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Abstract

In this article, we give a brief informal introduction to Malliavin Calculus for new-
comers. We apply these ideas to the simulation of Greeks in Finance. First to
European-type options where formulas can be computed explicitly and therefore
can serve as testing ground. Later we study the case of Asian options where close
formulas are not available, and we also open the view for including more exotic
derivatives. The Greeks are computed through Monte Carlo simulation.

1 Introduction

Malliavin Calculus is an area of research which for many years has been con-
sidered highly theoretical and technical from the mathematical point of view.
In recent years it has become clear that there are various applications of Malli-
avin Calculus as far as the integration by parts formula is concerned. Among
the fields where those techniques can become very useful it is worth mention-
ing Finance. Nevertheless it is still considered by the general audience and
practitioners a field where is hard to grasp the basic ideas or to obtain new
contributions.

In this article 1 we present an informal introduction to Malliavin Calculus
which we hope can open the area to the broad scientific community, and even
to practitioners. For serious mathematical approaches to the topic we refer
the readers to the authoritative books on the matter, e.g. [1–3]. We have tried
to take the spirit of the issues to try to explain in simple terms the elements
of the theory.

1 Some of the ideas and results introduced here were presented by one of us (AKH)
in a talk given in the 5th. Workshop on Stochastic Numerics that took place in
Kyoto (Japan) in July, 2001.
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2 Malliavin Calculus

2.1 Main definitions and properties

Malliavin Calculus applies within the framework of the stochastic processes.
Let then W = {Wt}t∈[0,T ] be a standard one-dimensional Brownian motion
defined on a complete probability space (Ω,F , P ), where we assume that F =
{Ft}t∈[0,T ] is generated by W . We will now introduce the operator D and its
adjoint operator, also known as the Skorokhod integral, which we will denote
by D∗. Let consider a random variable of the form F = f(Wt1 , . . . , Wtn), where
f is smooth enough on its arguments 2 . The outcome we obtain when we apply
D on F is simply

DtF =
n∑

i=1

∂

∂xi

f(Wt1 , . . . , xi, . . . , Wtn)

∣∣∣∣∣
xi=Wti

Θ(ti − t),

where Θ(t) is the Heaviside step function. For stochastic processes u = {ut}t∈[0,T ]

on (Ω,F , P ), the rule behaves in a similar way, just ignoring any possible ex-
plicit time dependence of u. Since D operates on functions in the form of
partial derivatives, it shares their general properties: e.g. linearity, the chain
rule or the product rule.

The adjoint operator behaves as well like a stochastic integral. In fact, if ut

is Ft adapted, that is, if ut depends only on W = {Ws}s∈[0,t], then D∗(u) =∫ T
0 utdWt, is just the Itô integral of u; see e.g. [2]. Here we write D∗(u) =∫ T
0 utdWt, even if ut is not Ft adapted.

Both operators D and D∗ are linked by the following duality principle:

E

[∫ T

0
(DtF )utdt

]
= E[FD∗(u)]. (1)

An heuristic derivation of this equality can be found in Appendix A. It is
not intended there to provide with a rigorous demonstration from the view-
point of mathematics, but with a more friendly picture of what lies beneath.
Formula (1) is the cornerstone on which the integration by parts formula is
grounded. It will allow us to exchange the stochastic derivative acting on F , by
a stochastic integral that does not affect it. We will show in a while how to take
advantage of this expression, and how we can reduce stochastic derivatives to
the most common partial derivatives.

2 We will hereafter assume that all involved functions and processes are well be-
haved, in the sense that they fulfil those properties that the definitions and compu-
tations demand.
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Prior to that, we will introduce another formula which is worth mentioning,
since it will allow us to extract random variables out of an stochastic integral:

∫ T

0
FutdWt = F

∫ T

0
utdWt −

∫ T

0
(DtF )utdt. (2)

This property follows directly from equation (1) and the product rule of the
derivative operator D. Let us assume that F an G are any two stochastic
variables, and ut a generic process, then

E[GFD∗(u)] = E

[∫ T

0
(DtGF )utdt

]

= E

[∫ T

0
G(DtF )utdt

]
+ E

[∫ T

0
(DtG)Futdt

]

= E

[
G

∫ T

0
(DtF )utdt

]
+ E[GD∗(Fu)],

which implies that

E[GD∗(Fu)] = E

[
G

(
FD∗(u)−

∫ T

0
(DtF )utdt

)]
,

for any random variable G. Therefore equation (2) must hold.

2.2 Useful examples

A gentler introduction may say that the idea behind the operator D is to
differentiate a random variable with respect to the underlying noise being this
generated by the Wiener process W . Therefore heuristically one may think
that Ds“ = ” ∂

∂(dWs)
. With this in mind one can guess how to differentiate

various random variables without concerning the more formal definition that
we have previously quoted. Thus, some examples could be:

DsWt = Θ(t− s),

Dsf(Wt) = f ′(Wt)Θ(t− s), and

Ds

(∫ T

0
f(Wu)dWu

)
=

∫ T

s
f ′(Wu)dWu + f(Ws),

among others.

