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1. Introduction

This paper is devoted to survey some probabilistic techniques and approaches in

the modelling of financial markets with asymmetric information. These markets

are characterized by the presence of at least two types of agents with different in-

formation flows. Although some of such models have been developed for general

semimartingale price processes, we will focus our attention in models based on the

Brownian motion, as the paradigm of a continuous local martingale. In particular,

we are interested in the modelling of privileged information, also known as insider

trading. We begin in Section 2 reviewing the main probabilistic techniques used in

modelling such markets. We will recall some basic ideas and results on the theory of

initial and progressive enlargement of filtrations. These techniques will be critical

to make sense of the stochastic integrals involved in the different models and also

to find optimal strategies for the insider. Section 3 aims to present the two most

popular approaches to insider trading. In Section 3.1 we discuss the basic model

of portfolio optimization with privileged information introduced by Karatzas and
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Pikovsky in [35]. This model has the nice feature that easily allows to consider

different kinds of information but the drawback of allowing infinite expected utili-

ties. In Section 3.2 we introduce the Kyle-Back’s model of market equilibrium. This

model combines price formation, portfolio optimization and privileged information.

It has the advantage that yields finite expected utilities, but the kind of additional

information held by the insider is somewhat restrictive. Finally, in Section 3.3 we

present a new model of equilibrium with insider trading. In this model we have finite

expected utilities and flexibility in the modelling of insider’s additional information.

2. Probabilistic techniques

2.1. Enlargement of filtrations

The enlargement of filtrations is an important subject in the general theory of

stochastic processes, see [31], and its study was initiated by Itô [21] trying to give

a meaning to
∫ t

0
W1dWs, where Wt is a Brownian motion. This topic was further

studied in the fundamental works of Jeulin [22], Jacod and Yor [24] among others.

For up to date references see Yor [37] and Mansuy and Yor [30]. An increasing

interest to this question has risen recently from asset pricing models and portfolio

optimization problems in stochastic finance. In this area, the enlargement of fil-

trations theory is an important tool in the modelling of asymmetric information

between different agents and the possible additional gain due to this information,

as we will see below.

Let us state the problem in a quite general setting. Let (Ω,F ,F = (Ft)t≥0 , P )

be a filtered probability space satisfying the usual hypotheses. Let G = (Gt)t≥0

be another filtration satisfying the usual hypotheses and such that Ft ⊆ Gt, for

all t ≥ 0. Some natural questions are the following: what happen with the F-

semimartingales when considered as stochastic processes in the larger filtration G?

Do they remain G-semimartingales? If this is the case, we say that (F,G) satisfy the

(H ′) hypothesis. Moreover, how are their G-semimartingale decompositions? The

theory of enlargement of filtrations tries to solve the previous problems. Due to its

generality, these questions are only partially answered. The problem, as it is stated

above, it is too general to get any result and, therefore, we need to assume some

structure to the filtration G. There are, essentially, two ways of enlarging filtrations:

initially and progressively.

2.1.1. Initial enlargement of filtrations

In an initial enlargement, the additional information is a σ-algebra H and is added

to F at the beginning of the the time interval, i.e., Gt = Ft ∨H, t ≥ 0.

One of the most important results on initial enlargements comes from Jacod, see

pages 15-35 in [24], and deals with the particular case in which the enlarged filtration

is of the following form Gt ,
⋂
ε>0

(Ft+ε ∨ σ (L)) , where L is any F-measurable

random variable.
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Theorem 2.1 (Jacod’s Criterion). Let L be an F-measurable random variable

with values in a standard Borel spacea (E, E) and let PLt (dx) denote the regular

conditional distribution of L given Ft, t ≥ 0. Assume that for each t ≥ 0, there exists

a positive σ-finite measure νt (dx) on (R,B (R)) such that PLt (dx) � νt (dx) , P -

a.s.. Then (F,G) satisfy the (H ′) hypothesis.

It can be proved that the existence of a positive σ-finite measure νt (dx) is

equivalent to the existence of one positive measure ν (dx) such that PLt (dx) �
ν (dx) , P -a.s. and, in this case, it can be taken to be the distribution of L, see for

instance Theorem 11, chapter 6 in [36].

Along the paper, φ (x, t) will denote the density of a centered Gaussian random

variable with variance t, the law is denoted by N (0, t) and δS (dx) will denote the

Dirac delta measure on S, where S will be a random variable.

Example 2.1 (Gaussian expansion). Let F be the standard Brownian filtration

satisfying the usual hypotheses, with W a standard Brownian motion. Let L ,∫∞
0
g (s) dWs, where g ∈ L2 ([0,∞)) and let h be a bounded Borel measurable

function, then

E[h (L) |Ft] = E
[
h

(∫ t

0

g (s) dWs +

∫ ∞
t

g (s) dWs

)
|Ft
]

=

∫
R
h (x)φ

(
x−

∫ t

0

g (s) dWs,

∫ ∞
t

g2 (s) ds

)
dx.

The previous equation yields that

PLt (dx) = φ

(
x−

∫ t

0

g (s) dWs,

∫ ∞
t

g2 (s) ds

)
dx.

Therefore, L conditioned to Ft is distributed as a N
(∫ t

0
g (s) dWs,

∫∞
t
g2 (s) ds

)
.

Define a , inf{t > 0;
∫∞
t
g2 (s) ds = 0}. If a =∞ one has that

PLt (dx)� φ

(
x,

∫ ∞
t

g2 (s) ds

)
dx, P -a.s.,

and the Jacod’s criterion applies. Note, that, actually,

PLt (dx)� φ

(
x,

∫ ∞
0

g2 (s) ds

)
dx, P -a.s.,

which is the law of L. Note that if L ∈ F1 then a = 1 and Gt = Ft for t ≥ 1. A

relevant example of this type of Gaussian expansion is L = W1, which corresponds

to the function g (x) = 1[0,1] (x) . In this example, Jacod’s criterion applies for all

t < 1, but not for t ≥ 1, because PW1
t (dx) = δW1

(dx) , for t ≥ 1, which is P -a.s.

singular with respect to the Lebesgue measure.

a(E, E) is standard Borel space if there is a set Γ ∈ B (R), where B (R) is the Borel σ-algebra of

R, and an injective mapping φ : E → Γ such that φ is E-measurable and φ−1 is B (R)-measurable.
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Although Jacod’s criterion provides a sufficient condition on the initial enlarge-

ment to assure that semimartingales remain semimartingales in the new filtration,

it does not provide their semimartingale decomposition.

From now on, it will be assumed that F is the natural filtration generated by

a real-valued Brownian motion W = (Wt)t≥0 and L is a F∞-measurable random

variable. For any bounded Borel function f, denote by {λLt (f)}t≥0 the continuous

version of the martingale {E[f (L) |Ft]}t≥0. Note that λLt (f) =
∫
R f (x)PLt (dx) ,

where PLt (dx) is the regular conditional distribution of L given Ft, t ≥ 0. From the

representation property of Brownian continuous martingales as stochastic integrals

with respect W, one obtains the existence of a predictable process {λ̇Lt (f)}t≥0 such

that

λLt (f) = E[f (L)] +

∫ t

0

λ̇Ls (f) dWs, t ≥ 0.

