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Abstract

The goal of this article is to introduce a new approach to model equilibrium in financial markets
with an insider. We prove the existence and uniqueness in law of equilibrium for these markets. Our
setting is weaker than Back’s one and it can be interpreted as a first theoretical step towards developing
statistical test procedures. Additionally, it allows various forms of insider information to be considered
under the same framework and compared. As major examples, we consider the cases of the maximum
of the demand and the time at which this maximum is taken, which have not been previously treated
in the literature of equilibrium in financial markets with inside information. Simulations indicate that
the expected wealth for the maximum is greater than the expected wealth for its argument.
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1 Introduction

In recent years, the study of mathematical models for financial markets with asymmetry of information
has been gaining an increasing attention from mathematical finance researchers. In a seminal paper and
from the market microstructure point of view, Kyle [16] introduced a model in which an insider, who
knows the value of the stock at some future time, optimizes his wealth while the market-maker makes
prices rational, that is, a rational expectations equilibrium model. The main features of Kyle’s model are
that it gives finite utilities and that it is a model of price formation. That is, the insider controls the price
process through his demand of stock shares. Kyle’s model has been extended by Back [2], Lasserre [17],
Cho [5] and Campi and Çetin [4], among others.

We consider a continuous time market composed of one risk-free asset and one risky asset. We
assume, without loss of generality, that the risk-free rate is zero. Trading in the risky asset is continuous
in time and quantity. Furthermore, the market is order-driven, that is, prices are determined by the
demand on the risky asset.

There is to be a public release of information at timet = 1: This information reveals the value of the
risky asset, which we denote byξ : As the market is order-driven, this entails thatξ will be the price at
which the asset will be traded just after the release of information and, therefore, the final profit obtained
through trading on this asset will depend onξ :

There are three representative agents in the market: the market maker, the insider and the noise
trader. The role of the market maker is to organize the market. That is, according to the asset’s aggregate
demand, the market maker sets the price of the asset and clears the market. The insider is assumed to
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know at the beginning of the trading period some strong information, sayλ = L(Y), not necessarily
equal toξ ; which depends exclusively on the total demandY. This agent uses this information in order
to maximize his/her expected profit. The noise trader represents all the other participants in the market.
Noise trader’s orders are a consequence of liquidity or hedging issues and are assumed to be independent
of λ ; but not necessarily ofξ : Thanks to the demand of the noise trader, denoted byZ; the market maker
cannot observe the demand of the insider.

Our formulation is weak in the sense that the vector(ξ ;λ ;Z) is not given beforehand, in contrast with
the previous literature on this subject. The initial data in our formulation is(µ;L) whereµ is the law of
ξ and the other ingredients of an equilibrium are part of the problem. The mathematical motivation for
using a weak set-up is due to the fact that in a strong formulation the relationship betweenλ ;ξ andZ
can not be simply stated in general. This relationship is not unique if one only wants to give as initial
data the law of the final price. Furthermore, in general,ξ is not independent ofλ or Z. However, it is
assumed thatξ is made public at the end of the trading period. Hence,ξ is incorporated in the functional
to be optimized in the equilibrium.

From the economic modelling point of view, the situation can be explained as follows. Suppose the
existence of a financial controller, say a member of an exchange commission, which would like to test
after the time interval has been totally observed (say[0;1]) the large trader/insider behavior in a sector
of the market. By a sector, we understand a collection of homogeneous companies sharing a similar
activity, for which one can assign a law forξ ; its value att = 1. The financial controller observes the data
for different companies in the sector and after some renormalization we can regard the data as different
realizations or sample points in his universe.

With the data, a lawµ for ξ can be inferred and a functionalL of the total demand is fixed for testing.
The first step for the controller is to know if it is possible that there exists insiders trading in the stocks of
this sector using the informationL(Y) and being in equilibrium. Our paper addresses this question. The
next step would be to design a statistical test according to the probabilistic properties of the equilibrium,
but we do not pursue this goal in this paper.

Now, we briefly discuss the concept of weak equilibrium used in this paper.
The difference between the classical notion of equilibrium used in Back [2], Section 1, and the one

proposed here is that in Back the information is exogenously given while here is also part of the definition
of weak equilibrium.

In particular, condition vii) in Definition 7 states that if we fix the noise trade process and the infor-
mation, the strategy used by the insider maximizes his expected final wealth within a suitable admissible
space. This condition can be also interpreted as a local equilibrium condition because the noise trade
process and the information are fixed.

This interpretation is linked to the notion of partial (or local) equilibrium. If the insider finds him-
self/herself at such partial equilibrium point there is no particular reason to move from such a point.

From the point of view of a financial controller, the procedure is carried out after all the data is
available. That is, the final price has already been announced and the controller wants to test the existence
of some insiders in the market. Once the type of information is selected, one can statistically check if the
strategy used by the insider(s) is locally optimal.

It is important to point out that this optimal strategy has the same functional form as the compensator
of the Brownian motionW with respect to its natural filtration enlarged with the random variableL(W).

Besides the weak equilibrium feature, there are various delicate mathematical points where our results
and techniques differ from previously mentioned research. Briefly summarizing, we mention:

1) Due to the generality of the functionalL, we use variational calculus (or dynamic principle) and
we do not obtain an HJB equation formulation. In particular, optimal strategies do not depend
only on the insider’s additional information and the value process, the admissible strategies do not
form a linear space and the expected profit depends onξ which it is not measurable with respect to
the insider’s filtration. These features introduce some difficulties in order to obtain the optimality
results.

2) One of the conditions of admissibility require that the optimal strategy has to be adapted to the
filtration generated by noise traders process and the insider information. This result which was
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easy to obtain in previous articles (in fact, this was just a property of Brownian bridges) becomes
extremely difficult in the generality presented here. In fact, we consider as examples the case where
L(Y) =maxt Yt corresponds to the maximum of the demand and to the argument of this maximum
L(Y) = argmaxt Yt . This leads to the study of existence and uniqueness of solutions of stochastic
differential equations with path dependent coefficients which degenerate at random times.

Finally, we compare the expected wealth obtained by the large trader/insider in the two main exam-
ples considered. The simulations indicate that knowingτ, the time at which the maximum of the total
demand is achieved, gives less expected wealth than knowingM; the maximum of the total demand.

As a final remark, we want to state that one of the main goals of the article is to raise/contribute to
the discussion on the issue of the equilibrium concept for insider-large trader for general information as
it is explained in the article. We do not pretend that this is the unique way to solve the problem. We hope
that other researchers will also present alternative proposals and comments on this model.