A way to understand how Malliavin Calculus can be helpful to financial prob-
lems is introducing the following integration by parts procedure, designed on
the basis of the duality principle in (1). Let us assume that we are trying to
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compute E[f ′(X)Y ], where X and Y are two random variables. Suppose now
that we are not able to solve this problem directly, for instance, because the
join probability density function of X and Y is unknown. Moreover, the pos-
sibility of obtaining the answer through simulation is not a suitable or even
feasible way, due to the presence of the derivative on function f . In this sce-
nario we could use the formalism we have presented so far, in order to remove
the derivative from f :

E[f ′(X)Y ] = E[f(X)H], (3)

in exchange for the appearing of some new random variable H.

Therefore, let us begin just applying the D operator on Z, Z = f(X). The
chain rule dictates that

DsZ = f ′(X)DsX.

Now we need to add Y to this expression. Thus, we multiply the above by
Y h(s) where h is an arbitrary process —maybe depending on X, Y or even
on another random variable— to be chosen appropriately. Then

Y h(s)DsZ = f ′(X)Y h(s)DsX.

Integrating this for s ∈ [0, T ], we have that

∫ T

0
Y h(s)DsZds =

∫ T

0
f ′(X)Y h(s)DsXds = f ′(X)Y

∫ T

0
h(s)DsXds, then

f ′(X)Y =
∫ T

0

Y h(s)DsZ∫ T
0 h(v)DvXdv

ds, and therefore

E [f ′(X)Y ] = E

[∫ T

0
(DsZ) usds

]
,

with

us =
Y h(s)

∫ T
0 h(v)DvXdv

.

Finally, we could apply equation (1) on the last expression,

E [f ′(X)Y ] = E

[
f(X)D∗

(
Y h(·)

∫ T
0 h(v)DvXdv

)]
, (4)

and thus we achieve the formula we were looking for, with H equal to

H ≡ D∗
(

Y h(·)
∫ T
0 h(v)DvXdv

)
. (5)

When h(u) depends at most on X, Y or both of them, H = H(X, Y ). In
particular for h equal to a constant we have that

H ≡ H(X,Y ) = D∗
(

Y
1
T

∫ T
0 DvXdv

)
. (6)
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If one has higher order derivatives then one has to repeat this procedure it-
eratively. We must however ensure that the above expectations are all finite
(in particular the ones related to H). Note that the integral

∫ T
0 h(v)DvXdv

should not be degenerate with probability one. Otherwise the above argument
is bound to fail. The process h that appears in this calculation is a parameter
process that can be chosen so as to obtain this non-degeneracy. In the par-
ticular case that h(v) ∝ DvX one obtains the so called Malliavin covariance
matrix.

In conclusion one can build different integration by parts formulas depending
on how we choose this process h. In the next section we use this formula in
order to apply it to a concrete problem in Finance.

3 Greeks in Finance

European options are contracts that are signed between two parties (usually
a bank and a customer) that allows to obtain certain monetary benefits if the
price of certain asset fall above (call option) or below (put option) a certain
fixed value, the strike price, at a certain fixed date, the expiration time. A
Greek is the derivative of an option price with respect to a parameter. In
general, let X ≡ X(α) be a random variable that depends on a parameter
α. Suppose that the option price is computed through a payoff function in
the following form P(α) = E[Φ(X(α), α)] where Φ is generally non-smooth.
A Greek is therefore a measure of the sensibility of this price with respect
to its parameters. In particular, it could serve to prevent future dangers in
the position of a company holding these options. The problem of computing
Greeks in Finance has been studied by various authors: [4–8], among others.
Let us take a closer look at the problem. If the Leibnitz rule of interchange
between expectation and differentiation were true then we would have

∂P(α)

∂α
=

∂E[Φ(X(α), α)]

∂α
= E

[
Φ′(X(α), α)

∂X(α)

∂α
+

∂Φ(X(α), α)

∂α

]
. (7)

When the above expression does not have a close formula then one may start
thinking in performing some Monte Carlo simulations in order to approxi-
mate the above quantity. If Φ is somewhat regular then we can use the last
expression above to do this: we shall call this procedure the “direct method”.
Unfortunately in various cases Φ is not differentiable. Then one can resort to
the use of the middle expression above to generate what is known as finite
difference method. This method has been somewhat successful in the recent
past but we would like to discuss here the application of the integration by
parts presented before in order to compute these derivatives.
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4 The European-style options

We shall illustrate how this procedure works by choosing a very special subset
of the large family of Financial derivatives: what we have called European-style
options. In this class of derivatives we will find all the options whose payoff
function depends only on the value of the underlying at the expiration time
T , which is previously fixed. Examples of the European-type options are the
vanillas —the more classical European calls and puts—, or the binaries —the
so called “cash-or-nothing” options—, among others. These options will differ,
for instance, from the American-style options, where the execution time is not
fixed but belongs to an interval; and also from the Asian-style options where
the payoff depends on some average of the value of the asset in a given period
of time. We will return on this topic afterwards.