The next result provides a way to compute the semimartingale decomposition in

the enlarged filtration.

Theorem 2.2 (Enlargement formula). Assume that there exists a predictable

family {ṖLt (dx)}t≥0 of measures such that λ̇Lt (f) =
∫
R f (x) ṖLt (dx) , dt × dP -

a.e. In addition, assume that dt × dP -a.e., the measure ṖLt (dx) is absolutely con-

tinuous with respect to PLt (dx) and denote by αt (x) its Radon-Nikodym deriva-

tive. Then, for any continuous F-martingale (which can be taken of the form

{Mt =
∫ t

0
msdWs}t≥0) there exists a continuous local G-martingale {M̃t}t≥0, such

that

Mt =

∫ t

0

αs (L) d〈M,W 〉s + M̃t =

∫ t

0

αs (L)msds+ M̃t

provided that ∫ t

0

|αs (L)| d |〈M,W 〉s| <∞, P -a.s. (2.1)

In particular, if
∫ t

0
|αs (L)| ds < ∞, P -a.s., then {W}t≥0 decomposes as Wt =∫ t

0
αs (L) ds+ W̃t, with {W̃}t≥0 a G-Brownian motion.

Let us briefly sketch the proof of the previous theorem. Let f be a bounded

Borel measurable function, A ∈ Fs, s < t, then

E[1Af (L) (Mt −Ms)] = E[1AE[f (L) (Mt −Ms) |Fs]]
= E[1A

(
λLt (f)Mt − λLs (f)Ms

)
]

= E[1A

∫ t

s

muλ̇
L
u (f) du]

= E[1A

∫ t

s

mu

(∫
R
f (x) ṖLu (dx)

)
du]

= E[1Af (L)

∫ t

s

muαu (L) du].
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By a monotone class argument, the last equality yields that Mt−
∫ t

0
αs (L)msds is

a continuous G-martingale. Then, the process {αt (L)mt}t≥0 is the compensator

of M with respect to the filtration G. This terminology is intuitively clear as∫ t
0
αs (L)msds compensates the G-semimartingale M to obtain a G-martingale.

To find the compensator of a martingale with respect to a initially enlarged filtra-

tion, assuming it exists, one usually tries to reproduce the type of computations

done in the proof of Theorem 2.2. A difficulty appears when the enlarging random

variable is a random time. The strategy then is to compute separately the compen-

sator before and after the random time and finally check that they paste well. This

strategy is carried on for the random time at which the Brownian motion in a finite

interval [0, T ] achieves its maximum in [27].

The previous theorem is useful, for instance, to compute the semimartingale

decomposition in the Gaussian expansion case.

Example 2.2 (Gaussian expansion formulae). For the Gaussian expansion

case, L ,
∫∞

0
g (s) dWs, with g ∈ L2 ([0,∞)) , we have that

PLt (dx) = φ

(
x−

∫ t

0

g (s) dWs,

∫ ∞
t

g2 (s) ds

)
dx

and

ṖLt (dx) = g (t)
x−

∫ t
0
g (s) dWs∫∞

t
g2 (s) ds

φ

(
x−

∫ t

0

g (s) dWs,

∫ ∞
t

g2 (s) ds

)
dx.

Hence, αt (x) = g (t)
x−

∫ t
0
g(s)dWs∫∞

t
g2(s)ds

. If we use the Enlargement Formula (Theorem

2.2) with g (t) = 1[0,1] (t) and M = W we obtain that

Wt =

∫ t

0

αs (L) ds+ W̃t =

∫ t∧1

0

W1 −Ws

1− s
ds+ W̃t, t ≥ 0,

with {W̃}t≥0 a G-Brownian motion. Note that condition (2.1) translates to∫ t∧1

0

∣∣∣W1−Ws

1−s

∣∣∣ ds < ∞, P -a.s., for all t ≥ 0, which is easy to check. Notice that,

for t ≥ 1, Jacod’s condition does not apply and, actually, there exist F-martingales

which do not remain semimartingales in the enlarged filtration G, see for instance

Proposition 1.7 in [30].

Another example in which Theorem 2.2 can be applied is the Brownian filtration

enlarged with the maximum of the Brownian motion in the interval [0, 1]. In this

case, Jacod’s criterion does not apply for any t > 0, as PLt (dx) is not absolutely

continuous with respect to the Lebesgue measure due to the appearance of the

point mass δMt
(dx) in the semimartingale decomposition as we see in the following

example.

Example 2.3 (The maximum of Brownian motion). Let F be the standard

Brownian filtration satisfying the usual hypotheses, with W a standard Brownian
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motion. Let L = max0≤t≤1Wt and Mt = max0≤s≤tWs, then it can be proved (see

Example 1.7 in [30]) that

PLt (dx) = R1−t (Mt −Wt) δMt
(dx) + r1−t (x−Wt) 1(Mt,∞) (x) dx,

ṖLt (dx) = −r1−t (Mt −Wt) δMt
(dx) +

x−Wt

1− t
r1−t (x−Wt) 1(Mt,∞) (x) dx,

where

rt (x) = 2φ (x, t) 1(0,∞) (x) , Rt (x) =

∫ x

0

rt (y) dy, x ≥ 0.

Therefore, αt (x) = x−Wt

1−t 1(Mt,∞) (x) − ϕ (Mt −Wt, 1− t) 1{Mt} (x) , where

ϕ (x, t) , rt(x)
Rt(x) , and

Wt = W̃t +

∫ t

0

L−Wt

1− t
1{Mt<L} − ϕ (Mt −Wt, 1− t) 1{Mt=L}ds, t ≥ 0,

with {W̃}t≥0 a G-Brownian motion.

Imkeller [17] studied the initial enlargement of filtrations with a smooth random

variable L in the Malliavin sense, see Nualart [34], section 1.2.. He finds a sufficient

condition in terms of the Malliavin derivative DL for Jacod’s condition to apply.

Imkeller, Pontier and Weisz [20] develop a Malliavin calculus for measure valued

random variables. With this new tool they are able to replace the Jacod’s criterion

by the following more general and natural one in the setting of Wiener space:

(AC) kt (dx)� PLt (dx) , P -a.s., t ∈ [0, 1],

where kt (dx) = lims↓tDtP
L
s (dx) in the sense of the weak* convergence in

L2 (Ω× [0, 1]) . Their main findings are summarized in the following theorem.

Theorem 2.3. Let {Wt}t∈[0,1] be a standard Brownian motion and L a F1-

measurable random variable. Assume that (AC) is satisfied and denote by αt (x)

a measurable version of the density of kt (dx) with respect to PLt (dx) .

(1) If
∫ t

0
|αs (L) |ds <∞, P -a.s. for any 0 ≤ t < 1, then, W is a G-semimartingale

with the following decomposition Wt = W̃t +
∫ t

0
αs (L) ds.

(2) If E[
∫ 1

0
α2
s (L) ds] <∞, then the relative entropy of the conditional law PLt (dx)

with respect to PL (dx) (the law of L) is finite. In particular, PLt (dx) �
PL (dx) , P -a.s., t ∈ [0, 1].