The paper is organized as follows. In Section 2 we give some basic definitions and introduce our
weak formulation of equilibrium. Section 3 contains the discussion of the optimization problem for the
insider and a optimality equation is deduced. In Section 4 we relate the properties of the solutions of the
optimality equation with the rationality of prices. Section 5 is devoted to state the main results on the
existence and uniqueness in law of a weak equilibrium. In Section 6 we deal with two basic examples,
previously treated in the literature, the Back’s example and an example on binary information. Section
7 aims to introduce two new examples in the literature of equilibrium for asymmetric markets. First,
in the case that the additional information held by the insider is the maximum of the total demand and
second, in the case of the time at which this maximum is attained. We state and prove the existence and
uniqueness in law of a weak equilibrium in both cases. Finally, we numerically compare the expected
wealth obtained by the insider in these two examples. Section 8 is dedicated to the conclusions. Finally,
Section 9 contains an appendix devoted to prove some technical results.

Throughout the articleC will denote a constant that may change from line to line.L (X ) denotes
the law of the random elementX .

2 Weak formulation of equilibrium

In this section we introduce the concept of weak equilibrium. First we define the class of pricing rules
and admissible strategies.

Definition 1 We say that a function F: [0;1]�R! R satisfies an exponential growth condition if there
exist positive constants A;B such thatjF (t;y)j � AeBjyj; for all (t;y) 2 [0;1]�R.

Definition 2 A pricing rule is a function H2 C 1;3 ((0;1)�R) ; such that Hy (t;y) > 0;8t 2 [0;1] and
H;Ht ;Hy;Hyy satisfy an exponential growth condition. We denote byH the set of functions H satisfying
these properties.

In the previous definition we require the pricing rules to satisfy some regularity and growth conditions
for technical reasons. From a modeling point of view, the important assumption is the requirement that
Hy (t;y)> 0;8t 2 [0;1]: This implies that the insider can invert the price process to obtain the total demand
and, hence, the noise trader demand, see Remark 8 c) below.

Definition 3 Given a process Z and a random variable M, we defineΘsup(M;Z) as the class ofFI =
FZ_σ(M)-adapted càglàd processes in[0;1) which satisfyZ 1

0
jθ sjds2 L1(Ω); (1)

sup
0�t�1

����Z t

0
H

�
s;
Z s

0
θ udu+Zs

�
θ sds

���� 2 L1 (Ω) ; (2)
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sup
0�t�1

����Z t

0
Hy

�
s;
Z s

0
θ udu+Zs

�
θ sds

���� 2 L1+ε (Ω) ; for someε > 0 (3)

and

exp

�
C sup

0�t�1

����Z t

0
θ sds

����� 2 L1(Ω); 8C> 0 (4)

for all H 2H :

Remark 4 We could replace the technical conditions(1) ;(2) ;(3) and(4) in the definition ofΘsup(M;Z)
by the stronger ones Z 1

0
jθ sj1+ε ds2 L1(Ω); for someε > 0 (5)

and

exp

�
C sup

0�t�1

����Z t

0
θ sds

����� 2 L1(Ω); 8C> 0: (6)

The advantage is that conditions(5) and(6) define a linear space. On the other hand, condition(5) is
difficult to verify in specific examples.

Definition 5 Given a process Z and a random variable M, independent of Z; we say that a process X is
a (M;Z)-strategy process if there existsθ 2Θsup(M;Z) such that Xt =

R t
0 θ sds; t 2 [0;1] :

Definition 6 Given a final priceξ 2 L2 (Ω), a stochastic process Z, a random variable M, independent
of Z; a price semimartingale process P� (Pt)t2[0;1] with respect toFZ _σ (M) and a (M;Z)-strategy
process X= (Xt)t2[0;1], we denote by V=V (X;P;ξ ) the agent final wealth defined by

V (X;P;ξ ) =V0+
Z 1

0
XsdPs+(ξ �P1)X1;

whenever the above stochastic integral is well defined. Here V0 is a constant.

Definition 7 (Weak Equilibrium) Let L : C[0;1]! Rk be a measurable functional on the canonical
Wiener space andµ be a probability measure onR with

R
R x2µ (dx) < ∞. We say that there exists

a (L;µ)-weak equilibrium if there exists some probability space(Ω;F ;P) where there exists three
processes Y�, θ

� and Z�; a random variableξ
�, a random vectorλ � and a function H� 2 H such

that

i) Y�t = X�t +Z�t ; whereX�t =
R t

0 θ
�
sdsfor t 2 [0;1]:

ii) λ
� = L(Y�) is independent of the processZ�:

iii) Z� is a Brownian motion.

iv) ξ
� has the lawµ:

v) θ
� 2Θsup(λ

�;Z�):

vi) Prices are rational. That is,P�t , H�(t;Y�t ) = E[ξ
�jFY�

t ] for t 2 [0;1]:

vii) For all θ 2Θsup(λ
�;Z�) ; one has

E[V
�
X;P;ξ �

�
]� E[V

�
X�;P�;ξ �

�
];

whereX� =
R �

0 θ sds;Yθ = X+Z� andP� = H�(�;Yθ
� ).

Now we give a series of remarks related to this definition.
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Remark 8 a)It is clear that Z� is aFZ� _σ(λ �)-Brownian motion, as Z� is adapted to this filtration and
is independent ofλ �.
b)The price of the asset will be equal toξ

�; just after the release of information at time t= 1: This price
has to have the pre-specified lawµ. Furthermore the relationship betweenξ

� andλ
� is specified through

the rationality of prices (property vi) above) and in generalξ
� is not independent from Z�:

c)The natural definition of the insider filtration isF� = FZ� _σ(λ �): This is due to the monotonicity of
the pricing rule and the fact that the insider observes the prices, one has that at time t the insider can
infer Z�t : Note that in generalFY� is not necessarily included inFZ� :
d)The set of(λ �;Z�)-strategies is usually non empty. Furthermore, in the optimization problem vii),
one may think that is more natural to restrict the opportunity set of strategies to the ones satisfying
L(Yθ ) = λ

�. This means that the insider would realize the giving strong information on the total demand.
In the next section, we will see that the optimum, with or without this restriction, it is the same given
condition ii) in the Definition 7.
e)From now on we will always assume thatµ is a probability measure onR satisfying

R
R x2µ (dx) < ∞

without any further mention.

Note that in the above (partial) equilibrium set up the insider optimizes his expected profit given the
informationλ

� andZ�. In this aspect, the above equilibrium is a partial one. In other words, if the agent
uses the strategyθ �, there is no (local) reason to change strategy. It can also be considered as an stable
point where the insider can actually realize all the conditions for a stable market. The above set-up and
the subsequent proofs to follow are not constructive.

3 Optimization problem for the insider

In this section we give necessary conditions for a process to solve the optimization problem stated in
property vii). Given a Wiener processZ and a fixed random variableM; which is independent ofZ; we
defineFI = FZ_σ (M) : As pointed out in the introduction, we use the classical approach of variational
calculus.