The interest of the European-style options is that they are a class of deriva-
tives whose Greeks can be computed in closed form for particular classes of
payoff functions. The reason, as we will show, is that we explicitly know the
probability density function of the random variable involved, ST , whereas in
other scenarios this is not true. This peculiarity provides us with a framework
where we can easily test how Malliavin Calculus applies to the computation
of Greeks. Later, we will also make a comment on a case where this closed
formulas are not available and where this technique may prove useful.

4.1 The Malliavin expressions

Let us start deriving the formal expressions for some of the Greeks we shall
deal with.

First we assume that our underlying asset S is described by a geometric Brow-
nian motion under the risk neutral probability P:

St = S0 +
∫ t

0
rSsds +

∫ t

0
σSs dWs, (8)

where r is the interest rate and σ is the volatility. This model is one of the
models typically used to describe stock prices or stock indices.

Second, from the previous arguments it follows that X(α) must be in general
a functional of S. In the case of European-type options, X(α) = ST and
from (8):

ST = S0e
{µT+σWT }, (9)

where {Wt}t∈[0,T ] is the Wiener process, and µ is just r−σ2/2. Expression (9)
is involved in all the following derivations.
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Now we can compute Delta, ∆, the first partial derivative of the (discounted)
expected outcome of the option, with respect to the present value of the asset:

∆ =
∂

∂S0

E
[
e−rT Φ(ST )

]
=

e−rT

S0

E

[
∂ST

∂S0

Φ′(ST )

]
=

e−rT

S0

E [Φ′(ST )ST ] .

Now we may perform the integration by parts applying the formula given
in (6),

∆ =
e−rT

S0

E

[
Φ(ST )D∗

(
ST∫ T

0 DvST dv

)]
, (10)

which removes the derivative of Φ from the expectation.

The integral term in the denominator of the last expression will appear many
times along our exposition. In order to compute it we must remember the
rules of the stochastic derivative stated above:

DuST = σST DuWT = σST Θ(T − u),

and then ∫ T

0
DuST du = σTST . (11)

Then we are able to perform the stochastic integral in (10),

D∗
(

ST∫ T
0 DvST dv

)
= D∗

(
ST∫ T

0 σST dv

)
= D∗

(
1

σT

)
=

WT

σT
,

with the help of equation (2) applied to F = 1
σT

. Then the expression for ∆
reads,

∆ = e−rT E
[
Φ(ST )

WT

S0σT

]
. (12)

Of course, we could have started from equation (4) instead of (6). In such a
case the expression for ∆ can be reduced to

∆ =
e−rT

S0σ
E

[
Φ(ST )D∗

(
h(·)

∫ T
0 h(v)dv

)]
,

just applying the recipe that appears in (11). In order to progress further we
must specify h(u) a little more. Thus, if h(u) is, for instance, a deterministic
function, we will have

∆ =
e−rT

S0σ
E

[
Φ(ST )

∫ T
0 h(u)dWu∫ T
0 h(v)dv

]
, (13)

whereas the picture varies when h(u) is a stochastic process. In particular, if
we set h(u) = Su, the final equation for the Greek reads

∆ =
e−rT

S0

E

[
Φ(ST )

(∫ T
0 SudWu

σ
∫ T
0 Svdv

+
1

2

)]
=

e−rT

S0σ2
E

[
Φ(ST )

(
ST − S0∫ T
0 Svdv

− µ

)]
.
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We must point out that all the expressions under the expectation signs are
unbiased estimates of ∆. Under this light no one is better than the others. We
can classify them however after computing their variances. From this point
of view, the best estimate is, of course, the one with lower variance —see
the discussion in Appendix B as well. Let us illustrate this just exploring
the choice of function h(u) in equation (13). First of all, we will introduce
g(u) = h(u)/

∫ T
0 h(v)dv, as the key magnitude to tune, since

∆ =
e−rT

S0σ
E

[
Φ(ST )

∫ T

0
g(u)dWu

]
.

The variance of the estimate depends only on g(u) through

E




(
e−rT

S0σ
Φ(ST )

∫ T

0
g(u)dWu

)2

 ,

because it shows no bias. The minimum of this expression will be achieve

when E
[(∫ T

0 g(u)dWu

)2
∣∣∣∣ ST

]
is as small as possible. In the present framework

g(u) is just a deterministic function that can cross the conditional expecta-
tion sign, leaving only a computation that involves the differentials of the
Wiener process. But even in this case, when WT is settled, the increments
are delta correlated, i.e. E [dWu · dWv|ST ] = δ(u − v)dudv. Thus, we want
to minimize

∫ T
0 g2(u)du, under the following restriction:

∫ T
0 g(u)du = 1. The

Lagrange multipliers technique, in which one search extreme values of L with
no constrains,

L =
∫ T

0
g2(u)du− λ

(∫ T

0
g(u)du− 1

)
,

is the most convenient choice in order to solve this kind of problems. In the
present case the right answer turns out to be g(u) = 1/T . We will use this
convention for g(u), and thus for h(u), unless we explicitly state another pre-
scription.