(3) If E[exp(
∫ 1

0
α2
s (L) ds)] < ∞, then PLt (dx) is equivalent to PL (dx) , P -a.s., t ∈

[0, 1].

2.1.2. Progressive enlargement of filtrations

In a progressive enlargement, the additional information is a filtration H = (Ht)t≥0

and is added to F progressively, i.e., Gt = Ft ∨ Ht, t ≥ 0. The most well studied

case in the literature is when the enlarged filtration is of the following form Gt :=
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(Ft+ε ∨ σ (Λ ∧ (t+ ε))) , where Λ is a given random time, that is, a random

variable taking values in [0,∞]. Note that this filtration is the smallest filtration

(satisfying the usual conditions) that contains F and makes Λ a stopping time. From

now on, we will assume that all F-martingales are continuous, which is sometimes

known as condition (C) in the literature. Also note that the Brownian filtration

satisfies condition (C). Moreover, we will focus our attention to a particular class

of random times, the honest times.

Definition 2.1. A random time Λ is said to be honest if Λ is the end of an F-

optional set Γ, that is, Λ = sup{t ≤ ∞ : (t, ω) ∈ Γ}.

Honest times constitute a subclass of random times which is large enough to

include interesting examples for financial modelling, see [32]. Note that stopping

times belong to this class, but this class is strictly larger it contains, for example,

the argument of the maximum of a continuous local martingale.

Barlow [7], discovered that (F,G) automatically satisfy the (H ′) hypothesis.

Therefore, no result such as Jacod’s Criterion is needed when dealing with progres-

sive enlargements with honest times. This intuitively means that initial enlarge-

ments can add more information than progressive ones, just preventing the (H ′)

hypothesis to hold. The main result in this theory is the following one, due to

Jeulin and Yor [23].

Theorem 2.4. Let {Mt}t≥0 be a F-local martingale, then there exists a G-local

martingale {M̃t}t≥0 such that

Mt = M̃t +

∫ t∧Λ

0

d
〈
M,ZΛ

〉
s

ZΛ
s−

−
∫ t∨Λ

Λ

d
〈
M,ZΛ

〉
s

1− ZΛ
s−

, (2.2)

where {ZΛ
t }t≥0 is the Azema’s supermartingale, that is, ZΛ

t = P (Λ > t|Ft). In

particular, (F,G) satisfy the (H ′) hypothesis.

The explicit computation of Azema’s supermartingale {ZΛ
t }t≥0 is, in general,

difficult to perform and almost all examples are given in the Brownian motion

case, for a list of examples see [30]. Recently, Nikeghbali and Yor [33] have used a

multiplicative decomposition of {ZΛ
t }t≥0 to provide further examples of progressive

enlargements beyond the Brownian setting.

Example 2.4 (The argument of the maximum of the Brownian motion).

Let {Wt}t≥0 be a F-Brownian motion and Ms,t , maxs≤u≤tWu,Mt , M0,t and

τ , argM1. We have

Zτt , P (τ > t|Ft) = P (Mt,1 ≥Mt|Ft) = P (Mt,1 −Wt ≥Mt −Wt|Ft)

=

∫ +∞

Mt−Wt

2φ (y, 1− t) dy = 2(1− Φ (Mt −Wt, 1− t)),

where φ (y, t) and Φ (y, t) are the density and the distribution, respectively, of a

N (0, t) random variable. Using that Mt −Wt and |Wt| have the same law, Itô and
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Tanaka’s formula one obtains the following enlargement formula

Wt = W̃t +

∫ t∧τ

0

φ (Ms −Ws, 1− s)
1− Φ (Ms −Ws, 1− s)

ds−
∫ t∨τ

τ

φ (Ms −Ws, 1− s)
Φ (Mt −Wt, 1− t))− 1/2

ds.

Remark 2.1. For arbitrary random times, the (H ′) hypothesis is not satisfied

in general. However, every F-local martingale stopped at a random time Λ is a

semimartingale with respect to the progressively enlarged filtration with Λ.

3. Modelling approaches to insider trading

3.1. Karatzas-Pikovsky approach to insider trading

In the seminal paper [35], Karatzas and Pikovsky used the theory of initial en-

largement of filtrations to model financial markets with asymmetric information.

Their model is, essentially, the following. Assume (Ω,F , P ) is a complete proba-

bility space equipped with F , {FWt }t∈[0,1], the natural filtration generated by a

Brownian motion W augmented so as to satisfy the usual conditions of complete-

ness and right-continuity. The dynamics of the prices are described by the following

stochastic differential equations

dSt = St (µtdt+ σtdWt) , S0 = s > 0,

dBt = ρtBtdt, B0 = 1,

where Bt is the price of the bond and St is the price of the risky asset at time

t, on the finite horizon t ∈ [0, 1]. The following hypotheses are imposed in order

to put this model in the framework of the classical model for utility optimization

problems, see [25]:

• The coefficients ρ, µ and σ are assumed to be F-progressively measurable pro-

cesses. Moreover, ρ and µ are assumed to be bounded.

• σ2 ∈ L1 ([0, 1]× Ω) .

• σ is strictly positive for every (t, ω) ∈ [0, 1]× Ω.

•

E[

∫ 1

0

(
µt − ρt
σt

)2

dt] <∞ (3.1)

Let Vt denote the wealth of the investor at time t and πt the fraction of the total

amount that he invests in the risky asset. A measurable process π which satisfies∫ 1

0
(σtπt)

2
dt <∞, a.s., will be called a portfolio process.

3.1.1. Optimization problem

The objective of the investor is to maximize the expected logarithmic utility from

the terminal wealth, by means of choosing an appropriate portfolio process for

a fixed initial wealth. Thus, the objective is to find an optimal portfolio π∗ ,
arg maxE[log V π1 ], where the maximum is taken over the set of all ”admissible”
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portfolios, and V πt represents the wealth, at time t, corresponding to the portfolio

process π. Obviously, the question that naturally arises is what is the appropriate

class of admissible portfolios. When considering F-adapted portfolios the problem

is well known, see for instance [25] and [26]. One has that V π satisfies the following

s.d.e.

dV πt
V πt

= (1− πt)
dBt
Bt

+ πt
dSt
St

(3.2)

= (ρt + πt (µt − ρt))dt+ πtσtdWt, V π0 = x > 0.

Furthermore, the solution to the previous s.d.e. is

V πt = x exp

{∫ t

0

(ρu + πu(µu − ρu)− 1

2
σ2
uπ

2
u)du+

∫ t

0

σuπudWu

}
and the optimum is provided by π∗t = µt−ρt

σ2
t
, 0 ≤ t ≤ 1, with value

VF
1 , E[log V π

∗

1 ]

= log x+ E[

∫ 1

0

ρudu] +
1

2
E[

∫ 1

0

(
µu − ρu
σu

)2

du].