From now on, we denote by a super-indexθ onYt the dependence of the total demand on the strat-
egy of the insider. Then,Yθ

t =
R t

0 θ sds+Zt . Before studying the optimization problem we remark the
following property for the portfolio processθ .

Lemma 9 If θ 2 Θsup(M;Z) then the price process Pθ
t = H

�
t;Yθ

t

�
is a FI -semimartingale and its de-

composition is given by

Pθ
t = Pθ

0 +
Z t

0
fHt(s;Y

θ
s )+

1
2

Hyy(s;Y
θ
s )+Hy(s;Y

θ
s )θ sgds+

Z t

0
Hy(s;Y

θ
s )dZs:

The proof is a straightforward application of Itô’s formula, asH 2 C1;2((0;1)�R) andYθ is a
semimartingale in the filtrationFI = FZ _σ(M). The next lemma is obtained using the integration by
parts formula.

Lemma 10 Let θ be anyFI -adapted process such that
R 1

0 jθ sjds< ∞ a.s. Then, we have that

V ,V(X;Pθ ;ξ ) =V0+
Z 1

0
(ξ �H(t;Yθ

t ))θ tdt:

Without loss of generality we assume from now on thatV0= 0: The optimization problem we consider
in this section is max

θ2Θsup(M;Z)
J(θ) ; where

J(θ), E
�Z 1

0
(ξ �H(t;Yθ

t ))θ tdt

�
; θ 2Θsup(M;Z) : (7)

We also denote byθ � , arg max
θ2Θsup(M;Z)

J(θ) when this process exists. The difficulties to solve this prob-

lem are due to the nonlinearity of the functionalJ and the fact thatΘsup(M;Z) is not a linear space.
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Remark 11 Note that, forθ 2Θsup(M;Z) ; we have that

jJ(θ)j � E
�
jξ j
����Z 1

0
θ tdt

�����+E�����Z 1

0
H(t;Yθ

t )θ tdt

�����< ∞;

due toξ 2 L2 (Ω) and thatθ satisfies conditions(4) and (2) : Furthermore, ifθ is FI -adapted and
satisfies the integrability conditions that defineΘsup(M;Z), but is not necessarily càglàd, then we also
have thatjJ(θ)j< ∞:

The first step in our strategy to solve the problem is to study the properties ofJ(θ) in the following
linear subset ofΘsup(M;Z) :

Θb (M;Z) = fθ 2Θsup(M;Z) : there existsK > 0; s.t.8ω, jθ s(ω)j � Kg:

Lemma 12 If v;θ 2Θb(M;Z); then

DvJ(θ),
d
dε

J(θ + εv) jε=0

= E
�Z 1

0
vt(ξ �H(t;Yθ

t ))dt

�
�E

�Z 1

0

�Z t

0
vsds

�
Hy(t;Y

θ
t )θ tdt

�
: (8)

Furthermore, the operator D�J(θ) : v! DvJ(θ) is linear.

Proof. First note that for anyθ ; v2 Θb(M;Z) andε > 0 one has thatθ + εv2 Θb(M;Z) and differenti-
ating under the integral sign (see Lemma 46) and applying Fubini’s theorem, one obtains

d
dε

J(θ + εv) jε=0= E
�Z 1

0
vtf(ξ �H(t;Yθ

t ))�
Z 1

t
Hy(s;Y

θ
s )θ sdsgdt

�
= E

�Z 1

0
vt(ξ �H(t;Yθ

t ))dt

�
�E

�Z 1

0

�Z t

0
vsds

�
Hy(t;Y

θ
t )θ tdt

�
:

Remark 13 If θ 2Θsup(M;Z) is such that

E
�
(ξ �H(t;Yθ

t ))�
Z 1

t
Hy(s;Y

θ
s )θ sdsjF I

t

�
= 0; (9)

then for any v2Θb(M;Z) we have

E
�Z 1

0
vt(ξ �H(t;Yθ

t ))dt

�
�E

�Z 1

0

�Z t

0
vsds

�
Hy(t;Y

θ
t )θ tdt

�
= 0:

From now on, we refer to equation(9) as the optimality equation.

The next step is to prove the concavity ofJ(θ) in Θb(M;Z): This is done in the following proposition,
which makes use of a general result on convex analysis, see Proposition 45.

Proposition 14 If H 2H satisfies

Hty (t;y)+
1
2

Hyyy(t;y)� 0; (10)

then J(θ) is concave inΘb(M;Z).
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Proof. We will show that for everyθ ;η 2 Θb(M;Z); we haveDη�θ J(θ)� J(η)�J(θ) ; which thanks
to Proposition 45 is equivalent toJ(θ) being concave. Givenθ ;η 2 Θb(M;Z);α 2 [0;1] ; defineδ ,
η � θ andΨα , θ +αδ : For α 2 [0;1]; defineϕ (α) , Dη�θ J(Ψα) = d

dα
J(Ψα) : We will show that

ϕ 0 (α) = d2

dα2 J(Ψα)� 0. First, by Lemma 46 we have that

ϕ
0 (α) =�E

"Z 1

0

�Z t

0
δ sds

�2

Hyy(t;Y
α
t )Ψ

α
t dt]�E[2

�Z t

0
δ sds

�
Hy(t;Y

α
t )δ tdt

#
:

Then we apply integration by parts in the second expectation to obtain that

E
�Z 1

0
2

�Z t

0
δ sds

�
Hy(t;Y

Ψα

t )δ tdt

�
= E

"�Z 1

0
δ sds

�2

Hy(1;Y
Ψα

1 )

#

�E
"Z 1

0

�Z t

0
δ sds

�2

fHty(t;Y
Ψα

t )+
1
2

Hyyy(t;Y
Ψα

t )+Hyy(t;Y
Ψα

t )Ψα
t gdt

#
:

Hence,

ϕ
0 (α) =�E

"�Z 1

0
δ sds

�2

Hy(1;Y
Ψα

1 )

#

+E

"Z 1

0

�Z t

0
δ sds

�2

fHty(t;Y
Ψα

t )+
1
2

Hyyy(t;Y
Ψα

t )gdt

#
:

Using thatHy> 0 and equation(10)we conclude thatϕ 0 (α)� 0 and thereforeϕ is a decreasing function.
On the other hand, an application of the mean value theorem gives thatJ(η)�J(θ) = Dη�θ J(Ψα�) =
ϕ (α�) ; for someα� 2 [0;1]. ThereforeJ(η)�J(θ)� ϕ (0) = Dη�θ J(θ) :

The following theorem gives a sufficient condition to find the optimal process inΘsup(M;Z) :

