,

S

[ 10onady = 50) =55 3 cal0)9° f(o)

\a|_s

hs+1 s+1

|al=s+1

> // 1 —\)%0%f(x + Auh) Huagi) d\ du.
Rd



In the following we evaluate the remainder term.

s+1

| / (=279 o ) [ Lot dhae] < 170 [ 1l ot du.
R4 Rd

According to property a) of Definition 3.1, the right side of the inequality is finite and therefore the
result follows. The proof of the second assertion follows from the Lebesgue theorem. O

The main theorem of this section gives us an expansion of order 1 of the weak error in the
approximation of the density of the hypoelliptic diffusion X.

Before this we study the error process in a form that will also be useful when studying the stable
convergence problem.

The error process U™ = (U]*)o<i<r, defined by

Utn - Xt - XZI,
satisfies the equation
q . .
dUtn = Z(fgfj)-(Xt - X:n(t)) dYtJ,
j=0

where .
Ity = /0 VI (X0 A = X)) A
Therefore the equation satisfied by U™ can be written as:
t 4 ‘
vr = [ S daviur v, 7
0 50

with

ai=[ Zf n o) Y7, (®)
Note that

Z fo (Y =Y ), 9)

with f = [i(X} (5))- In the following let (Zt")ggth be the R?*¢ valued solution of

q
Zf:Id+/ > o fravizry.
j=0

From Theorem 56 p.271 in Protter (1990) we obtain that there exists (Z?)~! for all s < T which

satisfies . .
t t
(20t = 1= [zt Yo s - [ty v
0 j=1 0 3=0
and that

q

t t
v = zp{ [ (zn) ez - [z Yo e - X5, ) ds).

Jj=1

We define Z; = D, X, and therefore we have that it satisfies
t a_ _
Zy =14+ / Zfsd' dYS].Zs .
0 i

10



with f, ; = Vf;(Xy).
Furthermore Z, ! exists and satisfies the following explicit linear stochastic differential equation

t 4 . t a_ . .
(Zy)~! :Id_/o (Z)™* (fsﬂ')?ds—/o (ZS)iljz::Ofs’des]'

Jj=1

Then using the same techniques as in the proof of existence and uniqueness for stochastic differential
equations with Lipschitz coefficients (i.e. Gronwall inequality) and its Malliavin derivatives (see e.g.
Section 2.2.2 in Nualart (1995,2006)), we obtain that

Lemma 3.2. For anyt € [0,T] Z, Z, (ZM)7L, (Z;)71 € (D=°(W))dxd

Vp>1,1>0 lim sup ||Z;" — Zilip =0,
n—=00 0<t<T
and
¥p>11>0 lim sup H(ztn)*l - (zt)%H —0.
n—00 0<t<T Lp

Furthermore th.._’tlF(t) is LP(Q)-continuous in (t,t1,.....t;) fort; <t,i=1,...,1, p>1 and any
multi-index k with |k| =1 and for F = Z, Z", (Z)7', (Z")~L.

Now we are ready to give the main theorem in this section.

Theorem 3.1. Let (X;)o<i<r be a d-dimensional process solution of (4) satisfying the Hormander
condition and with density function p. We denote by X" the Euler scheme associated to X and Z, o
the auziliary noise introduced in (2).

1. Let ¢ be a super-kernel of order s > 2 satisfying the properties a) and b) of Definition 3.1.
Then, there exists a constant C;,x > 0 depending on ¢, p(x) and s such that

Cos 1 , _
E[¢h,z(X%+Zn,9)] p(w)Z’+o(n>, with h=n"% a>1/s

2. let p € C°(R4GR) be a positive bounded and integrable function with bounded derivatives.
Suppose that [, o(x)dr =1. Let

I ry—=x N
@h,z(y)—ﬁ@< ; ) h=n"% with a>0,

then we have

lim E o (X7 + Zn.p) = p(2).

Proof. First we give the proof of the first assertion. We write the weak approximation error as
follows

E|én.0 (X + Zno) | = p(@) =E|¢n.0 (X3 + Zn) | — E[éna (X1 + Zno) |
+E[6ne (X1 + Zno)| — E[dn (Xr)]
+E[6n. (Xr)] - plo).

e Step 1:
We study the last term given by: E{qﬁh@ (XT)} — p(x). Using Lemma 3.1 for the function p (we

recall that under our hypothesis this is a C{° function) we obtain
h® <
E[ 010 (Xr)| = pl@) = T 3 es(0)07p(@) + o(h"),
[Bl=s
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where 9°p is the partial derivative of p corresponding to the multi-index 3. Note that for h =
n~%, a > 1/s we have o(h®) = o(1/n).

e Step 2:

The second term is given by: IE[th),; (X7 + ng)} — E[(ﬁh@ (XT)}. Using Taylor’s expansion, we
have

E[¢h,m (X7 + Zn,e)] ~E [m,z(XT)] = ;IE/Ol(l N (Zn0-V) b0 (X1 + A g) dN.

Since Z, 9 and X are independent we obtain, after applying the integration by parts formula d + 2
times, that

B(200-9) 000 (X0 +32,0)] = [ (Z00:9) 0000+ AZu)olo) d

=E /d wh,m (y + )\Znﬂ) (Zn,0~v)2a(1’m’d)p(y) dy
R

where ¥, ( fHd —oo) ®n,z(t) dt. Since ¢y, , is bounded we obtain that

C

2
‘EAd ¢h,x(y+ /\Zn,a) (ng.V) p(y) dy‘ < m

The last inequality is immediate using the definition of Z, ¢ and that V29(%p is integrable,
since p decreases exponentially fast (see Corollary 3.25 in Kusuoka and Stroock (1985)). The result
follows.

e Step 3:

Now we deal with the first term given by

An = E|:¢h,w (Xjn“ + Zn,@)] -E |:¢h,a: (XT + Znﬂ):| .
In fact, we have

1
A, = / E(wh,z (X2 4 Zn,g).U}L)dA,
0

where X;’)‘ = X7 + MX} — Xr). In what follows we use the ideas contained in Clement et al.
(2006). Recalling equations (7), (8) and (9) we have that

T
— Z/ Vqﬁhr(X”’\Jang)ZT/ (ZH T ()Y — Y, (s))dY’“)dA
7,k=0

where F7} (s) = ;’ fr,. If we define D° = I (the identity operator) then using the duality formula
(1) two times, one obtalns

> [ B([ PHTon (5 + 2z ) [

7,k=0 M (s)

Z/ // Dj Dk{Vﬁbhm(X"/\—Fan)ZT}(Z") L ()}duds)d)\

S

An

Y7 ds) A

Next, if we apply the stochastic derivative operators one obtains that the above is a sum of terms
of the type