Karatzas and Pikovsky study the case in which the portfolios are G-adapted, where

G = {Gt}t∈[0,1] is given by Gt , FWt ∨ σ (L) , 0 ≤ t ≤ 1, where L is an FW1 -

measurable random variable. It is worth noticing that the portfolio π can not be

allowed to depend on the whole future at time t. If this were the case, then the

value of the problem would clearly become infinite, since an investor could exploit

all the fluctuations of the market.

The toy example we consider is L = W1. Then, the first problem is to give

sense to the s.d.e. (3.2) for V π as the coefficients, which depend on π, are non

adapted to the Brownian filtration F. To solve this problem, the idea is to use the

semimartingale decomposition of W with respect to G, that is, the process

W̃t ,Wt −
∫ t

0

W1 −Wu

1− u
du, 0 ≤ t ≤ 1, (3.3)

is a G-Brownian motion, see Example 2.2. Therefore,

dV πt
V πt

= (1− πt)
dBt
Bt

+ πt
dSt
St

= (ρt + πt (µt − ρt))dt+ πtσtdWt

= (ρt + πt(µt − ρt + σtαt))dt+ πtσtdW̃t

V π0 = x > 0,

where αt ,
W1−Wt

1−t . Note that, for any T < 1, the following bound is satisfied

E[

∫ T

0

α2
udu] = log

(
1

1− T

)
<∞. (3.4)
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Assumptions (3.1) and (3.4) put the model within the framework of the classical

theory, as long as T < 1. Then, for any G-progressively measurable portfolio process

π, the solution to the wealth equation is

V πT = x exp

{∫ T

0

{ρu + πu(µu − ρu + σuαu)− 1

2
σ2
uπ

2
u}du+

∫ T

0

σuπudWu

}
.

Let A (G, T ) the class of G-adapted portfolios on the subinterval [0, T ] and V G
T ,

maxπ∈A(G,T ) E[log V πT ]. It can be proved that for this problem the optimal portfolio

in A (G, T ) has the form π∗t = µt−ρt
σ2
t

+ αt
σt

and

VG
T = E[logXπ∗

T ] = log x+ E[

∫ T

0

ρudu] +
1

2
E[

∫ T

0

(
µu − ρu
σu

+ αu

)2

du].

Notice that,

VG
T = VF

T +
1

2
E[

∫ T

0

α2
udu] + E[

∫ T

0

µu − ρu
σu

αudu].

Furthermore, due to condition (3.1) and decomposition (3.3) we have that∫ T

0

µu − ρu
σu

αudu =

∫ T

0

µu − ρu
σu

dWu +

∫ T

0

µu − ρu
σu

dW̃u,

where the last stochastic integral is well defined and, hence, E[
∫ T

0
µu−ρu
σu

αudu] = 0.

A natural definition for the fair price for the insider additional information

L = W1, on the interval [0, T ], is

∆VT , VG
T − VF

T =
1

2
E[

∫ T

0

α2
udu] =

1

2
log

(
1

1− T

)
, (3.5)

which explodes as T tends to 1. Now, one can consider, for every T < 1, the portfolio

πTt := π∗t 1[0,T ] (t) , which corresponds to optimal investment up to time T and then

to move all the investment to the riskless asset and keep it there until terminal time

1. If {Tn}n≥1 is a sequence strictly increasing to 1, then {πTnt }n≥1 is a sequence

of portfolios which satisfy limn→∞ E[log V π
Tn

1 ] = ∞, and it can be concluded that

VG
1 = supπ∈A(G,1) E[log V π1 ] =∞.

We have sketched the proof of the main result in [35], which is the following

lemma. Here we present the one dimensional version.

Lemma 3.1 (Characterization lemma). Assume that for the given F1-

measurable random variable L, we can find a measurable process α (L) : [0, 1)×Ω −→
R, such that:

(1) α (L) is adapted to G = {Gt}0≤t≤1, with Gt , FWt ∨ σ (L) and W a Brownian

motion on [0, 1];

(2) the process W̃t ,Wt −
∫ t

0
αu (L) du is a G-Brownian motion on [0, 1);

(3) E[
∫ T

0
α2
u (L) du] <∞ for any T < 1.
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For every T ∈ (0, 1], let A(G, T ) (resp. A(F, T )) be the class of G (resp. F)-

adapted processes π : [0, T ]×Ω −→ Rd with
∫ T

0
(σuπu)2du <∞, almost surely, and

let

VG
T , sup

π∈A(G,T )

E[log V πT ], VF
T , sup

π∈A(F,T )

E[log V πT ],

denote the values of the portfolio optimization problem over these two respective

classes. Then

VF
T = log x+ E[

∫ T

0

(ρu +
1

2

(
µu − ρu
σ2
u

)2

)du],

VG
T = VF

T +
1

2
E[

∫ T

0

α2
u (L) du], 0 < T ≤ 1,

and thus VG
1 <∞ ⇐⇒ E[

∫ 1

0
α2
u (L) du] <∞. When this latter condition is satisfied,

an optimal portfolio is given by π∗t = (µt−ρu)
σ2
t

+ αt
σt
.

Remark 3.1. If L = max0≤t≤1Wt, Example 2.3 yields that there exists a process

αt (L) satisfying assumptions (1) and (2) in the previous theorem. However, one

can check that for any T < 1, E[
∫ T

0
α2
u (L) du] = +∞. This means that the initial

additional information provided by L = max0≤t≤1Wt is too informative to yield a

realistic model of a financial market.

Remark 3.2. Ankirchner et al.[5], in the continuous semimartingale setting, have

proved a kind of reverse of Lemma 3.1. They set a similar optimization problem

for an insider and deduce the existence of a semimartingale decomposition of the

price process with respect to the insiders filtration whenever the additional expected

logarithmic utility of the insider is finite.

3.1.2. Additional logarithmic utility and entropy

Karatzas and Pikovsky [35] also noticed the following relationship between the

additional utility of the insider and the relative entropy of probability measures. If

we assume that the exponential (P,G)-local martingale

ζt , exp

{
−
∫ t

0

αs (L) dW̃s −
1

2

∫ t

0

α2
u (L) du

}
, 0 ≤ t < 1,

is actually a martingale, then for every T ∈ (0, 1), QT , E[ζT1A] defines a probabil-

ity measure on GT , under which W is a G-Brownian motion. The relative entropy

(or Fisher information) of the measure P with respect to QT , is defined as

H(P |QT ) , E[log
dP

dQT
] = E[log ζ−1

T ] = E[

∫ t

0

αs (L) dW̃s +
1

2

∫ t

0

α2
u (L) du]

=
1

2
E[

∫ T

0

α2
u (L) du].
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Moreover, as the family of probability measures {QT }0≤T<1 is consistent, we can

define the relative entropy of the probability measure P with respect to {QT }0≤T<1

as H , limT→1H(P |QT ), and conclude that H = 1
2E[
∫ T

0
α2
udu] = VG

T − VF
T .

This connection between the additional utility and the entropy was also estab-

lished in the continuous semimartingale setting by Amendinger et al. [3]. Recently,

Ankirchner et al. [4], also in the continuous semimartingale setting but with more

general insiders’ filtrations (not necessarily obtained by initial or progressive en-

largements), have established similar relationships between the insider’s additional

logarithmic expected utility and several concepts in information theory, such as the

Shannon entropy of a filtration.