Theorem 15 Let H2H satisfy(10) : If θ
� 2Θsup(M;Z) is such that

E
�
(ξ �H(t;Yθ

�
t ))�

Z 1

t
Hy(s;Y

θ
�

s )θ �sdsjF I
t

�
= 0;

then J(θ)� J(θ �) ;θ 2Θsup(M;Z) :

Proof. According to Proposition 48 and Proposition 49, there exists a sequencefθ �;ngn2N � Θb(M;Z)
such that limn!∞ J(θ �;n) = J(θ �) and limn!∞ Dθ�θ

�;nJ(θ �;n) = 0;8θ 2 Θb(M;Z): Using Proposition
14, we obtain thatJ is concave inΘb(M;Z) and therefore we have thatθ 2Θb(M;Z)

J(θ)� J(θ �;n)+Dθ�θ
�;nJ(θ �;n) :

Therefore, taking limits one gets thatJ(θ)� J(θ �) for all θ 2Θb(M;Z):Using Proposition 48 again, we
have that for allθ 2Θsup(M;Z) there exists a sequencefθ ngn2N �Θb(M;Z) such that limn!∞ J(θ n) =
J(θ)� J(θ �) :

4 Properties of the solutions to the optimality equation

The following proposition is important to find a strategyθ
� satisfying the optimality equation and yield-

ing a rational price. It tell us that given an insider’s strategy satisfying the optimality equation, then the
price process associated to this strategy is rational if and only if the market maker sees the associated
total demand as a Brownian motion. In other words, the associated price process is rational if and only if
the market maker sees the total demand as if only the noise trader was buying or selling stocks. Moreover
this suggests the connection between the optimal insider’s demand and the compensator of a Brownian
motion with respect to a enlarged filtration, see Remark 19 below.
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Proposition 16 Assume there exists a processθ
� 2 Θsup(M;Z) satisfying the optimality equation(9) :

Then H(�;Yθ
�

� ) is aFYθ�
-martingale if and only if Yθ

�
is aFYθ�

-Brownian motion.

Proof. Assume thatθ � andYθ
�

t =
R t

0 θ
�
sds+Zt satisfy the optimality equation. Note that this equation is

equivalent to

H(t;Yθ
�

t )�
Z t

0
Hy(s;Y

θ
�

s )θ �sds= E[ξ jF I
t ]�Mt (11)

whereMt = E[
R 1

0 Hy(s;Yθ
�

s )θ �sdsjF I
t ]: Making t = 0 in (11), we obtainH (0;0)+M0 = E[ξ jF I

0]: Ap-
plying Itô’s formula toH(t;Yθ

�
t ) in equation(11), we getZ t

0
fHt(s;Y

θ
�

s )+
1
2

Hyy(s;Y
θ
�

s )gds

=�
Z t

0
Hy(s;Y

θ
�

s )dZs+E[ξ jF I
t ]�E[ξ jF I

0]� (Mt �M0); (12)

for all t 2 [0;1]: The r.h.s of equation(12) is a continuousFI - local martingale with initial value 0 and the
l.h.s. is a finite variation process with continuous paths. Therefore, both processes must be identically
zero. Therefore, we have that

Ht(t;Y
θ
�

t )+
1
2

Hyy(t;Y
θ
�

t ) = 0; t 2 [0;1]: (13)

Combining the above equation with Itô’s formula, we have

H(t;Yθ
�

t ) = H (0;0)+
Z t

0
Hy(s;Y

θ
�

s )dYθ
�

s : (14)

If Yθ
�

is aFYθ�
-Brownian motion then the stochastic integral

R t
0 Hy(s;Yθ

�
s )dYθ

�
s is a martingale due to

Lemma 44. ThereforeH(t;Yθ
�

t ) is aFYθ�
-martingale. Conversely, note that asHy > 0; we can write

Yθ
�

t =
R t

0
dH(s;Yθ�

s )

Hy(s;Yθ�
s )
: Hence, if we assume thatH(t;Yθ

�
t ) is aFYθ�

-martingale, thenYθ
�

is aFYθ�
-local

martingale. AsYθ
�

has the same quadratic variation asZ we obtain thatYθ
�

is actually a Brownian
motion with respect to its own filtration.

Corollary 17 If there exists a processθ � 2Θsup(M;Z) satisfying equation(9) and H(�;Yθ
�

� ) is anFYθ�
-

martingale, then H andξ must satisfy

Ht (t;y)+
1
2

Hyy(t;y) = 0 (15)

and
H(1;Yθ

�
1 ) = E[ξ jF I

1]: (16)

Proof. Equation(13) and the fact thatYθ
�

is a Brownian motion in its own filtration leads to equation
(15) :Making t = 1 in the optimality equation(9), one obtains(16).

5 Existence and uniqueness in law of weak equilibrium

We start this section with a result giving sufficient conditions to obtain a(L;µ)-weak equilibrium. The
first condition in Theorem 18 essentially says that the lawµ of the asset valueξ must be a smooth trans-
formation of a standard normal random variable. Actually, in the examples of the following sections we
do not specify the lawµ but the pricing ruleH; which gives this smooth transformation. We will con-
sider the pricing rules studied previously in the literature, which areH (t;y) = y andH (t;y) = ey+(1�t)=2,
see [2]. Notice that the exponential pricing rule has much more economical interpretation as it implies
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that prices are lognormally distributed. The second condition says that there exists a Brownian motion
W such thatW is a semimartingale with respect to enlarged filtrationFW _ σ (L(W)) : According to
Proposition 16, if the insider wants to obtain a rational price process then the total demandY must be a
Brownian motion with respect to its natural filtration. Therefore, it is natural to impose that the additional
information of the insider, given byL(Y) ; is such that the total demand remains a Brownian motion with
respect to the enlarged filtrationFY _σ (L(Y)) and then use the compensator as the insider’s strategy.
The technical condition in order to carry out this argument isFY_σ (L(Y)) = FI plus some integrability
conditions, which is the third condition in the theorem.

From the economic point of view, it seems reasonable to expect that the insider can not held "too much
information" for an equilibrium to hold. In our framework this is reflected in the semimartingale property
of W: In fact, if L(Y) gives too much information to the insider, thenW will not be a a semimartingale
with respect to the enlarged filtration and, therefore, prices will not be rational. Although there exists
a general criterion to ensure that a given functional satisfies this semimartingale condition, known as
Jacod’s criterion, see for instance [19], this criterion does not apply to our main examplesL(W) =
max0�t�1Wt or L(W) = argmax0�t�1Wt . In other models of insider trading, where the rationality of
prices is not taken into account, this condition is not sufficient to provide realistic models with finite
expected wealth for the insider optimization problem, see [12]. Usually the information held by the
insider has to be perturbed by some noise, see [12] and [6].