1 T prs
E( / / / 0" pnw (X7 + ng)GZ;Z’j’kdudsd)\), (10)
0 Jo n(8)
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where j, k = 0,...,q and r is a multi-index of order 1 up to order 3. The random variables G’u‘:;’j’k

are given by
(D {DE{Z33y Y (Z2) ' Fli(s) + D23y D3 {(Z2) ' FR(s)})" if r = (a)
(DE{XP N (DI{Z3Y (20 FR(s)) + (DX ) (22Di{(Z0)  Fi(s))) +
(DI{XEA D (DE( 233 (22) " Fli(s)" if r = (a,)

(

DIAXF N (DHXF D (Z3(20) 7 Ffi(s)° if 7 = (a,b,¢).

b

Here a, b, ¢ € {1,...,d} denote the component of the corresponding vector. Next for each term one
applies the integration by parts formula (3) to obtain that each term of the type (10) can be written
as

1 T s
B(r,j.k) := E( / / hw (XP) Hyp (X2 + Zi o, GZ:Z’j’k)dudsd)\),
0 0 nn,(s)

where r+ = (r,1,...,d) and ¢, .(y) := fl’[‘-izl(—oo,w) bn.o(t) dt.
The proof of A,, = C/n + o(1/n) follows using the following two lemmas. The proof of the first
one is just a straightforward analysis exercise and the second lemma is proved in the appendix.

Lemma 3.3. Let g,g, : {(u,s) € [0,T)? u < s} =R, neN. Suppose that
i) g is continuous on the compact set {(u,s) € [0,T)%; u < s}.
W sup |gn(u,s) —g(u,s)] — 0.
0<u<s<T n—00
Then

T S 1 T
/ / gn(u, s)duds = —/ g(s,s)ds + o(1/n).
0 N (8) 2n 0

Lemma 3.4. Under the previous notations we obtain

1 (7 , 1
Bn(rvja k) = % /(; E<1{XT>I} Hr+ (XTa G::?k)) ds+o (n) ’ (11)

with G5k is the limit process given by (here Fji(s) = foifu(X0))

(D3 {DE{Zr}} (2,) 7 Fjils) + DE{Zr}Di {(Z) " Fu(s)})" if r = (a)
(DH{Xr})® (DI{Zr}(Z) " Fyu(s))” + (DH{X7})* (ZeDi{(Z) F()})" +
(DIAX7 )" (D Ze}(Zs)  Fin(s))” if = (a,b)

(DIAXT N (DX ) (Zr(Z:) " Fin(s)© if r = (a,b,c).

The proof of the second assertion of the Theorem follows as the first assertion with the exception
that the rate is not 1/n but 1/n%® if & < 1/2. We mention here that in the proof of the third
step above we only need the integrability of ¢ and that f]Rd ¢(x)dx = 1. Consequently, the results
obtained in this step remain valid in the context of the second assertion of the theorem. O

4 Approximations of non-degenerated diffusions
through the Monte Carlo method

Let X be a hypoelliptic diffusion, solution of the stochastic differential equation (4). The goal of
this section is to study an approximation of the density p(x) of X(T') using a Monte Carlo method

13



together with a kernel density estimate. That is, in order to evaluate p(x):

e One discretizes the diffusion X through an Euler scheme X" of step T'/n regularized as X" + Z,, ¢
whe;e Znp is an independent Gaussian random variable of mean zero and standard deviation
n-1/2-0

e one approximates the distribution y — 0,(y) by the super-kernel ¢, (y) of order s , where h
denotes the window size.

e then finally one estimates E ¢y, (X7 + Z,, ¢) using the Monte Carlo method. This procedure gives
the classical kernel estimator given by

N
SN = =3 (X3 + Zig)
i=1

where (X;E’i)lgiSN and (Zjl,g)lgigN are i.i.d. copies of X} and Z, 9. In what follows, we prove a
central limit theorem analogue to a similar result proved by Duffie and Glynn (1995) which gives
a precise choice for the sample size N for the Monte Carlo method. Their choice depends on the
step size parameter n from the Euler scheme and is valid for the case where instead of ¢y, , one has
a smooth function uniformly in h. Here we extend this result to the degenerate case. That is ¢, ,
tends to the delta distribution function as h — 0. This problem is somewhat more complex as we
have to decide the optimal values of N and h in function of n.
In what follows we let N =n?, h =n"% where v > 0 and a > 1/s

Theorem 4.1. With the previous definitions and if we let v = 2 + ad then
n(S™N —p(z)) = oG + Ci

with 02 = ¢? p(x), G is a standard Gaussian random variable and C;’x 1s the constant in the error
expansion given in Theorem 3.1 and ¢* = [L, |¢(u)|* du.

Proof. We have that

Y {ona X8, + Z20) — B[00 (X7 + Zua)] )
=1

n(S"N —p(x)) =

+n []E [6n,a(XE+ Zp )] — p(x)] -

From Theorem 3.1, we have that

n[E [ho(XT+ Znp)] — p(x)} — O3,

n—oo

. . o e 2l n
Therefore it remains to prove a central limit theorem for ﬁ St ¢ where

n,h

" = {Ona(Xii + Zhg) — Elona(XE + Zno)] |-

We start, considering the characteristic function of the previous sum

2 oottt )] - [ ()]
=1
_ [1+ ;—7(2;3_22E|C"|2+IEC’n(w))rv.
Here 5
ECu(w)| < 5B I P




To study the above terms recall from definition 3.1, the definition of ‘%,z for I = 2,3.
Therefore from the second assertion of Theorem 3.1 we have

E[%@(X? + Zme)} =p(x) +ein(z), i=2,3.

with lim,, &; () = 0 for i = 2, 3.
Let us start studying the term given by E|¢"|2. We have that

n 2
EIC P = E [#ne(XP + Z00)?] = {E [#n.0 (X7 + Z0o)] }
¢2 2 n n 2

= B [6} (X} + Z00)] — {E [0 (X5 + Zno)] | -

Therefore,
2 2 s
ma_ @ ¢ Coa | o(L ?
E|C"[? = S7ea(a) + 77p(@) + { =22+ o( 5 ) +pla) }

where CF . is the constant in the error expansion given in Theorem 3.1. Therefore, for h = n=¢,

v=2+4ad and « > 1/s we have

1
nY—2

E? — ¢ pla).
On the other hand, we have that

n

3
EIC[? =B |00 (X3 + Zn0) — E[dn,0 (X7 + Zno)]|

¢

< E|pno( X7 + Zn,@)’3 + 3E |pn,o (XF + Zn,Q)‘QUE G2 (XT 4 Znp)|
AR dp o (X + Zn)|

Therefore, as before, we obtain that

EIC'1? < h™¢°E ¢} (XF+ Zn) + 30" °E ¢ o (XF + Z00)|E no(X7 + Zno)|
n 3
+ 4|E ¢ o(XE + Znyo)|