3.1.3. Free lunches and arbitrage opportunities

Imkeller et al. [20] and Imkeller [19] studied the existence of arbitrage and free

lunches in the presence of insiders. Their model is essentially the one dimensional

Karatzas-Pikovsky with ρ = 0 and a slightly more general assumption on the pair of

processes (µt, σt) which determines the risky asset dynamics. They take as portfolio

processes the progressively measurable processes π such that
∫ 1

0
|µtπt|dt < ∞ and∫

|σtπt|2dt <∞, P -a.s. They consider the excess yield process R and wealth process

V π given by dRt = dSt/St and V πt =
∫ t

0
πsdRs, 0 ≤ t ≤ 1. Let us recall the

classic notions on arbitrage and free lunches, see Delbaen and Schachermayer [14].

A portfolio process is tame if there exists some constant c ∈ R such that V πt ≥ c

for all 0 ≤ t ≤ 1. Let

K0 , {V π1 =

∫ 1

0

πsdRs : π is tame}

and let C0 denote the cone of functions dominated by elements of K0, that is,

C0 = K0 − L0
+. Set C = C0 ∩ L∞.

Condition 3.1 (NA). The semimartingale R is said to satisfy the condition of no

arbitrage if C ∩ L∞+ = {0}.

Condition 3.2 (NFLVR). The semimartingale R is said to satisfy the condition

of no free lunch with vanishing risk if for the closure C of C in L∞ we have C∩L∞+ =

{0}.

We assume that the additional information of the insider is given by L =

sup0≤t≤1Wt. Hence, for the insider, the risky asset is driven by (µ̃, σ̃) = (µt +

σtαt (L) , σt), where

W̃t = Wt −
∫ t

0

αs (L) ds

is a Brownian motion in the insider’s filtration. Recall that, given a semimartingale

R with respect to a filtration and a probability P, a probability measure Q is

called an equivalent martingale measure, if P and Q are equivalent and R is a local

martingale with respect to the same filtration and Q.
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Theorem 3.3. R does not satisfy the condition (NFLVR).

The proof of this result is based in a general classic result of Delbaen and

Schachermayer [15] that states the equivalence between R satisfying (NFLVR) and

the existence of an equivalent martingale measure that makes R a local martingale.

In the Brownian case, if this martingale measure exists, it must have the form

dQ

dP
= exp{−

∫ 1

0

αtdMt −
1

2

∫ 1

0

α2
td〈M〉t},

if R has the Doob-Meyer decomposition Rt = Mt +
∫ t

0
αsd〈M〉s. Therefore, if R

satisfies the condition (NFLVR) we have that Mt =
∫ t

0
σsdW̃s and αt = µ̃t

σ2
t
. If we

define θt as the progressively measurable process that satisfies θtσt = µ̃t, we obtain

that

dQ

dP
= exp{−

∫ 1

0

θtdW̃t −
1

2

∫ 1

0

θ2
t d〈M〉t}.

Lemma 4.1 in [20] shows that
∫ 1

0
θ2
t dt =∞ on a set of positive probability. Hence,

dQ
dP = 0 in a set of positive probability and P and Q can not be equivalent there-

fore finding a contradiction. In [20] the authors also construct explicit free lunch

possibilities, showing that in these cases even the (NA) condition is violated.

The previously cited Lemma 4.1 is of technical nature and makes use of the

particular form of L. In [18], Imkeller improved the previous result. He assumes

that the insider’s filtration is the progressive enlargement of the Brownian filtration

with a honest time Λ. Using the general formula (2.2), he is able to prove that the

(NFLVR) is not satisfied if
∫ t

0
α2
s(Λ)ds =∞ in a set of positive probability.

3.1.4. Imperfect dynamical information

Corcuera et al. [12] studied a market driven by a Wiener process in which the

insider has a privileged information which has been deformed by a independent

noise vanishing as the revelation time approaches. Let {Wt}t∈[0,T ] be a standard

Brownian motion defined in a complete probability space (Ω,F , P ) and denote

by FW = {FWt }t∈[0,T ] the P -completed natural filtration generated by W. The

additional information until time t, is given by Ht , σ{Ls, s ≤ t} where the fam-

ily of random variables {Ls, s ≤ t} has the following structure: Lt = G(L, Yt),

where L is a FT -measurable random variable (not necessarily a random time),

the process {Yt}t∈[0,T ] is independent of FT and G : R2 → R is a measurable

function. Denote by G = {Gt}t∈[0,T ] the usual augmentation of {FWt ∨ Ht}t∈[0,T ].

Hence, G is a particular example of progressive enlargement which is different

from the progressive enlargement with honest times explained in Section 2.1.2. It

turns out that if one has the semimartingale decomposition of W with respect to

GL := {
⋂
ε>0

(FW(t+ε)∧T ∨ σ (L))}t∈[0,T ] (that is, F is initially enlarged with L), then

one can obtain the semimartingale decomposition with respect to G. The main

result in Corcuera et al. [12] is the following proposition.
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Proposition 3.1. Let L be an FWT -measurable random variable and assume that

there exists an integrable,GL-progressively measurable process α = {αt(L)}t∈[0,T ),

such that W −
∫ ·

0
αs (L) ds is an GL-Brownian motion. Then, Ŵ ,W −

∫ ·
0
βsds is

a G-Brownian motion, where βt an appropriate version of E[αt (L) |Gt].

In the previously mentioned article is also proven the following general formula

for the compensator in the case of an additive noise.

Proposition 3.2. Suppose that the assumptions of the previous proposition are

fulfilled. Let t ∈ [0, T ], the random variable Lt be given by Lt = L+ Yt, Yt = ZT−t,

where {Zt}t∈[0,T ] is a continuous process with independent increments, independent

of FWT and whose marginal Zt has density qt. Then, we have for t ∈ [0, T ]

βt =

∫
R αt(x)qT−t (Lt − x)PLt (dx)∫

R qT−t (Lt − x)PLt (dx)
,

where we denote by PLt (dx) a regular version of the conditional law of L given FWt .

In [12], it is proposed the Karatzas-Pikovsky model but with the insider’s filtra-

tion given by G. Hence, under the hypothesis of Proposition 3.1, one has that the

dynamics of the price process is given by

dSt
St

= (µt + σtβt)dt+ σtdŴt, S0 = s > 0.

Moreover, the optimization problem for the insider can be solved analogously to

the Karatzas-Pikovsky model and yields that the additional expected utility of the

insider is given by 1
2E[
∫ T

0
β2
t dt].

Example 3.1. Let L = max0≤t≤T Wt, Yt = W g(T−t) and Lt = L + Yt, t ∈ [0, T ],

where W is a Brownian motion independent of FWT and g : [0, T ] → [0,+∞) is a

strictly increasing bounded function with g(0) = 0. By Example 2.3, we are under

the hypothesis of Proposition 3.1 and, by Proposition 3.2, we obtain

βt =
−rT−t (Mt −Wt) qT−t (Lt −Mt) +

∫∞
Mt

rT−t(x−Wt)
x−Wt

T−t qT−t(Lt − x)dx

RT−t (Mt −Wt) qT−t (Lt −Mt) +
∫∞
Mt

rT−t(x−Wt)qT−t(Lt − x)dx

for t ∈ [0, T ]. Integrating by parts the second expression in the numerator of βt one

obtains that

βt =
1

g(T − t)

∫∞
Mt

rT−t(x−Wt)(Lt − x)qT−t(Lt − x)dx

RT−t (Mt −Wt) qT−t (Lt −Mt) +
∫∞
Mt

rT−t(x−Wt)qT−t(Lt − x)dx
.