Theorem 18 (Existence)Given a measurable functional L: C [0;1]! Rk andµ a probability measure
onR satisfying

R
R x2µ (dx)< ∞: Assume:

1) There exists H2H such that it satisfies(15) and

µ (A) =
1p
2π

Z
H(1;�)�1(A)

e�x2=2dx; 8A2B (R) :

2) There exists a probability space(Ω;F ;P) supporting a Brownian motion W which is a semimartin-
gale in the filtrationFW_σ (λ ) ; λ ,L(W) ;with semimartingale decomposition Wt =

R t
0 α (s;λ )ds+

Wλ
t ; where Wλ is aFW_σ (λ )-Brownian motion.

3) α 2Θsup(λ ;Wλ ):

Then
(Y�;θ �;Z�;H�;ξ �;λ �) = (W;α(�;λ );Wλ ;H;H (1;W1) ;λ )

is a (L;µ)-weak equilibrium.

Proof. Verification of properties i), iii), iv) and v) in the definition of weak equilibrium is straightforward.
Property ii) follows from the fact thatWλ

t is anFW _σ (λ )-Brownian motion and, hence, independent
from FW

0 _σ (λ ) = σ (λ ) : From hypothesis 1) together with equation(14) ; we have thatH (�;W�) is a
FW-martingale. AsH (t;Wt) = E[H (1;W1) jFW

t ]; property vi) follows. To check property vii), we apply
Itô’s formula toH(�;W�) in the l.h.s. of the optimality equation(9) with θ = α. Due to hypothesis 1) we
obtain that it is equal to

E
�Z 1

t
Hy (s;Ws)dWλ

s jFWλ

t _σ (λ )

�
:

On the other hand, hypothesis 3) implies thatα (�;λ ) is FWλ _σ (λ )-adapted, which entails thatW is

FWλ _σ (λ )-adapted and one can conclude thatFW _σ (λ ) = FWλ _σ (λ ) : Hence, due to Lemma 44,
the above conditional expectation equals to zero and the conclusion follows from Theorem 15.

Remark 19 Of the three hypothesis in the previous Theorem, hypothesis 3 is difficult to verify in gen-

eral. Besides the integrability conditions in the definition ofΘsup(λ ;Wλ ), α (�;λ ) must beFWλ _σ (λ )-

adapted. This property will follow ifFW _σ (λ ) = FWλ _σ (λ ). This problem seems to be difficult to
solve in general.
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We deal with this problem in each of the examples to follow in the next sections. The general strategy
is to show existence and uniqueness for s.d.e.’s of the form

Xt =
Z t

0
α
�
s;G;X[0;s]

�
ds+Vt ;

where V is a Brownian motion,α is a (degenerate) functional and G is a random variable independent
of V: Therefore, X would beFV _σ (G)-adapted.

The following theorem gives a uniqueness result for the(L;µ)-weak equilibrium found in the previ-
ous theorem. Condition 6) in the following theorem deserves a comment. This assumption roughly says
that two weak equilibriums have the same law whenever are obtained through a semimartingale decom-
position of a Brownian motion with respect to a enlarged filtration. In other words, if in Condition 2) of
Theorem 18 we use two different Brownian motions possibly defined in two diferent probability spaces,
the two different weak equilibriums obtained have the same law. From the economic point of view, this
assumption states that if the market maker knew the insider’s aditional information then he would have
exactly the same information flow as the insider.

Theorem 20 (Uniqueness in law)Assume the same hypotheses of Theorem 18 and denote by(Y�;θ �;
Z�;H�;ξ �;λ �) the(L;µ)-weak equilibrium. Suppose that there exists another probability space support-
ing processes(Y;θ ;Z) such that

1) Yt =
R t

0 θ sds+Zt ;

2) λ , L(Y) is independent of Z;

3) Z is a Brownian motion in its own filtration;

4) θ 2Θsup(λ ;Z) ;

5) H� (t;Yt) = E[H� (1;Y1) jFY
t ] for t 2 [0;1] :

6) FZ_σ (λ ) = FY _σ (λ ) :

Then, we have thatL (Y�;X�;Z�;ξ �;λ �) = L (Y;X;Z;ξ ;λ ); where ξ , H� (1;Y1) ; and therefore
E[V (X;P;ξ )] = E�[V

�
X�;P�;ξ �

�
]:

Proof. Applying Itô’s formula in the filtrationFI = FZ_σ (λ ) ; we have that

ξ �H� (t;Yt)�
Z 1

t
H�

y (s;Ys)θ sds=
Z 1

t
H�

y (s;Ys)dZs;

where in the last equality we have used thatH� satisfies equation(15) : After taking conditional expec-
tation, this yields

E
�

ξ �H� (t;Yt)�
Z 1

t
H�

y (s;Ys)θ sdsjF I
t

�
= 0:

Then, by Theorem 15 we have thatJ(η)� J(θ) ;8η 2Θsup(L(Y) ;Z). By hypothesis 5) and Proposition
16 one gets thatY is a Brownian motion in its own filtration. Therefore,L (Y;λ ;ξ ) =L

�
Y�;λ �;ξ �

�
:

As the processθ � is adapted toFY�_σ (λ �), then it can be written asθ �t =Λ(t;Y�[0;t];L(Y
�
[0;1]));P�λ -a.s..

Then, definingθ̂ t , Λ(t;Y[0;t];L(Y[0;1])) and using thatL (Y�) =L (Y) ; we have that

E
�
Yt �Ys�

Z t

s
θ̂ udujFY

s _σ (λ )

�
= 0:

Thus,

Yt =
Z t

0
θ̂ sds+Mt =

Z t

0
θ sds+Zt ;

10



whereM is aFY _σ (λ )-martingale. Given the assumption 6); the uniqueness of the semimartingale
decomposition ofY with respect toFY _σ (λ ) proves thatbθ = θ ;P�λ a.s.

The following result is helpful when proving thatα 2Θsup(λ ;Z).

Proposition 21 Let Y be a Brownian motion andλ = L(Y) : Assume that Y has a semimartingale de-
composition with respect toFY _σ (λ ) given by Yt =

R t
0 αsds+Zt ; where Z is aFY _σ (λ )-Brownian

motion. Then,

exp

�
C sup

0�t�1

����Z t

0
αsds

����� 2 Lp (Ω) ; p� 1; 8C> 0;

and

sup
0�t�1

����Z t

0
F (s;Ys)αsds

���� 2 Lp (Ω) ; p� 1;

where F is any function satisfying an exponential growth condition.