Let us move now into a new Greek: Vega. It measures how sensitive is the
price of the option when the volatility changes,

V =
∂

∂σ
E[e−rT Φ(ST )] = e−rT E

[
∂ST

∂σ
Φ′(ST )

]
= e−rT E[ST (WT − σT )Φ′(ST )].

We invoke again the recipe in Section 2 and thus we can withdraw the deriva-
tive form Φ(ST ),

V = e−rT E

[
Φ(ST )D∗

(
ST (WT − σT )

∫ T
0 DvST dv

)]
= e−rT E

[
Φ(ST )D∗

(
WT

σT
− 1

)]
,
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where we have used the expression (11). So the computation we must face is

D∗
(

WT

σT
− 1

)
=

1

σT
D∗(WT )−WT .

Here a new instance of stochastic integral appears, D∗(WT ). The rule which
we must take into account in order to solve the problem is again in (2), with
F = WT ,

D∗(WT ) = W 2
T −

∫ T

0
DsWT ds = W 2

T − T,

what lead us finally to this expression for V ,

V = E

[
e−rT

{
W 2

T

σT
−WT − 1

σ

}
Φ(ST )

]
. (14)

The last example we will present here is one involving a second derivative:
Gamma. Γ inform us on the second order dependence of the price of the
option on the actual value of the underlying,

Γ =
∂2

∂S2
0

E[e−rT Φ(ST )] =
e−rT

S2
0

E[S2
T Φ′′(ST )].

After a first integration by parts we obtain,

Γ =
e−rT

S2
0

E

[
Φ′(ST )D∗

(
S2

T∫ T
0 DvST dv

)]
=

e−rT

S2
0

E
[
Φ′(ST )D∗

(
ST

σT

)]
.

The stochastic integral may be simplified using once more formula (2) on
F = ST

σT
, leading to

D∗
(

ST

σT

)
=

ST

σT
D∗(1)− 1

σT

∫ T

0
DsST ds = ST

{
WT

σT
− 1

}
.

Afterwards we can perform the second integration by parts, yielding:

Γ =
e−rT

S2
0

E
[
Φ′(ST )ST

{
WT

σT
− 1

}]
=

e−rT

S2
0

E

[
Φ(ST )D∗

(
ST∫ T

0 DvST dv

{
WT

σT
− 1

})]
.

The stochastic integral is now slightly cumbersome, but it does not endow any
complexity that we have not seen before,

D∗
(

ST∫ T
0 DvST dv

{
WT

σT
− 1

})
=

1

σT
D∗

(
WT

σT
− 1

)
=

1

σT

{
WT

σT
−WT − 1

σ

}
.

If we bring together the previous partial results we will obtain the expression,

Γ = E

[
e−rT

S2
0σT

{
WT

σT
−WT − 1

σ

}
Φ(ST )

]
. (15)
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If we compare it with (14), we find the following relationship between V and
Γ:

Γ =
V

S2
0σT

. (16)

Since we have indeed closed expressions for all the Greeks, we may easily
check the correctness of the above statements. We shall recover property (16)
of the European-style options in the next section. The above identities are
very well known by practitioners although their proofs do not usually recall
the integration by parts formula in the form we have introduced it here.

4.2 The explicit computation

The reason for the existence of such expressions for the Greeks of European-
type options is due to the fact that there is a closed and tractable formula for
the probability density function of ST . This is the lognormal distribution that
is written as

p(x) =
1

x
√

2πσ2T
exp{−[log(x/S0)− µT ]2/2σ2T}.

When p(x) is available we can face the problem from a different perspective.
In this case we are able to compute all the partial derivatives, starting from
the explicit formulation for the price of the option, P ,

P = E[e−rT Φ(ST )] =
∫ ∞

0
e−rT Φ(x)p(x)dx, (17)

usually just a formal expression, which now becomes handy. We can show this
computing the value of ∆, in terms of partial derivatives of p(x):

∆ =
∫ ∞

0
e−rT Φ(x)

∂p(x)

∂S0

dx =
∫ ∞

0
e−rT Φ(x)

∂ log p(x)

∂S0

p(x)dx.

Note that we get an expression that can be easily rewritten in a way that
apparently resembles our previous results, since one integration by parts has
been implicitly done, and a kernel naturally appears,

∆ = E


e−rT Φ(ST )

(
∂ log p(x)

∂S0

)

x=ST


 . (18)

But we have not yet exploited the information we have about the functional
form of p(x),

(
∂ log p(x)

∂S0

)

x=ST

=
1

S0σ2T
[log(x/S0)− µT ]x=ST

=
WT

S0σT
,
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which leads us to the same expression we have already obtain by means of
Malliavin Calculus:

∆ = E
[
e−rT Φ(ST )

WT

S0σT

]
.