Then, noting that P (L ∈ A|Ht) =
∫
A
qT−t(Lt−x)PLt (dx)∫

R qT−t(Lt−x)PLt (dx)
, A ∈ B (R) , one can show

that

βt =
1

g(T − t)
E[Yt1{L>Mt}|Ht].
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Finally, by applying Cauchy-Schwarz’s inequality we have

E[β2
t ] ≤ 1

g(T − t)2
E[Y 2

t 1{L>Mt}|Ht] ≤
1

g(T − t)2
E[Y 2

t ] = g (T − t)−1
.

Therefore, E[
∫ T

0
β2
t dt] <∞ if

∫ T
0
g(T − t)−1dt <∞. So, if we set g (t) = Ktp,K >

0, 0 < p < 1, we obtain that the additional expected utility for L = max0≤t≤T Wt

is finite.

To sum up, the approach of imperfect dynamical information allows the con-

struction of better models that the Karatzas-Pikovsky’s approach (see Remark 3.1).

Moreover, under stronger conditions on g this model, one can also ensure the ab-

sence of arbitrage, see page 447 in [12].

The main ideas in [35] have been extended to various frameworks by many

authors. Amendinger [1], Grorud and Pontier [16], Amendinger et al. [2] and

Amendinger et al. [3] extended these results to the semimartingale setting. Campi

[9] studied the problem of quadratic hedging in a semimartingale market with an

insider.

It is remarkable that almost all the salient features of insider trading models with

strong initial information are already present in [35]. For instance, they studied the

case in which the information is distorted by noise and also mention the connection

of the additional expected logarithmic utility with the Fisher information. The

following is an interesting quote from the authors:

Even a small amount of information about the future blows up the value

of the problem, provided that this information is exact (i.e. not distorted

by noise), and the investor is not bound by constraints.

3.2. Kyle-Back approach to insider trading

In [28], Kyle studied the problem of insider trading from a market microstructure

point of view. He proposes a rational equilibrium setup with three different repre-

sentative agents interacting in the market: an insider, a market maker and a noise

trader. He shows how the insider can profit from his private information by ratio-

nally anticipating how his orders will influence the market price. Furthermore, the

insider hides his trades behind the orders from the noise traders so that the mar-

ket maker cannot determine his orders and, hence, cannot infer his signal. Kyle’s

model is discrete in time and assumes normality of all relevant random variables.

This assumption makes possible the existence of a unique equilibrium with a linear

pricing rule and linear optimal strategy. Kyle also extends his model heuristically

to continuous time. The continuous-time version of Kyle’s model was formalized

and extended by Back in [6]. Back solves in closed form the equilibrium pricing

rule of market makers, for a rather general distribution of the asset value, not nec-

essarily normal. He also gives an explicit strategy for the insider who maximizes

the expected utility of his final wealth. What is more, he finds that, in equilibrium,
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the price of the risky asset is a geometric Brownian motion, when it is assumed

lognormality for the distribution of the insider’s information. Here is a description

of Back’s set up and his paper’s main results.

There is to be a public release of information, which reveals the value of a

financial asset. The value of the asset is denoted by ξ and the scheduled date of

release is normalized to be 1. It is assumed that ξ is the price at which the asset

will be traded after the information release. It is also assumed that the market is

continuous (in time and in trading quantity) and order driven (this means that

the price is set after clearing the orders in the market). Moreover, the risk-free

rate is taken to be zero for the sake of simplicity. In this market there are three

representative agents:

• The market maker : Represents the competitive market making firms, which set

the price and clear the market. This agent is assumed to be risk-neutral.

• The insider or informed agent : Represents the market participants that know

the asset value ξ at the beginning of the trading interval and maximize the

expected utility of their wealth.

• The noise trader : Represents all the other participants in the market. These

participants trade for liquidity or hedging reasons and trade independently of

the asset liquidation value.

The previous setting translates into the following mathematical model. Let

(Ω,F , P ) be a probability space in which are defined a random variable ξ and

a Brownian motion Z = {Zt}t∈[0,1], independent of ξ, and with variance σ2t. It is

assumed that the random variable ξ is square integrable, has convex support and

continuous distribution function Fξ, so that the inverse distribution function F−1
ξ is

well defined on the interval (0, 1). Let Φ be the distribution function of a standard

normal random variable, then the function h , F−1
ξ ◦Φ is well defined on R, strictly

increasing and h−1 (ξ) is a standard normal random variable. The cumulative orders

of the noise trader are modelled by the process Z and the cumulative orders of the

insider trading are denoted by X. The market maker observes the total cumulative

orders Yt = Xt +Zt, so his filtration is FY , {FYt }t∈[0,1] and he cannot distinguish

between the insider and the noise trader. Let St denote the price of the asset at

any time t ∈ [0, 1]. In this model, St will only depend on Yt, the cumulative orders

at time t , and not on the history of orders until time t. Hence, it will be assumed

that St = H (t, Yt) , for some function H, which is called a pricing rule.

Definition 3.1. Denote by H the set of functions H satisfying H ∈
C1,2 ((0, 1)× R) , Hy (t, y) > 0,∀t ∈ [0, 1] and

E[(H (1, Z1))2] <∞ and E[

∫ 1

0

(H(t, Zt))
2dt] <∞.

All the pricing rules are assumed to belong to H. The fact that H ∈ H is

monotone increasing in y for each t yields that the insider can invert H to compute
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Yt at each time t. Furthermore, thanks to the continuity of Z the insider can infer

{FZs }0≤s≤t at each time t and hence his filtration is FI := {FZt ∨ σ (ξ)}0≤t≤1.

Definition 3.2. Denote by X the class of semimartingales X adapted to FI such

that

E[

∫ 1

0

H (t,Xt− + Zt))
2dt] <∞, ∀H ∈ H,

where the symbol Xt− denotes the left limit lims↑tXs. A trading strategy for the

insider is an element of X .

Let V = {Vt}t∈[0,1] denote the wealth of the insider. The dynamics of V is

given by dVt = Xt−dSt, t ∈ [0, 1]. Note that, by Itô’s formula, the process St =

H (t, Yt) will be a semimartingale. Furthermore, the left continuous process Xt−
is predictable and locally bounded, so the stochastic integral

∫ t
0
Xs−dSs is well

defined. This model allows for the possibility that there will be a jump in the price

process after the release of the information at terminal time. Therefore, including

the capital gain from such a jump, the final wealth of the informed trader is

V1+ = (ξ − S1)X1 +

∫ 1−

0

Xt−dSt,

where it is assumed, without loss of generality, that V0 = 0. Integrating by parts,

the following alternative expression for V1+ is obtained.