Proof. To prove the first statement, notice that����exp

�
C sup

0�t�1

����Z t

0
αsds

���������p� exp(pC sup
0�t�1

jYt j)exp(pC sup
0�t�1

jZt j):

By the Cauchy-Schwarz inequality, taking into account thatY andZ are Brownian motions, we obtain
that

E
�����exp

�
C sup

0�t�1

����Z t

0
αsds

���������p�� �E[exp(2pC sup
0�t�1

jYt j)]
�2

< ∞:

To prove the second statement, not that����Z t

0
F (s;Ys)αsds

����p�C(p)

�����Z t

0
F (s;Ys)dYs

����p+ ����Z t

0
F (s;Ys)dZs

����p�
Define

M1
t ,

Z t

0
F (s;Ys)dYs and M2

t ,
Z t

0
F (s;Ys)dZs:

Here,M1 is aFY-local martingale. By the BDG inequality (see Theorem 73, pag. 222 in [19]), taking
into account thatF satisfies an exponential growth condition and thatY is a Brownian motion, we obtain
that

E
�

sup
0�t�1

��M1
t

��p� � CpE

"�Z 1

0
F (s;Ys)

2ds)

�p=2
#

� CpE

"�Z 1

0
A2exp(2BjYsj)ds

�p=2
#

� CpApE
�
exp(pB sup

0�t�1
jYt j)

�
< ∞:

ThusM1 is aFY-martingale and sup0�t�1

��M1
t

�� 2 Lp (Ω) ; p� 1: We can repeat the same argument for
M2, taking into account thatM2 is aFY _σ (λ )-local martingale.

6 Back’s example and an example of binary information

In this section we comment on two known examples where the general result in Theorem 18 applies.
Throughout this section we will consider a Brownian motionW defined on a complete probability space
(Ω;F ;P) : From now on, we denote byφ (x; t) the density of a centered Gaussian random variable with
variancet, by Φ(x; t) its distribution function andΦ(x; t) = 1�Φ(x; t).
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In all the examples to follow in the next sections, we assume thatµ is a probability measure onR
with

R
R x2µ (dx)< ∞ and that there existsH 2H satisfying(15) and

µ (A) =
Z

H(1;�)�1(A)
φ (x;1)dx; 8A2B (R) :

Theorem 22 Let W be a Brownian motion. Then W is a semimartingale respect to the filtrationFW _
σ (W1) with decomposition

Wt =
Z t

0
α (u;W1)du+WW1

t ; 8t 2 [0;1] ; (17)

where WW1 is aFW_σ (W1)-Brownian motion,

α (t;W1) =
W1�Wt

1� t
; (18)

for all t 2 [0;1) :

The previous result is well known and its proof can be found, for instance, in [11], Théorème 1. In
[11], Corollaire 1.1, it is also discussed the connection between the Brownian bridgefWt � tW1g0�t<1

and the Brownian motionfWW1
t g0�t<1; showing that these two processes have the same natural filtration

and thatW1 is independent offWW1
t g0�t<1: This idea is later used in order to consider equation(17) as a

linear equation, where the unknown function isW� (ω) andWW1
t (ω) andW1 (ω) are given. The following

result is slightly more general than Corollaire 1.1, in [11], in the sense that if we assume that we are given
a Brownian motionB and a random variableG, independent fromB and not necessarily Gaussian, we can
construct a processX with terminal valueG: In the particular case thatL (G) =N (0;1) ; the processX
is a Brownian bridge withX1=G:

Theorem 23 Let B be a Brownian motion and G a random variable independent of B; both defined in the
same probability space(Ω;F ;P) : Then there exists a unique strong solution X adapted to the filtration
FB_σ (G) of the following stochastic differential equation

Xt =
Z t

0

G�Xs

1�s
ds+Bt ; t 2 [0;1] : (19)

Furthermore, if we assume that the law of G is N(0;1) ; then Xt is a Brownian motion with respect its
own filtration.

Proof. As G is independent ofB; one has thatB isFB_σ (G)-Brownian motion. Using as an integrating
factor(1� t)�1 ; we obtain

d

�
Xt

1� t

�
=

G

(1� t)�2 dt+
dBt

1� t
:

Therefore, one has thatXt = tG+(1� t)
R t

0
dBs
1�s;0� t < 1: In lemma 6.9 of [13], pag. 358, it is proved

that the process

Bt = (1� t)
Z t

0

dBs

1�s
; 0� t < 1;

B1= 0;

is a continuous, centered Gaussian process with covariance functions^ t � st: Hence we have proved
existence and uniqueness for the solutions of the equation(19). If we assume thatG� N(0;1), we
have thattG is a continuous, centered Gaussian process with covariance functionst. As the sum of two
independent Gaussian processes is still a Gaussian process andBt andG are independent, we obtain that
X is a continuous, centered Gaussian process with covariance functions^ t; thus a standard Brownian
motion.
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The following property is important to determine the finiteness of optimal utilities. Forp > 0;
E[
R 1

0 jα (t;G)j
pdt]< ∞ if and only if p< 2; where

α (t;x) =
x�Xt

1� t
; 8t 2 [0;1] :

Let’s state the weak equilibrium result for this case.

Theorem 24 Let L(Y) =Y1: Then�
Y�;θ �;Z�;H�;ξ �;λ �

�
= (X;α (�;G) ;B;H;H (1;G) ;L(X))

is a (L;µ)-weak equilibrium.

In this particular case the above weak equilibrium is in fact a strong type equilibrium. For this, see
Theorem 1 in [2] or Proposition 2 in [5].

Theorem 25 Assume that we are given a Brownian motion Z and a strong informationξ : Assume that
H� 2H satisfies(15) andξ � H� (1;N(0;1)) : Setθ �t , α(t;(H�)�1 (1;ξ )): Then(H�;θ �) is an equi-
librium. That is,

� H�(t;Y�) is a rational price, that is H�(t;Y�) = E[ξ jFY�
t ].

� For all θ 2Θsup(ξ ;Z) ; one has

E[V (X;P;ξ )]� E[V (X�;P�;ξ )];

where X(�)� =
R �

0 θ
(�)
s ds;Y

(�)
= X(�)+Z and P(�)� = H�(�;Y(�)

� ):

Now we consider the case in which the insider knows that the total demand at time 1 is greater or
equal to a fixed constanta: The next two results are quoted from [12], example 4.6.