Finally,
"3 o p—2d 3 —d 42 Coa 1
B¢ < 26 (p(@) + 5.0 @) + 3062 p(e) + 2,0 @)| | =25 + 0( =) + p(a)
cs 1 3
+4]722 o) + p(a)|
n n
forh=n"%v=2+ad and o > 1/s. This leads to
1 n 3
el =0
which finishes the proof. O

The interpretation of the above result leads to the previously announced result. That is, in order
to approximate the density p(x) through a Monte Carlo method with a tolerance error of order 1/n,
the optimal asymptotic choice of parameters are h = n~% and N = n?*°? with o > 1/s where s
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denotes the order of the super kernel used for the estimation. This leads to the following algorithmic
complexity (that is, number of calculations) of

Cuc =C xnN = C x n3td,

for a given C' > 0 (here the unit of calculation is one simulation of a random variable). Therefore
the optimal complexity of this algorithm is given by

a
CX/TC = C X n3+ s

Therefore we conclude that if the order s of the kernel is bigger then the complexity is smaller.

Nevertheless, one should keep in mind that the constant C’ (@) depends on s and the imple-
mentation of thls algorithm for high order kernels carries some problems such as the possibility
of non-positive values for S™% and big constants in the error expansions. Therefore the practical
choice of super kernel remains an open problem from the practical point of view.

5 Asymptotic behavior of the Malliavin derivative of the nor-
malized error

5.1 Malliavin derivative of the error process

In the following we denote W" the d x d-dimensional process defined by

i [9 [t ; ; .
Wt " - _ (VV‘s - W”]n,(s)) de
T 0

According to the Theorem 3.2 of Jacod and Protter (1998), the process /nW" converge stably in
law to a d x d-dimensional Brownian motion W independent from W and the couple /n(W™, U"™)
converge stably in law to the couple (W, U) where the R¥*?-valued process U is solution to

U, = Z/ fog Usdy? +\f2/ JooFi(X,) Wi, (12)

3,j=1

In order to obtain the equation satisfied by the Malliavin derivative of the error process with
respect to W* i =1, ..., q, we derive the equation (7):

DU = Z/ D( dY{ + fI,UML{s<yy + DLGY. (13)

Note that the above derivative exists due to the regularity properties of the coefficients of the
equation for X. Furthermore, using (8) and (9), we have that

DG} = f353:(X3 = X3 () La<ty +Z/ Dz fuy Xf;l(u))] dy]
and .
DZ i (X;L nn(u) } Z s u,j (Yuk - Ynk,,,(u)) +fz7,j'f_z?,i1{nn(u)§s§u}
k=0

As DyZ =0 for Z, which is F,,-measurable (u < s), the relation (13) becomes for s < ¢,

DU = f1,(U7 + X7~ X1 () +Z / fr DU AW + G (14)
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with

. q t . . .
Gri=Y" / Difruravi+ S [ DA FrO(E = YE )Y
= S 7,k=0 s

a
+ Z/ f[f,j fg,il{nn(U)SsSU} dy;. (15)
j=0+%
From Theorem 56 p.271 in Protter (1990), it follows that (14) becomes for t > s,

DIUF = Z0(Z2) 7 U+ XD = XD )
+Zt"{/( G — Z/ (Zm)~ L d(Gri Y, } (16)

5.2 Convergence in law for the normalized Malliavin derivative of the
error

The Malliavin derivative of U? is a random vector taking values in the Hilbert space H = L?([0, 7).

The aim of this section is to establish the convergence in law for the sequence /nDUJ.. Note that

the process U, limit of \/nU™, is an adapted process with respect to the filtration of W and W.

Using (12), we can compute the derivatives DU, with respect to the Wiener processes W and obtain
that DU, satisfies for 0 < s <t < T,

q t q t
Dl = foiUs+ 3 / foiDiU,AYi + 3 / Dify U, dY?
i=07s i=07s

\/> Z DZ f’U,]f’U k)dWliCj, (17)

g k=1"Y"%

or using again Theorem 56 p.271 in Protter (1990), we obtain for 0 < s < ¢t < T that,

D= 22 itk 2 [ (270G Z/ s G Y9

with

q t
G;t:Z/ Dgfv,ijdYg’ﬂ/ Z Dl (Fojfoi) AW (19)
j=0"*5

gk=1Y%

Theorem 5.1. Let (H})o<t<7 be a continuous sequence of R-valued process (possibly non adapted).
The random vector (v/nUZ, \/ﬁfoT HIDIUR ds) converges stably in law to (Ur, fOT H!DUr ds) where
DUy is the Malliavin derivative of U with respect to W' and solution of (18).

In order to prove this theorem, we use the two technical lemmas below. The proofs of these
lemmas are given in the Appendix 9 (See Jacod and Protter (1998) for related results).

Lemma 5.1. Let (H = (H", ..., th’n))ogth be a tight sequence of continuous processes (possibly
non adapted) taking values in RY. The sequence of random vectors (\/n fOT Hi™M(YI — Y;n(s)) ds;i €
{1,...,d},7 € {0,...,q} )nen converge in probability to 0.

Lemma 5.2. Let (H;)o<i<T be a continuous R-valued process (possibly non adapted) and let (K]))o<u<t
be a sequence of adapted and continuous processes taking values in R? and such that sup,, E fOT | K% du <

oo. Then the sequence (\/ﬁfoT Hs(foT 14 (wy<s<u} K dY)ds)nen converge in probability to 0.
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Lemma 5.3. Let H', K', L' be three real processes with continuous trajectories on [0,T] and
let (f 0 )0<s<u<T; (Q;{ff)ogsgugT be two adapted processes (wrt u), taking values in RI*?  with

continuous trajectories and such that

T u
B[ [ (max P+ max |CEIP)dsdu < o0 for p>2 0= Lo
0 Jo J Js

Then

T ) T ) q T B
va(op, [ mvpas, [Cxi(Y [ e awy)as
0 0 - s
Jj=1

q
/ Z/ Ciikd W”’” ds;i=1,...
j,k=1

stably converge in law to

T
(UT,/ H;Usds,/ Kl Z/ €3,U, dWJ
0 0

/0 L1<Z ”k Wk])dsz—l

jk=1v¢

Proof of Theorem 5.1. Using the relation (16), we have

T T
/ H!D'Uds = Z;z/ HIZD) (U2 + X = X7 () ds + Z T,
0 0

where
I’“:/ H;(/ (zy)ldar — Z/ Ziy7 i d(G Y ), ) ds.
0 s
Using (18)
/ H!D'!Urds = ZT/ H{(Z)  foiUsds + Zp I
with

Ii/OTH;'(/ST( gt , Z/ ) fus d(GE ,Yj>u)ds.