V1+ =

∫ 1

0

(ξ − St−) dXt − [S,X]1,

where [S,X] is the quadratic covariation. Sometimes, we write V1+ (H,X) to stress

the dependence of the final wealth V1+ on the insider’s trading strategy X and the

pricing rule H.

In order to define an equilibrium, it is needed to specify first what is a rational

price and an optimal strategy.

Definition 3.3. Given a trading strategy X ∈ X , a pricing rule H ∈ H is said to

be X-rational if H (t, Yt) = E[ξ|FYt ], 0 ≤ t ≤ 1, where Yt = Xt + Zt.

Definition 3.4. Given a pricing rule H ∈ H, a trading strategy X∗ is said to be

H-optimal if E[V1+ (H,X)] ≤ E[V1+ (H,X∗)], for all X ∈ X .

Definition 3.5. A couple (H∗, X∗) ∈ (H,X ) is termed an equilibrium if it verifies

(1) The market efficiency condition: H∗ is X∗-rational.

(2) The optimality condition: X∗ is H∗-optimal.

The main results in [6] are the following.

Theorem 3.4. Define

H (t, y) , E[h (y + Z1 − Zt)], (3.6)
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where h , F−1
ξ ◦Φ and Xt , (1− t)

∫ t
0
h−1(ξ)−Zs

(1−s)2 ds. Then, (H,X) is an equilibrium.

Theorem 3.5. The pricing rule (3.6) is the unique equilibrium pricing rule H for

which there exists a nonnegative, smooth function J(v, t, y) on supp(ξ)× R× [0, 1]

satisfying the Bellman equation

max
α∈R
{Jt(v, t, y) +

1

2
σ2Jyy(v, t, y) + α(Jy(v, t, y) + (v −H (t, y)))} = 0 (3.7)

and boundary condition

J(v, 1, y) > J(v, t, h−1(v)) = 0,∀v ∈ supp(ξ),∀y 6= h−1(v), (3.8)

where h(·) , H (1, ·) .

Theorem 3.6. Let (H,X) be an equilibrium. Suppose H is such that there exists

a smooth solution J to the Bellman equation (3.7) and boundary condition (3.8).

Then, dSt = Hy (t, Yt) dYt, and the process Y is distributed as a Brownian motion

with zero drift and variance σ2, given the market maker’s filtration. The process

H (t, Zt) is a martingale with respect to the insider’s filtration. If Fξ has a density

function and E[Hy (1, Z1)] <∞, then the process Hy (t, Zt) is a martingale with re-

spect to the insider’s filtration and the process Hy(t, Yt) is a martingale with respect

to the market’s maker filtration.

By Theorem 3.4 and the fact that Zt = Yt−Xt, it is easy to see that the optimal

strategy for the insider is given by

dXt =
h−1 (ξ)− Yt

1− t
dt.

Furthermore, by the definition of h one has that h−1 (ξ) is normally distributed and

independent of Z. Combining these facts, one obtains that Y satisfies

dYt =
h−1 (ξ)− Yt

1− t
dt+ dZt,

and, hence, from the insider point of view Y is a Brownian bridge, beginning at

zero and ending at h−1 (ξ). However, by Theorem 3.6 the process Y is a Brownian

motion with respect to the market’s maker filtration.

The next two examples show the application of the previous results and the type

of price processes generated in equilibrium.

Example 3.2 (Normal prices). Assume that ξ has distribution N
(
µ, δ2

)
. Then,

it is easy to check that h (y) = µ+ δ
σy and H (t, y) = µ+ λy, where λ = δ/σ. From

Theorem 3.6, one obtains that dSt = λdYt and Y is viewed as a Brownian motion

by the market maker, which yield that the prices follow a Brownian motion. This is

a drawback from the modelling point of view, because implies that the prices can

be negative.

Example 3.3 (Lognormal prices). Assume that ξ ∼ LogNormal
(
µ, δ2

)
, that

is log ξ ∼ N
(
µ, δ2

)
. Then, h (y) = exp (µ+ λy) , where as before λ = δ/σ and
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H(t, y) = exp
(
µ+ λy + δ2 (1− t) /2

)
. Note that Hy (t, Yt) = λH (t, Yt) so, from

Theorem 3.6, one obtains that dSt = λStdYt and Y is viewed as a Brownian motion

by the market maker, which yield that the prices follow a geometric Brownian

motion. The Black-Scholes model of option pricing assumes that the prices of the

assets follow geometric Brownian motions. Hence, this model is interesting because

we can recover the Black-Scholes model from a market microstructure point of view.

The results of Kyle and Back have been extended in various directions. In [11],

Cho allows the pricing rules to take into account the history of cumulative market

orders. Furthermore, he also studies the case in which the insider is risk averse

and solves the optimization problem using different utility functions. Lasserre [29]

extends this model to the multivariate case and also allows the insider to be risk

averse. Campi et al. [10] study an equilibrium model, in the Back’s sense, for the

pricing of a defaultable zero coupon bond issued by a company. They find that in

equilibrium the pricing model becomes structural, otherwise being of reduced form,

see for instance [8]. Recently, Danilova [13] studies an equilibrium model for asset

prices with imperfect dynamic information. She assumes that the insider knows

the value of the asset perturbed by the stochastic integral of a deterministic process

with respect to a Brownian motion, which is taken independent of the noise trader’s

demand and the value of the asset.

3.3. Weak Kyle-Back approach to insider trading

In [27], the authors have introduced a new approach to model equilibria in financial

markets with an insider. Their model is a weaker version of the Kyle-Back’s one

but it allows to deal with different kinds of insider’s information. Moreover, it has

the advantage, from the modelling point of view, that the embedded optimization

problem has a finite expected utility solution.

As in the Back’s model, there is to be a public release of information at time

t = 1. This information reveals the value of the risky asset, which we denote by

ξ. There are also three representative agents in the market: the market maker,

the insider and the noise trader. The role of the market maker is to organize the

market. That is, according to the asset’s aggregate demand, the market maker sets

the price of the asset and clears the market. The insider is assumed to know at the

beginning of the trading period some additional strong information, say λ = L(Y ),

not necessarily equal to ξ, which depends exclusively on the total demand Y . This

agent uses this information in order to maximize his/her expected profit. The noise

trader represents all the other participants in the market. Noise trader’s orders are

a consequence of liquidity or hedging issues and are assumed to be independent of

λ, but not necessarily of ξ.

The goal of the article is to construct a probability sample space where such a

market can be realized.

Given a class of pricing rules H and a suitable space of FZ ∨ σ (λ)- adapted

strategies Θsup(λ, Z), where λ is a random variable and Z is a process (see Defini-
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tions 2.2. and 2.3. in [27] for further details), the definition of a weak equilibrium

is the following.