A similar procedure applies to the other Greeks. We will obtain Vega just
replacing the S0 with a σ in equation (18),

V = E


e−rT Φ(ST )

(
∂ log p(x)

∂σ

)

x=ST


 ,

and, after straightforward computations, we recover equation (14). The case
of Gamma leads to an expression with a very similar flavour to what we have
already seen,

Γ = E


e−rT Φ(ST )





(
∂ log p(x)

∂S0

)2

+
∂2 log p(x)

∂S2
0





x=ST


 ,

that yields, again, the same result presented in (15). We find therefore in this
frame that the property stated in (16) is fulfilled by Vega and Gamma.

We can then conclude that when we deal with European-style options, the
Malliavin-related procedures presented above are equivalent to the result we
attain if we directly differentiate the probability density function.

4.3 The vanilla options

Besides the formal comparison with the previous case, the fact of knowing p(x)
allows us, in principle, to completely compute all the Greeks once a payoff
function has been selected. One of the most popular choice is the European,
or vanilla, call whose payoff reads,

Φ(X) = (X −K)+. (19)

Then the price of the option is given by the well-known formula due to Black,
Scholes and Merton, see [9] for instance, and it can be easily derived the
following expressions for the Greeks we have presented:

∆ =
1√
2π

∫ d1(K)

−∞
e−x2/2dx, (20)

V = S0

√
T

2π
e−[d1(K)]2/2, and

Γ =
1

S0

√
2πσ2T

e−[d1(K)]2/2;
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where

d1(x) =
1

σ
√

T

[
log(S0/x) + (r +

1

2
σ2)T

]
,

as it can be found in any textbook on financial derivatives [9]. In conclusion, we
are able to compute the different Greeks using the Malliavin-related formulas,
and compare them with their theoretical values. We present in Fig. 1 and 2
the result of this procedure, for a given set of parameters, after Monte Carlo
simulation. Only ∆ and V are shown, since Γ would just be a replica of the
second, due to equation (16). These examples show us how the outcome of the
simulation progressively attains their own theoretical value, whereas the sta-
tistical error reduces. We notice however that the use of what we have labeled
as “direct method”, just performing Monte Carlo simulations starting from
the rhs expression in (7), would lead to an estimator with smaller variance,
and therefore a better estimation. Those estimations do not appear in the
Figures, in the sake of clarity. But we must remember that this technique can
only be applied when the payoff is smooth enough. In our case, when payoff
follows (19), Gamma cannot be computed in this way.
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Fig. 1. Estimated value of Delta for an European call with parameters r = 0.1,
σ = 0.2, T = 1.0 (in years) and S0 = K = 100 (in arbitrary cash units), using
Monte Carlo techniques.
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Fig. 2. Estimated value of Vega for an European call with parameters r = 0.1,
σ = 0.2, T = 1.0 (in years) and S0 = K = 100 (in arbitrary cash units), using
Monte Carlo techniques.

5 The Asian-style options

Here one considers the Greeks for options written on the average of the stock
price 1

T

∫ T
0 Ssds, instead of the final value ST , as in European options. Note

that in this particular case the density function of the random variable does
not have a known closed formula. Delta in this case is given by

∆ =
∂

∂S0

E

[
e−rT Φ

(
1

T

∫ T

0
Ssds

)]
=

e−rT

S0

E

[
Φ′

(
1

T

∫ T

0
Ssds

)
1

T

∫ T

0
Sudu

]
.

There are various ways of doing the integration by parts. In the already cited
literature we find in [7] the following expression:

∆ =
e−rT

S0

E

[
Φ

(
1

T

∫ T

0
Ssds

) (
2

∫ T
0 StdWt

σ
∫ T
0 Stdt

+ 1

)]
,

whereas a close variant of it, which involves (8), can be found in [8]:

∆ =
2e−rT

S0σ2
E

[
Φ

(
1

T

∫ T

0
Ssds

) (
ST − S0∫ T

0 Stdt
− µ

)]
.
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Of course, we may also use the same approach we have present in the previous
sections, and obtain a third one:

∆ =
e−rT

S0

E

[
Φ

(
1

T

∫ T

0
Ssds

) (
1

< T >

{
WT

σ
+

< T 2 >

< T >

}
− 1

)]
,

where

< T > =

∫ T
0 tStdt

∫ T
0 Svdv

, and

< T 2 > =

∫ T
0 t2Stdt
∫ T
0 Svdv

,

are something similar to a first two moments, weighted by S(t). Since S(t) ≥ 0
the similarity is more than a formal resemblance.

Although the two first expressions for ∆ are statistically identical, their partic-
ular realizations when performing numerical computation will slightly differ,
even though the same series of random numbers is used. The last formula
is definitely a brand new estimator with its own properties, among them its
smaller variance is perhaps the most relevant one. We can observe these fea-
tures in Fig. 3, where we show the outcome of the Monte Carlo simulation
using the three alternative instances. We have chosen again the functional
form in (19) for the payoff, and the rest of parameters takes the same value
we used in the making of the previous plots.