Now, let us prove that

T
[z g Xz g as = [ s e
0

with Plim, s (\/ﬁﬁ’”) = 0, where we use the notation Plim for convergence in probability.

In fact, the tightness of \/nU™ (see Theorem 3.2 of Jacod and Protter (1998)) and
P lim sup |(Z”) Tfj — (ZS)_lfS,j| =0

N0 0<ls<
give that
T . . .
P lim \/ﬁ/ H(Z2) 7 i = (Zo) 7 fea] UL ds = 0.
0

n—oo

In the other hand, we can write

T
% n\—1 fn n n i n fmoon j 7
\/ﬁ/o Hs(Zs) s,i(Xs T (5 dS— IZ/ H Z S,i (Ysj _Ynn(s))ds'
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Then as H?(Z_”)’lffifz is a tight sequence of continuous process we obtain from Lemma 5.1 that

the above integral converges to zero in probability and therefore Plim,, (\/ﬁf'”) =0.
Let’s study now the sequence (I™). First, note that using (15) we obtain that

q T T q

It = Z/ H;/ (Z{;)—l{AQ;}HU3+ZB;g%k(yj—Yn’f(u))+Cgvi»j1{nn(u)<s<u}}dygds (22)
j=0"0 s k=0

where

q
AL = Difi;—1y=oy > fiaDifi
=1

q
Di(fajfur) — Lir=0y Z foaDs(fiifur)
=1
q
cytlo= ff,jfff,z‘ —1gi=0} Z fq?,lfg,lfq?,i'
=1

Now we study each of the three terms in (22). First, the third term in (22) satisfies that

q T T
Z\/ﬁ/ H/ (Z) 1O 1, (wy<s<uydYi ds
=0 0 s

n,:,j,k
B

with sup,, E fOT |(Zm)=1Cm%7||2du < oo. Therefore this term tends to zero due to Lemma 5.2. Now,
consider the second term with jk = 0. Note that

zq: \/ﬁ/T i /T(Zg)lB?,ﬁ’j”“(Yf — Yk )dYds
7,k=0;5k=0 0 s
tends to zero as jk = 0. Next, if we define B;',’Jl‘zk _ Dﬁ(fu,jfu,k)
q T ] T N N |
Zf/ L[ (2 Bt = (27 B = Y avids

tends to zero in L'(2) as /nW ™" is bounded uniformly in L?(£2) and (Z3) Bribik — (Z,) ' BLGk
converges to zero in LP(Qx [0, T)?), therefore this term also converges to zero. Then for the remaining

q T T

T . . . .
S5 / o / (Zu) ' BiLEAW R ds,
=V 2 Jo s

we will apply Lemma 5.3 at the end together with the analysis for the first term of (22). For that
first term, consider as previously

q T T
S Vi / H / (Z0) AT~ (Z,) AR UTdY ds,
=0 0 s

where A%, = Dif, ;—1(j—oy S21_ fuuD?fuy. Again this term goes to zero in L'(€2) as the sequence
v/nU™ is bounded uniformly in LP(Q) and (Z}) 'A% — (Z,) "1 ALJ, converges to zero in LP(€) x
[0,7]?). Now the only terms that have been left are

q nT (T T o 5 ' q T T o )
> ,/7/0 H;/ (Zu)*lBQ{;’“dWJ*’”ds+Z\/ﬁ/o H;/ (Z,) PAL URdY] ds.
Jik=1 s j=1 s

For this term is clear how to define ¢, and ¢} which satisfy the required conditions in Lemma

5.3. Note that one has to apply Lemma 5.3 to the term above and the first term on the right of
(21). Therefore the proof is finished. O
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6 An optimal control variate method for density estimation

The aim of this section, is to analyze the statistical Romberg method as a control variate introduced
in Kebaier (2005) in the case of density estimation. In order to reduce variance in the density
estimation of a non-degenerate d-dimensional diffusion (X;)o<;<7, we will use another estimation of
the same density using less steps and slightly more simulation paths.

That is, we discretize the diffusion by two Euler schemes with time steps T'/n and T'//m (m << n).
Under the Hérmander condition, the statistical Romberg method approximates the density p(z) of
the diffusion (Xt)Ogth by

N, Npm
1 = Sm i 1 : n ! m )
N Z Gna (X7 + 25 g) + N Z {¢h,w(XT,i +Z0) = Ono (X7 + Zm,e)} )
i=1 M

m .

where )A(%” is a second Euler scheme with step T'/m and such that the Brownian paths W, used
for X7 and X7 have to be independent of the Brownian paths (denoted by W) used in order to
simulate X7'. Furthermore

Wr Wr

Z’I’La m,0 1
bl
’ ’ +6
mz2

= — >
n%+97 07();

where W and W are two independent d-dimensional Brownian motions independent of W and W.

In order to run the statistical Romberg algorithm, we have to optimize the parameters in the
method. In the same manner as in Kebaier (2005), we establish a central limit theorem which will
lead to a precise description of how to choose the parameters N,,, Ny ., m and h as functions of
n. The essential difference with the problem studied in Kebaier (2005) is that the variance of the
estimators explode. This issue will be resolved through an appropriate renormalization procedure
and an appropriate decomposition of the derivatives of the kernel function.

In the following, we suppose that for a given 0 < 8 < 2/3 we have

m=nP, N, =n", Npym=n"?, h=n"¢,

where v1,7v2 > 0, and « > 1/s (the parameter s denotes the order of the super-kernel ¢). We set

n1 nv2
1 o-nb i n 4 nf i
Vi = nn Z Gh( X7, + 26 ) + v Z {¢h7w(XT,i +Z30) = Ona( X7, + an*,e)} .

i=1 i=1

Note that the first derivatives of the kernel function ¢ have the following decomposition
22 (@) = 6} (a) — (o)

where, ¢; () := (g—i(x))+ and ¢2(z) == (%(m)) . We prefer this notation because it will be easier
to handle in the coming calculations. The condition [p, [V¢(z)|?dz < oo (see Definition 3.1) implies
that fRd \¢g(z)|2dx < +o0, for i=1,...,d and j = 1,2. In the following we define the
constant

Cg';;'z/ ¢ ()¢ () dw, .5 € {1,2}, i,i' € {1, ..., d}.
Rd

Theorem 6.1. Let

2 d
5’2 = Z Z (—1)j+j’cijg {E[(Sw(XT)U%U%’] +T5ii'p(l‘)1{e:o}},

J,3'=114,i’'=1

where 0, (.) stands for the Dirac delta function and d;;r is the Kroeneker delta function. Assume that
h=n"% yn=24ad, 2=(d+2)a+2—-Fand 1/s < a < B/(d+2) with 0 < 5 < 2/3.
Then
n(Vn — p(a:)) =oG+Cy,

where G is a standard Gaussian r.v. and Cj  is the discretization constant of Theorem 3.1.
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Before proving the theorem we introduce an essential result about the rate of explosion of the
variances of the estimators. In what follows we extend the previous notation to

y—x 9 -

)7 (bi,h#z(y) hd(b (

).