Definition 3.6 (Weak Equilibrium). Let L : C[0, 1] → Rk be a measurable

functional on the canonical Wiener space and µ be a probability measure on R with∫
R x

2µ (dx) <∞. We say that there exists a (L, µ)-weak equilibrium if there exists

some probability space (Ω,F , P ) where there exists three processes Y ∗, θ∗ and Z∗,

a random variable ξ∗, a random vector λ∗ and a function H∗ ∈ H such that

i) Y ∗t = X∗t + Z∗t , where X∗t =
∫ t

0
θ∗sds for t ∈ [0, 1].

ii) λ∗ = L(Y ∗) is independent of the process Z∗.

iii) Z∗ is a Brownian motion.

iv) ξ∗ has the law µ.

v) θ∗ ∈ Θsup(λ∗, Z∗).

vi) Prices are rational. That is, S∗t , H∗(t, Y ∗t ) = E[ξ∗|FY ∗t ] for t ∈ [0, 1].

vii) For all θ ∈ Θsup (λ∗, Z∗) , one has

E[V (X,S, ξ∗)] ≤ E[V (X∗, S∗, ξ∗)],

where X· =
∫ ·

0
θsds, Y

θ = X + Z∗, S· = H∗(·, Y θ· ) and

V (X,S, ξ) = V0 +

∫ 1

0

XsdSs + (ξ − S1)X1.

This formulation is weak in the sense that the vector (ξ, λ, Z) is not given be-

forehand, in contrast with the previous literature on this subject. The initial data

in this formulation is (µ,L) where µ is the law of ξ and the other ingredients of an

equilibrium are part of the problem. The mathematical motivation for using a weak

set-up is due to the fact that in a strong formulation the relationship between λ, ξ

and Z can not be simply stated in general. This relationship is not unique if one

only wants to give as initial data the law of the final price. Furthermore, in general,

ξ is not independent of λ or Z. However, it is assumed that ξ is made public at the

end of the trading period. Hence, ξ is incorporated in the functional to be optimized

in the equilibrium.

The difference between the classical notion of equilibrium in insider trading

(see Section 3.2, Definition 3.5), and the one proposed here is that in Back the

information is exogenously given while here is also part of the definition of weak

equilibrium.

In particular, condition vii) in Definition 3.6 states that if we fix the noise

trade process and the information, the strategy used by the insider maximizes his

expected final wealth within a suitable admissible space. This condition can be also

interpreted as a local equilibrium condition because the noise trade process and the

information are fixed.

For a process W and a random variable λ, we shall denote by FW ∨ σ (λ) , the

initial enlargement of FW = {σ ({Ws}0≤s≤t)}0≤t≤1 with λ. The main result in [27]
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is the following. There is also a uniqueness in law result for weak equilibriums, see

Theorem 5.3. in [27].

Theorem 3.7 (Existence). Given a measurable functional L : C[0, 1] → Rk and

µ a probability measure on R satisfying
∫
R x

2µ (dx) <∞. Assume:

1) There exists H ∈ H such that it satisfies

Ht (t, y) +
1

2
Hyy (t, y) = 0,

and

µ (A) =
1√
2π

∫
H(1,·)−1(A)

e−x
2/2dx, ∀A ∈ B (R) .

2) There exists a probability space (Ω,F , P ) supporting a Brownian motion W

which is a semimartingale in the filtration FW ∨ σ (λ) , λ , L (W ) , with semi-

martingale decomposition Wt =
∫ t

0
αs (λ) ds+Wλ

t , where Wλ is a FW ∨ σ (λ)-

Brownian motion.

3) α ∈ Θsup(λ,Wλ).

Then

(Y ∗, θ∗, Z∗, H∗, ξ∗, λ∗) = (W,α(·, λ),Wλ, H,H (1,W1) , λ)

is a (L, µ)-weak equilibrium.

Let us discuss a little bit the assumptions in the previous result. Assumption 1),

essentially, tells us that the law µ must be a smooth transformation of aN (0, 1) law.

Assumption 2), states that the functional L, when applied to a Brownian motion

W , must give a random variable λ for which W remains a semimartingale with

respect to the initially enlarged filtration FW ∨σ (λ) . Furthermore, for this theorem

to be useful, we need to know the compensator αt (λ). Finally, Assumption 3) is

the hardest hypothesis to check in particular examples. Regarding the integrability

conditions which define Θsup(λ,Wλ), Proposition 5.3. in [27] yields that if W is a

semimartingale in the enlarged filtration we only need to check that the compensator

belongs to L1 (Ω× [0, 1]). This can be difficult to check in particular examples and

it does not need to be true in general. On the other hand, the fact that α (λ) must

be FWλ ∨ σ (λ)-adapted or, equivalently, the fact that FW ∨ σ (λ) = FWλ ∨ σ (λ)

is even harder to check. That FW ∨ σ (λ) ⊇ FWλ ∨ σ (λ) is obvious because Wλ

is a FW ∨ σ (λ)-Brownian motion, but for the reverse inclusion we can not say

anything in general. The approach to solve the problem is to show the existence

and uniqueness of strong solutions of s.d.e.’s of the form

Xt =

∫ t

0

αs (G) ds+ Ut, (3.9)

where U is a Brownian motion and G is a random variable independent of U and

with the appropriate support. This entails the FU ∨ σ (G) adaptedness of X. Sub-

stituting U by Wλ and G by λ one obtains that FW ∨ σ (λ) ⊆ FWλ ∨ σ (λ). The
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classical results on the existence and uniqueness of s.d.e.’s do not directly apply to

s.d.e.’s of the form (3.9), because the drift α usually degenerates at a random point

of the interval [0, 1]. Note also that, in general, αt(G) will depend on X[0,t], the

path of X until t, not just Xt.

It should be noted that, contrasting with the previous literature on the subject,

the portfolio optimization of the insider is not solved with Hamilton-Jacobi-Bellman

techniques but using variational calculus, see Section 3 in [27].

The main examples studied in [27] are L (Y ) = max0≤t≤1 Yt and L (Y ) =

arg max0≤t≤1 Yt, for both it is proved the existence of a weak equilibrium. It is im-

portant to notice again that the insider’s optimization problem associated to these

examples give finite expected utilities, contrasting with the same examples in the

Karatzas-Pikovsky setting. As a by-product of the study of L (Y ) = arg max0≤t≤1 Yt
it is obtained the semimartingale decomposition of a Brownian motion with respect

to its natural filtration enlarged with the argument of the maximum.

Theorem 3.8. Let W = {Wt}0≤t≤1 be a Brownian motion and τ , arg max0≤t≤1

Wt. Then W is a FW ∨σ (τ)-semimartingale with the following decomposition Wt =∫ t
0
αs (τ) ds+W τ

t , where

αs (τ) =
Ms −Ws

τ − s
1[0,τ) (s)− ϕ (M −Ws, 1− s) 1[τ,1] (s) ,

W τ is a FW ∨ σ (τ)-Brownian motion and ϕ is defined in Example 2.3.
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plicites. In Séminaire de Probabilités, XII (Univ. Strasbourg, Strasbourg, 1976/1977),
volume 649 of Lecture Notes in Math., pages 78–97. Springer, Berlin, 1978.

24. T. Jeulin and M. Yor, editors. Grossissements de filtrations: exemples et applications,
volume 1118 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1985. Papers
from the seminar on stochastic calculus held at the Université de Paris VI, Paris,
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