6 Exotic derivatives

We can apply the Malliavin formulas not only to payoff functions of a single
variable, but extent the formalism in order to include also functions depending
on a vector of random variables. Since we have previously introduced ST and
1
T

∫ T
0 Stdt, in this section we will study how to deal with a derivative whose

payoff function has these two variables as arguments:

P = e−rT E

[
Φ

(
ST ,

1

T

∫ T

0
Stdt

)]
.

The joint probability density function is again unknown, and therefore no
closed formula will be at hand. We will try to compute the value of ∆ one
more time,

∆ =
e−rT

S0

E

[
∂xΦ

(
ST ,

1

T

∫ T

0
Stdt

)
ST + ∂yΦ

(
ST ,

1

T

∫ T

0
Stdt

)
1

T

∫ T

0
Stdt

]
,

(21)
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Fig. 3. Computed value of Delta for an Asian call with parameters r = 0.1, σ = 0.2,
T = 1.0 (in years) and S0 = K = 100 (in arbitrary cash units), using Monte
Carlo techniques, for the estimators presented in the main text. We have broken
the interval of integration in 252 pieces, representing the approximate number of
trading days in a year. The exact result turns out to be near the bottom of the
graph, at about 0.65.

where ∂xΦ stands for the partial derivative of Φ with respect to their first
argument, and similarly ∂yΦ is the partial derivative of Φ with respect to the
second one. The main difficulty of this problem is the following: when the D
operator is applied on Φ, the terms appearing beside the partial derivatives
differ from those in expression (21),

DuΦ

(
ST ,

1

T

∫ T

0
Stdt

)
= σ

(
∂xΦST + ∂yΦ

1

T

∫ T

u
Stdt

)
. (22)

We must thus manipulate the last formula in order to recover the right factors.
In essence, we must find a convenient process h(u) and integrate it together
with DuΦ. For instance, we can recall that

∫ T

0
duSu

∫ T

u
Stdt =

1

2

(∫ T

0
Sudu

)2

,
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and set h(u) = Su. This operation returns the right random variables with
wrong numerical factors:

1

T

∫ T

0
duSuDuΦ = σ



∂xΦST

1

T

∫ T

0
Sudu + ∂yΦ

1

2

(
1

T

∫ T

0
Sudu

)2


 .

We can however proceed in the marked direction, choosing another alike pro-
cess, h(u) = Su

∫ T
u Stdt, what leads to

1

T 2

∫ T

0
duSu

∫ T

u
StdtDuΦ = σ



∂xΦST

1

2

(
1

T

∫ T

0
Sudu

)2

+ ∂yΦ
1

3

(
1

T

∫ T

0
Sudu

)3


 ,

where the following relationship

∫ T

0
duSu

∫ T

u
Stdt

∫ T

u
Ssds =

1

3

(∫ T

0
Sudu

)3

,

was used. We have now two linear-independent combinations of the partial
derivatives of Φ, which can be added to achieve the one we were looking for

∆ =
e−rT

S0σ
E




∫ T

0
du




6Su

∫ T
u Stdt

(∫ T
0 Ssds

)2 −
2Su∫ T

0 Ssds


 DuΦ


 .

Now, we can safely apply the duality principle in (1) and remove the derivative
from the payoff function:

∆ =
e−rT

S0σ
E


ΦD∗




6S·
∫ T
· Stdt

(∫ T
0 Ssds

)2 −
2S·∫ T

0 Ssds





 .

We have used on this expression the same tools we have yet shown, and we
have finally obtained the next equation:

∆ =
e−rT

S0σ2
E


Φ




6
∫ T
0 S2

t dt
(∫ T

0 Ssds
)2 −

4S0 + 2ST∫ T
0 Ssds

− r





 . (23)

Unfortunately, the presence of the term
∫ T
0 S2

t dt under the expectation sign
marks this formula as a non-optimal expression for estimating ∆ —see again
the discussion in Appendix B.

Note that equation (23) will give a unbiased (although non-optimal) estima-
tion of ∆ in the case of pure European or Asian options. Let us explore the
possible links between the three flavours of derivatives which we have intro-
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duced here. We set the payoff function equal to

Φ

(
ST ,

1

T

∫ T

0
Stdt

)
= max

(
ST −K,

1

T

∫ T

0
Stdt−K, 0

)
,

which reduces to equation (19) with argument ST when ST ≥ ∫ T
0 Stdt/T ,

and with argument
∫ T
0 Stdt/T in the complementary case. In order words, the

option we have introduced have a benefit that equals the best result that we
will obtain with an European option and an Asian option, sharing they the
same striking price K.
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Fig. 4. Computed value of Delta for the three option flavours in terms of the present
moneyness (S0/K). The rest of the parameter set were kept unchanged: r = 0.1,
σ = 0.2, T = 1.0 (in years), and the interval of integration was broken in 252 pieces
again.

Obviously this new derivative should behave like an vanilla option when is
more likely that the final price of the asset exceeds K than the average does
it. This shall be the case of options with a striking price K much greater
than the present price of the asset S0, because the period at the beginning
of the time interval anchors the final value of

∫ T
0 Stdt/T . When we face the

reverse situation, that is, when S0 is much greater than K, it is a priority
more feasible that the asset do not depreciate so drastically that the average
falls off K. Summing up, we expect that the new ∆ resembles the European
one when S0/K, the moneyness is below 1, and that follows the shape of the
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Asian Delta 3 , if the moneyness is over 1. In Fig. 4 we check this behaviour
for the same tested set of values for the parameters.