Lemma 6.1. Under the notation and assumptions of the above theorem, we have

1
¢zlhz(il/) = ﬁ@l(

2
1. pfo@+dR [a:h,z(x;" + Zyog) — th,gC(XT)} 52

n—oo

2
2. 0P OCYDE ) o (X7 + Zng) = Ona(XE + Zoog)| — 52

n—oo

We remark here that the assertion 1 above is satisfied also for 8 > 2/3.

Proof. As 6 is constant throughout the proof we sometimes use some notations where 6 is not
explicitly written. Let’s prove the first assertion of the lemma.

e Step 1:

The Taylor formula gives

U

nﬁ
Gho( X7 + Zpsp) — Ona(X7) =

Un ,1+Z7 )

i=1

1 d 2¢h T n i’ Unﬁ,i 7i Un'B,i' Zi’
5 Z axl )( T + n[’,9)( T + n/’ﬁ)

where U}Lﬂ = X%ﬁ — Xr and £} € H;i:l[X%,X;ﬁ’i + Z! 5 ,]. Note that

e .
H el IRl (2 P

Ox;0xy

where |[¢"||oc = max; s SUP a7 ‘ Then there exists a constant Cr > 0 such that

para || §? ” 6, - g , —a(@td)—p  _
E o & )UT "+ Zya ) (U7 + Zi 6)|| <COrn I ] o[
8:51-8:&-/ ’ ’ 2
= Crn ¢ |o— 0 as n — oo.

Consequently, in order to obtain the first assertion of the lemma it suffices to prove that

B=a(2+d) d a¢hm nP.i i
oz Y S (X)) (U Zis )

2 o, —F as n — oo. (23)

2

e Step 2: We have

a ZL’ ’I’L ’L
% WU+ Zis

9 w OPh, n” i i n? i’ i’
Z E{ (bh ) (bh’ (XT)(UTﬂ’ —"_ZTLB,O)([JTﬁ7 +Zn5,9)}

Pt 8zz Ox;r

v

i i: B{! hz;dj X)L (XY .

where Y3’ =Y (6) := Uy + Zi, ) (UR ¥ + 27, ,) and

OPh 1
;ZQ ) = 3 [9ine (W) = Dlno(W)]-
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Then

d
a x n”,i 7
S D0 ey U+ 2,

N
i=1 Oz;

Wil 1
Z Z h2+d E[wii’,h,x(XT))/;i’ ) (24)

7,j'=14i'=1

where
j 5’ 13d j’
¢zg/7h,ac( ) (C’f’bj’ ) h ¢1 Shy x( )¢z’,h7x(y)‘

In order to evaluate the limit of the last quantity, one needs to use an integration by parts
formula. We use the Malliavin-Thalmaier integration by parts formula introduced in Proposition
2.3. However, to apply this formula we first make appear a Dirac function inside the expectation in
24.

More precisely, let (5”/ h){z i=1...d, j.j'=12. } be random vectors independent of all other random

variables, so that their density is given by goi 5 1o (-). Consequently, we have that

Y
3 J
gii’,h —x a.s. ash—0.

Then

d
B—a(2+d) Obn,a nPi | i
ZTm (X0)(UT "+ Zs

i=1 v

= Z Z J*J"Cﬁj}']E{éo(XTf&fﬂih) i?’ﬁ}v

J,3'=14,4'=1
Applying the integration by parts formula in Proposition 2.3, we obtain

2
B—a(2+d)

8 T n? i 7
Z gh () (U7 +Zs 6)

i=1 Li

2
d 2 d
YD D e e E[aer(XT 4 ) Hey (X, Y )}7
r=14,j'=11,i'=1

To deal with the last obtained quantity, we need the following technical lemma, which is proved in
the Appendix.

Lemma 6.2. Let F}, be a d-dimensional random vector, independent of X1 such that

Fy, —x a.s. ash—0.

Yy—x

Assume that Fy, have a density function py, »(y) = %p(T) where p is a density function. Then, for
r=1,..,d

1. 8,Qq(X7 — Fp) — 0,Qq(Xr —2) as. ash— 0.

1+6
2. Forany 0 << (d—1)71, (XT—Fh)‘ < 00.
We only need to study the behavior of
nPE [aer (XT - J,‘) H(r) (XT7 Y;ZL/B):|

in order to prove relation (23). This will be the aim of the next step.

e Step 3:
We have that

, d
Hi) (X7, Y2 ) = Vi Hoy (X, 1) = 3 (7x0); / DFX.DPYE ds

7,k=1
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According to Theorem 5.1 we have that
nPI2YY Sstaly v, oo (U 4 Wil gg—0y) Uk + Wh1g—oy).

Therefore as s — D, Xy is continuous for s € [0,7], we have that

d T
n’ H, (XTa Yz?’ﬁ) =stably Yie Hp (X7,1) -2 Z (’Y;(; )jr/o DI;(UT/E“U%)D];X% ds
Ji.k=1

=H, (XT7Yu")-

As the diffusion X and the associated Euler scheme satisfies Proposition 3.1 and using Proposition
7.1 we have that

nﬁ sup ’H(r) (XTaYi?/B)Hl < 0.

P

Therefore, according to the Lemma 6.2, the sequence n°0,Q4(X1 — ) H, (XT,Yi?,B> is uni-

formly integrable and therefore

d d

n’ Y E{0,Qu(Xr —2)Hey (X, v ) | — ZE{@%(XT ~ @) ey (X1, Yie ) } = E{6,(Xr)Yi |-

r=1 =1

The last equality follows from an application of the integration by parts formula. As Wy is inde-
pendent from (W, W), we have that

E (6, (Xr)Up W4 ) =0,

E (8. (X7)WiWi) = E(6,(X1))Td;; = Tp(w)di.
Therefore o
E{6.(Xr)Yii } = E{0,(X2)URUS } + Tp(2)1 (oo G

Therefore we finally obtain that

d
0¢ 8, -
B—a(24d) H h,z X UR 4 H 52
n E +Z — 0%,
— O, Xr)(Ur n.0) 2 n—oo
from which the first assertion of the Lemma follows.
The second assertion is a consequence of the first. In fact using the triangular inequality, we
have that

B—a(2+d)
n 2

n n? n?
| 610 (X5 + Z00) = 00 (X8 + Zuo )|, = || 010 (X2 + Zos ) - ¢h,m<XT>HQ\ <

B—a(2+d)
n 2

O (X + Zng) — <z>h,m<XT)H2.