Theorem 26 Let W be a Brownian motion. Then W is a semimartingale respect to the filtrationFW _
σ
�
1[a;∞) (W1)

�
with decomposition

Wt =
Z t

0
α
�
u;1[a;∞) (W1)

�
du+Wa

t ; 8t 2 [0;1] ;

where Wa is aFW_σ
�
1[a;∞) (W1)

�
-Brownian motion,

α
�
t;1[a;∞) (W1)

�
=

φ (Wt �a;1� t)
Φ(Wt �a;1� t)

1[a;∞) (W1)+
φ (Wt �a;1� t)
Φ(a�Wt ;1� t)

1[a;∞)c (W1) ;

for all t 2 [0;1] :

Lemma 27 We have thatE[
R 1

0

��α �t;1[a;∞) (W1)
���2dt]< ∞:

Theorem 28 Let B be a Brownian motion and G a Bernoulli random variable independent of B; both
defined on the same probability space(Ω;F ;P) : Then there exists a unique strong solution X adapted
to the filtrationFB_σ (G) of the following stochastic differential equation

Xt =
Z t

0

�
φ (Xt �a;1� t)
Φ(Xt �a;1� t)

1f1g (G)+
φ (Xt �a;1� t)
Φ(a�Xt ;1� t)

1f0g (G)

�
ds+Bt ; 0� t < 1: (20)
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Proof. First we will prove thatΨ1
a (x; t) , φ (x�a;1� t)=Φ(x�a;1� t) is Lipschitz in thex variable

for t 2 [0;1); fixed. Note that we can takea= 0; without loss of generality. Furthermore,Ψ1
0 (x; t) =

Ψ1
0(x=

p
1� t;0)=

p
1� t:

We have that

∂xΨ1
0 (x; t) =

� x
1�t φ (x;1� t)Φ(x;1� t)� (φ (x;1� t))2

(Φ(x;1� t))2

= � x
1� t

Ψ1
0 (x; t)�

�
Ψ1

0 (x; t)
�2

= � 1
1� t

�
xp

1� t
Ψ1

0(x=
p

1� t;0)+
�

Ψ1
0(x=

p
1� t;0)

�2
�
:

Fix t� < 1; then

sup
t2[0;t�];x2R

��∂xΨ1
0 (x; t)

��� 1
1� t�

sup
y2R

���yΨ1
0(y;0)+

�
Ψ1

0(y;0)
�2
��� :

Applying l’Hospital’s rule, it can be shown that

lim
y!�∞

yΨ1
0(y;0)+

�
Ψ1

0(y;0)
�2

= 1;

lim
y!∞

yΨ1
0(y;0)+

�
Ψ1

0(y;0)
�2

= 0:

which entails that supt2[0;t�];x2R
��∂xΨ1

0 (x; t)
�� < ∞. Therefore,Ψ1

a (x; t) is Lipschitz in thex variable uni-

formly in t 2 [0; t�]; t� < 1: To study the growth ofΨ1
a (x; t) we takea= 0: Then,��Ψ1

0 (x; t)
��� 1p

1� t�
sup
y2R

Ψ1
0(y;0);

for t 2 [0; t�] ; t� < 1: It can be shown that limy!∞ Ψ1
0(y;0) = 0 and limy!�∞ Ψ1

0(y;0)=y= �1; which
implies that supy2RΨ1

0(y;0)<∞:Hence,Ψ1
a (x; t) satisfies a linear growth condition, fort 2 [0; t�] ; t�< 1:

Using the classical results on s.d.e.’s, we have that there exists a unique strong solution to the following
equation

Y1
t =

Z t

0
Ψ1

a

�
Y1

s ;s
�

ds+Bt ; 0� t < 1:

We can use a similar reasoning forΨ2
a (x; t) , φ (x�a;1� t)=Φ(a�x;1� t) and get the same conclu-

sions. Finally, theFB_σ (G)-adapted processXt ,Y1
t 1f1g (G)+Y2

t 1f0g (G) solves our problem.

Theorem 29 Let L(Y) = 1[a;∞) (Y1) : Then�
Y�;θ �;Z�;H�;ξ �;λ �

�
= (W;α

�
�;1[a;∞) (W1)

�
;Wa;H;H (1;W1) ;L(W))

is a (L;µ)-weak equilibrium.

Proof. We apply Theorem 18. The first hypothesis of the theorem is assumed. The second hypothesis
follows from Theorem 26. Finally thatα 2 Θsup(1[a;∞) (W1) ;Wa) follows from Lemma 27, Proposition
21 and Theorem 28 (see Remark 19).

7 The maximum and its argument

In this section we deal with two examples that are more complicated, but by far more interesting. In
particular, the second example is new in the literature of insider trading with initial strong information.
Throughout this section we will consider a Brownian motionW defined on a complete probability space
(Ω;F ;P) : We consider the maximum process in the interval[s; t]; Ms;t ;0� s< t � 1 defined byMs;t ,
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maxs�u�t Wu: To simplify notation we useMt ,M0;t , τ t , argmax0�s�t Ws, M ,M1, τ , τ1: andγs;t ,
Ms;t �Ws. The density and distribution function ofγs;t are given byp2 (x; t�s) , 2φ (x; t�s)1(0;∞) (x)

andΠ2 (x; t�s) ,
R x

0 p2 (z; t�s)dz. Similarly, the density of the random vector(γs;t ;Wt �Ws) is given
by

p1(x;y; t�s), 2(2x�y)p
2π(t�s)3

exp

(
�(2x�y)2

2(t�s)

)
1(0;∞)�(�∞;x) (x;y) :

Let us recall a theorem by Lévy that links the maximum processMt with the Brownian local timeLx
t (W) :

Theorem 30 The pairs of processesf(Mt �Wt ;Mt);0� t < ∞g andf(jWt j ;2L0
t (W));0� t < ∞g have

the same laws under P:

For more details, see [13]; chapter 3, Theorem 6.17. Furthermore, it is easy to show that, for a fixed
t;Mt �Wt � γ0;t : Finally, we set

ϕ (x; t), p2 (x; t)
Π2 (x; t)

=
e�

x2
2tR x

0 e�
y2
2t dy

1(0;∞) (x) :

7.1 L(Y) =maxt2[0;1]Yt

In this subsection we consider the case in which the insider knows the maximum of the total demand. A
more general version of the following result is proved in Jeulin [10] (see Proposition 3.24, pag. 49). See
also Mansuy and Yor [18] for an update reference on enlargement of filtrations theory.