7 Summary

We have presented the fundamentals of Malliavin Calculus in a friendly way,
stressing their key properties. We have illustrate how these mathematical tools
can be used, giving general recipes, and we have also exemplify their utility
when they are applied in the field of Finance. We have tested them within the
classical Black-Scholes framework, obtaining consistent results for the Greek.
We have then moved into two new scenarios, analysing an Asian call and
another more exotic derivative, where no closed formulas exist. In particular,
we have shown how the basics of the theory we have presented here can be
extended in order to solve problem involving more than just one-dimensional
payoff functions.
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A An heuristic derivation of the duality formula

In this appendix we will present an heuristic demonstration of equation (1).
Our main purpose is to show in a intuitive way how this property works, not to
present a rigorous proof from the viewpoint of Mathematics. In the first place,
let us consider WT as a superposition of infinite-numerable Wiener processes,

WT =
∫ T

0
dWt = lim

N→∞

N−1∑

n=0

∆WnT/N ,

3 The value of the exotic ∆ is always bigger than the European and Asian coun-
terparts. The limit value for a plain vanilla when the moneyness tends to in-
finity is equal to 1, see (20). As we have stated before, there is no closed ex-
pression for evaluating the Asian Delta. It is nevertheless easy to check that
limS0/K→∞∆ = (1 − e−rT )/rT . The reader can find a derivation of this result
in Appendix C .
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each of them statistically independent of the others. In fact the ∆WnT/N vari-
ables, ∆WnT/N ≡ W(n+1)T/N−WnT/N , form a set of N i.i.d. Gaussian variables,
∆WnT/N ∼ N (0, T/N) . In a similar way, the integral that we want to evalu-

ate,
∫ T
0 (DsZ)usds, will be split in a infinite-numerable non-overlapping pieces:

∫ T

0
(DsZ)usds = lim

N→∞
T

N

N−1∑

n=0

(DnT/NZ)unT/N . (A.1)

The random variable Z will depend on our discrete Wiener process through
function f , Z = f(∆W0, . . . , ∆W(N−1)T/N). An equivalent expression also
holds for the process u, unT/N = g(∆W0, . . . , ∆W(n−1)T/N ; nT/N). Note that
we are demanding that u is an adapted process. At any given time t = nT/N ,
it contains no information concerning Wt∈[(n+1)T/N,...,T ], and thus it does not
depends on ∆WnT/N , . . . , ∆W(N−1)T/N . We will now take the expectation of
expression (A.1), and we will introduce the probability density function of the
Gaussian variables ∆WmT

N
:

E

[∫ T

0
(DsZ)usds

]
=

= lim
N→+∞

N−1∏

m=0

∫ +∞

−∞

√
N

2πT
d(∆WmT

N
)e

{
− N

2T

(
∆W mT

N

)2
}

N−1∑

n=0

(DnT
N

Z)unT
N

T

N

= lim
N→+∞

(
N

T

)N
2
−1 N−1∑

n=0

∏

m6=n

∫ +∞

−∞
dωm

2π
e−Nω2

m/2T
∫ +∞

−∞
dωn

2π
e−Nω2

n/2T ∂Z

∂ωn

unT
N

(A.2)

where ωm ≡ ∆WmT
N

was defined for simplicity reasons only. It is obvious that

the last integral of the past expression carries all the ωn dependency. Therefore
we can now perform a mere integration by parts on these integral:

∫ +∞

−∞
dωne

−Nω2
n/2T ∂Z

∂ωn

unT
N

=

=
N

T

∫ +∞

−∞
ωnZunT

N
e−Nω2

n/2T dωn −
∫ +∞

−∞
dωne

−Nω2
n/2T Z

∂

∂ωn

unT
N

.

Here we have assumed that ZunT
N

e−Nω2
n/2T → 0 when ωn → ±∞. The second

term also vanishes in our case, since ∂
∂ωn

unT
N

= 0 when ut is adapted. If we

introduce these results in (A.2) we can recover the relationship we were looking
for between D and its adjoint operator D∗:
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E

[∫ T

0
(DsZ)usds

]
=

= lim
N→+∞

(
N

2πT

)N
2 N−1∏

m=0

∫ +∞

−∞
dωme−Nω2

m/2T Z
N−1∑

n=0

unT
N

ωn

= lim
N→+∞

E

[
Z

N−1∑

n=0

unT
N

∆WnT
N

]
= E

[
Z

∫ T

0
usdWs

]
= E [ZD∗(u)] .