As the first assertion is also valid for 3’ € (8, 1). We apply this first assertion noting that o < L <

, d+2
d’% which gives
. B —a(2+d) n -
Tim 0" g o (XF + Zno) — dna(Xe)2 = 6.
From here it follows that
B—a(2+d) n
no 2 o (XT + Zng) — ¢h,z(XT)H — 0.
2 N—00
From here the proof of the second assertion follows. O
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Proof of Theorem 6.1. We have
n1 n2

1 1 -
ﬂ(Vn —p(x)) e Z G+ v ZC? + n(E¢h,w(X§L" + Znp) —p(a:))
i—1 i=1

with . L
Cn = ¢h,z(X’?’ + Znﬁ,G) - Egbh,m(X% + Znﬁ,e)

and

n n n? n nP
("= ha( X7+ Znp) — One(Xp + Zpsg) —E {¢h,w(XT + Zn9) — Gho( Xy + Zn@,e)}-

From Theorem 4.1 and for v; = 2 + ad we have that

1 nl
e Z ("= N(0,0%) with o = ¢*p()
i=1

where ¢? = [, ¢?(u) du. Therefore to finish the proof it is enough to prove a central limit theorem
for % Zmi 5{”, as the random variables ¢™ and (™ are independent. As in the proof of Theorem
n

i=

4.1 we have that

nY2

B [exp (1 > &) =[1+ 2 (o R+ EC, )]
=1

with
~ ’LLS n |3
[ECp(w)] < WEK .
Now we prove that
1 Fn |2 ~2
n'y2_2]E ‘C | n:o g
and
1

Fn |3
n272_3E|C | n?o>o Oa

which will give as in the proof of Theorem 4.1

n72

1 T
n'YQ*l Z Ci - UG
=1

where G is a standard Gaussian}“andom variable.
Let’s start with the term E |("|2. We have that
S S
C¢7T C¢77

- z 1 2
E|C"[? = E [pn0(XF + Zno) = ona(XF +Zns )] = {22 = =5 +0(—5) }

where CF , is the constant given in Theorem 3.1 associated to the kernel ¢. Also from Lemma 6.1
and for v = (d 4+ 2)a + 2 — 8 we have that

1 Fn |2 ~2
n"/Z*QEK‘- | n:OO' .

On the other hand,
- 8 3 8 3
E I < 4E |[¢na (X7 + Zno) = 0na(XE + Zus )| + [E [000(XF + Z00) = 00 (X2 + Zus )|

+3E ’Qsh,x(XT + Zno) — bno( Xy + Znﬁ,e)‘ X ’E [Qbh,x(XT + Zn0) = Gna( X7 + Znﬁ,e)] ‘
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Also using Theorem 3.1 we obtain

1|3 n n? 3 C;JU C;#U 1 3
E " < 4E b0 (X7 + Zno) = dnao (X5 + Zos )| + |22 = =57 +o( 5|

8 2 C;m C;;x 1
+ 3B |90 (XE + Zno) = bna(XE + Zoo )| | 222 = =52 4 0( 5 ).

Applying again Lemma 6.1 we have that for 2 = (d+2)a+2 — 3

5| 0ha (X + Zno) = 000(XF + Zuo )| —, 0.
Therefore it remains to prove that
1 n e 3
n272_3E ’d’h,m(XT + vaa) - ¢h,$(XT + Znﬁ,@)’ oo 0.

As ¢, . is a Lipschitz function with Lipschitz constant of ¢/h9*! for ¢ > 0, we obtain

1 n n? 3 ¢ n n? |3 3
33 L |Pha (KT + Zno) = Ona (X7 + Znsg)| < n212-3p3(d+1) {E|XT = X" " +E[Zno — Zns ol }
C CT o CCT 0
= ey T Taihati-2

The last convergence is true if 0 < oo < 3/(d+2) and 0 < 8 < 2/3. This finishes the proof of the
Theorem. O

Like in the case of the Monte Carlo method one can interpret the previous result as follows: In
order to approach the density p(z) using a control variate method of the Romberg type with a global
tolerance error of order 1/n, the parameters needed to use the algorithm are h = n=, N, = n?tod
Ny = nld+2)e+2-8 with 3/(d 4+ 2) > a > 1/s where s denotes the order of the superkernel ¢.
Therefore the complexity (number of calculations) needed for this algorithm is

Crs szmN1+(n—|—m)N2

~ O x pfrod+? L p(d+2a=43  where /(d+2) > a >1/s.

For g = % + a we obtain that the complexity of the Romberg method is given by
Chre ~C x p3tldthe

Here note that the optimal complexity for the Monte Carlo method is given by

C;{/[C ~ C X nd+ad.

Therefore the Romberg control variate method reduces the complexity by a factor of of order n'/2=¢.
Therefore taking into account that 5/(d +2) > a > 1/s we see that if one uses super-kernels of
order s > 2(d + 1) we obtain a theoretical asymptotic optimal parameter choice of the method.

7 Appendix 1

In this appendix we prove some estimates that are useful to estimate the norms of the weights in
the integration by parts formula. In order to simplify the notation we suppose that ¢ is a positive
constant that may change from one line to the next.
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Lemma 7.1. For alll > 1, p > 1 there exists positive constants ks, p1, p2, v1 and 2 and a positive
constant c independent of n, 6 and F such that

1GFiz, ) e < cll(det Tz, )T HRIE + Zool17 py»

Proof. The proof is done by induction on ! = |k|. The case [ = 0 is a direct consequence of the
Cramer formula for the inverse of a given matrix.

In general, as D" {;?F+Z",9:/;izn 9} = 0 for any multi-index r, we have that

~—1 ~—1 li kx -1 j
D" (7F+Zne Z Z (Vrtz,,) D"~ g+z 9D (Vriz,,)"™
i,j=1keA(r)—{r}

Here A(r) denotes all the subsets of indices of any order taken from elements of r. Then the result
follows from the inductive hypothesis. O

Proposition 7.1. Let G € D™ (W), then

1. Let F € (D®(W))? such that F + Z, ¢ is a non-degenerate random vector. For p > 1 and for
all multi-index m we have

~ ) v , 1
B (POl < Gl (et ire 2, ) 1 [1FIE)+ —7]

where ¢ is a constant depending on p, m and d, whereas v, r’, a, a’, b, b’, | and l' are param-
eters depending on m, p and d.

2. Let Fy, Fy € (D>®(W))¢ such that F; + Zno and Fy+ Z,, g are non-degenerate random vectors.
For a fized multi-index m, any | > 1 and p > 1, there exists ¢, a positive constant depending
on p, m and d, whereas k;, s;, Bi, pi, Vi, for i = 1,2, ko, S0, Yo, ko and 5 are parameters
depending on m, p and d such that

”I:Ln(FlaG)_I:Im(F%G)”l,p = ! 'Bi)

pi

v+ [(det Fr 1z, ,)”

X Fr = Fallig o 1G 50,5

8. Let F € (D>®(W))? be a non-degenerate random vector. For a fized multi-index m, any | > 1
and p > 1, there exists a constant ¢ and parameters r;, k;, p;, for i = 1,2,3 depending on p,
m and d such that

I Hy (F, G) = Hin(F.G) |l

tr < e NGl (L I+ Zool2 ) (4 (et ez, )7 1E2):

Proof. Again the proof is done by induction on the length of the multi-index m. In fact, using the
definition of H and the continuity of the adjoint operator ¢, we have

d
IH(F.G)lipy < DY IDF + Zug) Hyn (1 (F.G) Gt 5, )7 41,0

rem j=1
Then the proof finishes by using Hélder’s inequality, Lemma 7.1 and the inductive hypothesis.
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The proof of the second assertion is as the previous one, done by induction on the order of the
multi-index m

I H (Fy, G) = Hp (B, G) 1y < D Z ID(FL = Fo)? Hy 0y (F, @)y 2, )" i1

rem j=1

+ Z Z ||D (Foy 4+ Zpp)’ ( —(F1,G) — m—{r}<F2> G))(:YElleZnﬂ)erl—&-l,p

rem j=1
d ~ ~
+ 3 S UDFs + Zn)Y oy (Fo, G) (R 2 )7 = Gtz )l
rem j=1 : :

For the first term one applies the Holder’s inequality, the first assertion and Lemma 7.1. For the
second, Holder’s inequality, Lemma 7.1 and the inductive hypothesis. For the third, note that

d
Grivz, )7 = Grisz, )7 = Y Gz, ) |Orz, ) = Crez, ) |Gz, )7 (25)
’ k,k/=1 ) )
Note that 7yF1+Zn g =Vr T2, and :YF2+ZW g = Ve T2, Consequently, it follows that

’

@F2+Znﬂ)kk - (5’F1+Zn,9)kk/ = (DF§ — DFf,DFf')y + (DFf, DFY — DFF' )y

From here the result follows.
In the same way as before, we prove the last relation for an index m. We have

H,,(F,G) - H,, = ¥ 6<GDF (Grkz, )7 — (™)),

=1

.

14
2

d
1 i PYI7J
Z ( ’YF+Z%0) JDW%)

Therefore the result follows applying (25) and the same arguments as in the previous proofs of
assertions 1 and 2. O

8 Appendix 2

Proof of Lemma 8.4. In order to prove the relation (11) is enough to prove that

sup A, (u,8):=  sup |AL(u,s) + A% (u,s)] — 0
0<u<s<T 0<u<s<T
with ‘
A}l(“? 5) =E [(d)h,m (X;’A + ZTL,G) - 1{Xr>a:}) Hr+ (XTa GZ’,]s:k)}
and

A (u,5) = E[W (X2 + Zno) {Hyo (X7, G0 ®) — Hoo (X7, Gi%) }} :
with h = n~%. Since for every p > 1 we have that

e (X5 4 Zog) 25 1, o0

and

OSSEEST“H” (X, GLEM)||, < o0
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then we deduce that

sup |AL(u,s)] — 0.
0<u<s<T

In addition we have

sup |Ai(u7s)| <c¢ sup HI:IT+ (Xg’)‘,GZ:g’j’k) —H,+ (XT,GZ’f;k)“2

0<u<ls<T 0<u<ls<T

sup  |A2(u,s)| <c  sup ”I:ITJr (X;’)\,GZ::’j’k) —H,. (X;)\’szsk)H
0<u<s<T 0<u<s<T 2

Ye  sup HﬁT+(X;’A,G;»7;k)—HT+ Xp, Grik H

0<u<ls<T

vo s [ (o Go) - - (G0
0<u<s<T 2

Note that

[, Gty — e (2 Gt | = [ (gt G — Gty |

Since X;,i’)‘ + Zp,¢ is uniformly non-degenerate, we conclude using the first assertion of Proposition
7.1 and Proposition 3.1 as well as Lemma 3.2, that

N ,
sup HHT+ X7 G sk GZ’fs’k) H — 0, (n— c0).
0<u<s<T 2

In the same way, since X;”\ + Z,6 and X7 are non-degenerate, we conclude using the second
assertion of Proposition 7.1 and relations (5) and (6), that

sup Hflﬁ (X;,f”\, GZJS’“) —H,+ (XT, GZ]SI“) H — 0, (n— 00).
0<u<s<T 2

Finally, according to the third assertion of Proposition 7.1 we obtain that

sup [ F, (X7, GAY) — B (X7, G| 0, (n— o0).
0<u<s<T ’ ’ 2

We conclude that

sup_|A7 (u, )| = 0, (n — o0).
0<u<s<T

The continuity of
g(u, S) = E(l{XT>:v} Hr+ (AXT7 G;’i’k)>
follows from Proposition 3.1 as well as Lemma 3.2. O

Proof of Lemma 6.2. The case d = 1 is trivial, so we will assume for the rest of the proof that
d > 2. Tt is clear that the function 9,.Q is continuous except at the origin. Since the random vector
Fyp — x as h — 0 a.s., the first assertion of the lemma follows. Now we prove the second assertion.
For a > 0, we have that

E|0,Qa(Xr — F)|"" = E{‘aer(XT - Fh)’1+51{|XT — Fal < 2“}}
+ B{[0:Qu(Xr = B x, By s 20 ) (26)

e Step 1: First consider the first term on the right of (26). Then we have
146 146
E{|8er(XT — F)| L Xy — Fy| < Qa}} = /Rd|<9er(Z/)| Lely| < 2a)Pr()dy
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where pj, denotes the density of the random vector X1 — F},. If we have that

sup sup pp(y) < Cq,
h|yl<2a

then it follows immediately that

B{10.Qu(xXr = F) L, -y <20y} <€ [ 0.Qulw)] ™ d.

ly|<2a

As |8er(y)‘1+6 < Cy/|y| @D+ Therefore we obtain
supE{‘@Q (X —F)|1+61 }<oo
L hQa(XT — Fh {| X7 — F| < 2a} ;

for § < (d—1)""'.

e Step 2: Now, we prove that

sup sup pp(y) < Cs.
L |yl<2a

Since F} and X are independent, we have that

P = [ nstu =it du

where pj, , denotes the density of F}, and p denotes the density of X¢. Then it follows that

pr(y) < sup p(u) / phz(u—y)du
u€R4 R4

= sup p(u).
uER4

According to Corollary 3.25 in Kusuoka and Stroock (1985) we have that,

ly — x|

cr

p(y) < gexp(— ), forsome C >0, and [>0.

In particular, it follows that p is bounded and therefore the result follows.

e Step 3: Now we are able to deal with the second term of equality (26). We have
146
B{10,Qu(Xr = F)| "1y x, 1y > 20) } =

/Rd Rd|0er(y - Z)|1+61{|y — 2| > 2a)PW)Pna(2)dz dy.