B Optimal integration

Not all the alternative formulas we have presented throughout the present
article coincide and in fact, contrary to what is claimed in [8] there is no
way to obtain the integration by parts that provides the minimal variance
in the case of the Asian derivatives. The main reason is that solving this
problem is equivalent to finding the probability density of the random variable
in question. To expose the main ideas that also appear in [8] one can note first
that there is an integration by parts that is the “most” straightforward but
highly unrealistic. For this, consider the generalized problem

E

[
Φ′

(
1

T

∫ T

0
Ssds

)
1

T

∫ T

0
Ssds

]
=

∫ ∞

0
Φ′(x)xψ(x)dx.

Here ψ(x) denotes the density of 1
T

∫ T
0 Ssds which exists and is smooth (it is

an interesting exercise of Malliavin Calculus). Therefore one can perform the
integration by parts directly in the above formula thus obtaining that

E

[
Φ′

(
1

T

∫ T

0
Ssds

)
1

T

∫ T

0
Ssds

]
=

∫ ∞

0
Φ(x)(ψ(x) + xψ′(x))dx

E


Φ

(
1

T

∫ T

0
Ssds

)
·

1 +

ψ′
(

1
T

∫ T
0 Ssds

)

ψ
(

1
T

∫ T
0 Ssds

) 1

T

∫ T

0
Ssds





 .

Now we proceed to prove that the above gives the minimal integration by
parts in the sense of variance. Obviously it is not possible to carry out the
simulations unless ψ′ and ψ are known. Let us construct the set of all possible
integration by parts. Suppose that H is a random variable such that

E

[
Φ′

(
1

T

∫ T

0
Ssds

)
1

T

∫ T

0
Ssds

]
= E

[
Φ

(
1

T

∫ T

0
Ssds

)
H

]
,
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then it is not difficult to deduce that the conditional expectation of H must
fulfil

E

[
H

∣∣∣∣∣
1

T

∫ T

0
Ssds

]
= 1 +

ψ′(
∫ T
0 Ssds)

ψ(
∫ T
0 Ssds)

1

T

∫ T

0
Ssds.

Therefore the set of all possible integration by parts can be characterized as

M =



H; E

[
H

∣∣∣∣∣
1

T

∫ T

0
Ssds

]
= 1 +

ψ′
(

1
T

∫ T
0 Ssds

)

ψ
(

1
T

∫ T
0 Ssds

) 1

T

∫ T

0
Ssds



 .

Next in order we want to find the element in Y that minimizes

inf
Y ∈M

E


Φ

(
1

T

∫ T

0
Ssds

)2

H2


 .

As in [8] is not difficult to see which H achieves the minimum. This is done
as follows:

E


Φ

(∫ T

0
Ssds

)2

H2


 =

= E


Φ

(
1

T

∫ T

0
Ssds

)2

·

H − 1−

ψ′
(

1
T

∫ T
0 Ssds

)

ψ
(

1
T

∫ T
0 Ssds

) 1

T

∫ T

0
Ssds




2



+ E


Φ

(∫ T

0
Ssds

)2

·

1 +

ψ′
(

1
T

∫ T
0 Ssds

)

ψ
(

1
T

∫ T
0 Ssds

) 1

T

∫ T

0
Ssds




2

 ,

due to the property of the set M. Therefore the minimum is achieved at

H =


1 +

ψ′
(

1
T

∫ T
0 Ssds

)

ψ
(

1
T

∫ T
0 Ssds

) 1

T

∫ T

0
Ssds


 .

This is clearly impossible to write explicitly as ψ is unknown in the case of
Asian options. Therefore it is still an open problem to devise good ways to
perform an efficient integration by parts so that the variance is made small
rapidly and efficiently.

C Limiting value of Asian Delta

In order to compute the value of an Asian Delta when the present moneyness
tends to infinity, we will decompose the random variable in two factors:

1

T

∫ T

0
Ssds = S0 · 1

T

∫ T

0
Ysds. (C.1)
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The process Yt follows a stochastic equation equivalent to the one in (8),

Yt = 1 +
∫ t

0
rYsds +

∫ t

0
σYs dWs. (C.2)

The probability density function of 1
T

∫ T
0 Ysds, φ(x), is also unknown, but

contains no S0 with certainty. Therefore the probability density function of
the Asian random variable, ψ(x), relates to the previous one through

ψ(x) =
1

S0

φ (x/S0) .

The price of an Asian call with the usual payoff function Φ(x) = (x−K)+ is,

P = e−rT
∫ ∞

K
(x−K) ψ(x)dx = e−rT

∫ ∞

K/S0

(S0y −K) φ(y)dy,

and, since ∆ is the partial derivative of P , with respect to S0,

∆ = e−rT
∫ ∞

K/S0

yφ(y)dy.

We can now investigate the limit of ∆ when the moneyness tends to infinity:

lim
S0/K→∞

∆ = e−rT
∫ ∞

0
yφ(y)dy = e−rT E

[
1

T

∫ T

0
Ysds

]
.

The expectation and the integral in the last equation can be commuted, and
the computation can be followed to the very end:

lim
S0/K→∞

∆ = e−rT 1

T

∫ T

0
dsE [Ys] =

1

rT

(
1− e−rT

)
,

because E [Ys] = erT .
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