)|1+6

Using again that [0,Qq(y < Cy/|y|@=D0+9) and the Kusuoka-Stroock estimate mentioned

previously, we have that
/ 10,Qaly — Z)|1+51{| — 2| > 2a)PW)Pna(2)dz dy
R4 xR4 y

CdC |y _ x‘Q
= (2a)(@= D+ T /Rd exp (=g )dy /Rd Ph,z(2)dz < 0.

This completes the proof of the lemma. O
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9 Appendix 3

In the following we prove Lemmas 5.1, 5.2 and 5.3.
Proof of Lemma 5.1. The proof uses the same ideas of Jacod and Protter (1998). Note that for
0 <t<t <T, the sequence (\/ﬁftt (Wi — Wgﬂ'(s)) ds) tends to 0 in L%(Q). In fact, we have

neN

t/
J_ WY <£ .
E(/t (W Wn(s)ds> <5 e>0

Therefore we have

T T
[ v wi s = [ iy - wh as+ [ v W)
0 77n5 0 s S 777;(5)
with N
anng ZH%I{(A:—UT<S<H}.
— e

It follows that

T
HE™(W. ds‘ < sup H;”—anné/ Wi — ds
[ Wo )| < s (e ] [

+‘/ H”L 77())ds‘

Since the sequence \/ﬁfoT Wi — Wf] (S)| ds is tight, after some work we deduce the conclusion of the
lemma. O

Proof of Lemma 5.2. Without loss of generality, we assume that T < 1 throughout this proof. We
denote by

T T
HoK" = / H, (/ L () <s<u Ky dYJ)dS
0 0

and suppose in a first time that H is deterministic then
T T ‘
HoK" = / Ky (/ 1{77n(u)§s§u}H5 dS)dYuJ
0 0

T u
:/ K;}( H, ds)dYg.
0 M (1)

It follows that

u

T 2
ok <E [ kiP([  Hods) du
0

75 (w)

T
< |HILE / VK2 = ()2 du

2 2 T
< HkT K| du
2 u )
n 0

and consequently (v/nHoK"™),en tends to 0in L?(Q). Now let H to be arbitrary. We have that H €
€([0,T)), so there exists a sequence H'€ €(]0,T]) of piecewise functions such that |H — H'|o, — 0
and |H!|. <1 a.s.. We have

T T
(= HYo KM < | = 1 [ | [ Lo K7 a7 ds.
0 0
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It is obvious that the sequence

T, T }
(\/ﬁ/ ‘/ Ly, (wy<s<up Ky dYY]
0 0

is tight, (because it is bounded in L?). Consequently:

)nGN

(Ve K12 ) < (VG - 1) K 5) 2y o2 5)
<e(

-l )

+IP>(\/E/ ’/ 1 (wy<sca) K1 dY
0 0
l n €
> —.
+IP(\/R|H o K" > 2)

dsZ&)

For a fixed [ and for a good choice of § and n we obtain that for a given p > 0,

T
n l €
/ 1K™ du—i—IP(\H H. > 25)

l2T2
hmsup[P’(f|H<>K"| > 6) <p+

n—oo

Since p is arbitrary and |[H — H'|o, — 0 a.s., we conclude that

limsupIF’(\/mHoK"\ > 5) =0.

Which completes the proof. O

Proof of Lemma 5.3. We split the proof of the lemma, into two steps
e Step 1: We suppose first H?, K’ and L’ are deterministic. Then we have:

T q T
/ K(Z / g;‘{ngdWJ ds = / / Kigh, ds Urdwy
0 j=1vs
q T
=> / K9urdw?
j=1"0

with K% = fo K¢, ds. In the same manner:

T, 4 a
[u() > cmamze)as= > [ rgrays,
0 S jk=1 k=170

with L% = [ Li¢ikds. Therefore we need to prove that

T q T
\/E(U;,/ H;Ugds,Z/ Kiyn qwy, Z/ Lidk g W”’”)
0 j=170 G k=1
stably converge in law to
T ) q T o
(UT7/ H;Usds,Z/ Ky, dws, Z/ Lidk W’”
0 j=170 j.k=1

Since the process H' is deterministic and the processes K% and L“* are continuous and adapted
as in Lemma 5.1, we deduce, using an approximation argument, that proving the convergence above
can be carried into proving that Y /", Z;V;* stably converge in law to >\, Z;V; where Z,..., Zy,
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are random matrices and (V}?,..., V") are random vectors converging stably to (V1,...,V;,). This
is a classical property of the stable convergence. In fact, (Z,Z1,...,Z,,Vi",..., V") converge to
(Z,Z4,...,Zu;Vi,..., Vi), it follows that (Z,3"!" | Z;V;") stably converge in law to (Z, Y.~ | Z;V;),
(see Jacod and Shiryaev (2003) chapter VIII §5.c and Theorems 2.3 and 3.2 in Jacod and Protter
(1998)).

e Step 2: Suppose now H', K* and L' are arbitrary. Since the processes H', K* and L’ have
continuous trajectories on [0,T], we can approach them by three piecewise functions H;, K}, L}. In
the following we introduce the following notations

T T T 4

Hi.Un:/ HIU™ ds Ki*U“:/ K;‘(/ > Eoulidwy)ds
0 0 s j=1
(L1|Wnk] / Lz / Z Cz]k Wnk])

S k=1

We have /n|H.U" — H}.U"|| < |H" — H}| fOT V/n||U||ds where | |~ denotes the uniform norm
on the space €([0,77]). Similarly, we have

£, Uy AW |ds

T
V|| K« U™ — K}« U"|| < | K" — K;'|Oo/
0

and

T
ALY — (LR < L~ Lo /

S,u

T 4
C'ij de N ’
k=1

Consequently, in order to prove the statement of the lemma, we have just to prove the tightness of

T } T
/ JallUrlds,  Pi= /
0 0
) T
and Q;:/
0

The tightness of the sequence fOT V/nl|UZ| ds, follows from the convergence of the law of /nU™. For
P! and Q¢ this is a consequence of the hypothesis on 59 w C”k In fact :

T a4 A
£, Uy dWi |1 ds
=1

q
ijk apjymoki
Cs,ud u ds
=1

1P|y < \FZSU Un dwi

_ /OTﬂH(/S I3 el du) ’| s
<vi(e [ [ 13 shvivepas)
0 s j

1/2
< VT (B / [ maxl€gPas] IvavziFaa)

ds

Using that supnIEfoT |v/nU||9du < oo for ¢ > 1 and that
T u B
E/ du/ ds(maxH{i{qu) <oo for p>2.
0 0 J
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we obtain that
sup || Ppll2 < 0.
n

In the same manner we obtain that sup,, ||@n||2 < co which completes the proof of the lemma. O
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