Theorem 31 Let W be a Brownian motion. Then W is a semimartingale respect to the filtrationFW _
σ (M) with decomposition

Wt =
Z t

0
α (u;M)du+WM

t ; 8t 2 [0;1] ;

where WM is aFW_σ (M)-Brownian motion,

α (t;M) =
M�Wt

1� t
1fMt<Mg�ϕ (M�Wt ;1� t)1fMt=Mg:

Note that 1fMt<Mg = 1[0;τ) (t) :

Lemma 32 We have thatE
hR 1

0 jα (t;M)jdt
i
< ∞ andE

hR 1
0 jα (t;M)j

2dt
i
= ∞:

Proof. To deduce the convergence of the first expectation, notice that

E
�Z 1

0
α (t;M)dt

�
= E[W1]�E[WM

1 ] = 0;

which implies

E
�Z 1

0
1fMt<Mg

M�Wt

1� t
dt

�
= E

�Z 1

0
1fMt=Mgϕ (M�Wt ;1� t)dt

�
:

As the integrands in the above expectations are positive, the problem is reduced to show

E
�Z 1

0
1fMt<Mg

M�Wt

1� t
dt

�
< ∞:
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Let’s compute this expectation

E
�Z 1

0
1fM>Mtg

M�Wt

1� t
dt

�
= E

�Z 1

0
1fMt;1>Mtg

Mt;1�Wt

1� t
dt

�
= E

�Z 1

0
1fγt;1>Mt�Wtg

γ t;1

1� t
dt

�
:

Conditioning with respectFW
t and using Lemma 50, this expectation is equal toZ 1

0

Z ∞

0

Z ∞

y

x
1� t

p2 (x;1� t) p2 (y; t)dxdydt=

r
2
π
< ∞:

To show the divergence of the second moment, notice that

E
�Z 1

0
α (t;M)2dt

�
= E

"Z 1

0
1fM>Mtg

�
M�Wt

1� t

�2

dt

#
+E

�Z 1

0
1fM=Mtg (ϕ (M�Wt ;1� t))2dt

�
:

Therefore, it suffices to show the divergence of one of the above expectations. The second expectation
above is equal to

E
�Z 1

0
1fMt>Mt;1g (ϕ (Mt �Wt ;1� t))2dt

�
= E

�Z 1

0

Z Mt�Wt

0
(ϕ (Mt �Wt ;1� t))2 p2 (x;1� t)dxdt

�
=
Z 1

0

Z ∞

0

Z y

0
(ϕ (y;1� t))2 p2 (x;1� t) p2 (y; t)dxdydt

=
Z 1

0

Z ∞

0

(p2 (y;1� t))2

Π2 (y;1� t)
p2 (y; t)dydt:

But this integral is infinite, because

lim
y!0+

y
(p2 (y;1� t))2

Π2 (y;1� t)
p2 (y; t) = p2 (0;1� t) p2 (0; t) =

2

π
p

t (1� t)
6= 0;

and this implies that
R ∞

0
(p2(y;1�t))2

Π2(y;1�t) p2 (y; t)dy= ∞;8t 2 [ε;1� ε]; which is a set of positive Lebesgue
measure providedε < 1=2.

In order to verify thatα (�;M) is FWM _σ (M)-adapted we prove thatW is FWM _σ (M)-adapted,
which follows from the following result.

Theorem 33 Let B be a Brownian motion and G a positive random variable independent of B; both
defined in the same probability space(Ω;F ;P) : Then there exist a unique strong solution X adapted to
the filtrationFB_σ (G) of the following stochastic differential equation

Xt =
Z t

0

�
G�Xs

1�s
1fMX

s <Gg�ϕ (G�Xs;1�s)1fMX
s =Gg

�
ds+Bt ; (21)

where MX
t ,max0�s�t Xs.

Proof. Our approach to the solution of(21) is to write Xt = X1
t 1[0;ρ) (t) +X2

t 1[ρ;1) (t), whereρ ,
inf
�

t : X1
t =G

	
; X1

t andX2
t are the solutions to the following s.d.e.’s

E1 : X1
t =

Z t

0

G�X1
s

1�s
ds+Bt ; 0� t < ρ;
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and

E2 : X2
t =G�

Z t

ρ

ϕ
�
G�X2

s ;1�s
�

ds+Bt �Bρ ; ρ � t < 1;

which we denote byE1 andE2, respectively. The next step is to show the existence and uniqueness of the
solutions toE1 andE2: Note, thatρ � 1 is aFB_σ (G)-stopping time.

� Existence and uniqueness for the solution ofE1 : Follows as in the case of the Brownian bridge
(see lemma 6.9 of [13], pag. 358).

� Existence and uniqueness for the solution ofE2 : Note that the drift has a singularity att = ρ: That
is, limx!0+ ϕ (x; t) =∞; t > 0: Instead of proving existence and uniqueness forE2; we will prove it
for the following equivalent s.d.e.

E 02 : Rt =
Z t

0
ϕ (Rs;1�ρ�s)ds+Nt ; 0� t < 1�ρ:

The s.d.e.E 02 is obtained fromE2 through the change of variablesRt =G�X2
t+ρ andNt =�(Bt+ρ�

Bρ): The existence is proved in Proposition 34. To prove the uniqueness, we may consider∆t ,
R1

t �R2
t the difference of two positive solutionsR1 andR2 of E 02: Then, applying Itô’s formula to

∆2
t^(1�ρ); we obtain thatP-a.s.

∆2
t^(1�ρ)

= 2
Z t^(1�ρ)

0

�
R1

s�R2
s

��
ϕ
�
R1

s;1�ρ�s
�
�ϕ

�
R2

s;1�ρ�s
��

ds� 0;

asϕ (x; t)� ϕ (y; t) if x� y for all t 2 (0;1).

Proposition 34 There exists a positive, continuous, strong solution with respect toFN_σ (ρ) to

Rt =
Z t

0
ϕ (Rs;1�ρ�s)ds+Nt ; 0� t < 1�ρ; (22)

where N is a Wiener process andρ 2 (0;1) is a random variable independent ofFN.

Proof. First of all, note that
xϕ (x; t)� 1;8t > 0;x2 R: (23)

We defineϕn (x; t), expf�1
n(

1
x +

1
t )gϕ (x; t) ; which satisfies(23) with ϕn instead ofϕ: This sequence

of functions is monotone increasing inn, bounded and converges toϕ (x; t) for eachx2 R; t > 0 such
thatx�1+ t�1> 0: Furthermore,

∂xϕ
n (x; t) = expf�1

n
(
1
x
+

1
t
)g
�

1
n

x�2
ϕ (x; t)+∂xϕ (x; t)

�
=

�
1

nx2 �
x
t
�ϕ (x; t)

�
ϕ

n (x; t) :

Using inequality(23) ; one obtains that supx2[0;∞);t2[0;1] j∂xϕn (x; t)j< ∞; which implies thatϕn (x; t) is a
Lipschitz function. Therefore, for a fixedn2 N; we have the existence and uniqueness of solutions for
the following s.d.e.

Rn
t =

Z t

0
ϕ

n (Rn
s;1�ρ�s)ds+Nt ; 0� t < 1�ρ:

By a comparison theorem, we have thatP
�
Rn+1

t � Rn
t ;0� t < 1�ρ

�
=1;which shows thatRt , limn!∞ Rn

t ;
0� t < 1�ρ exists almost surely in(�∞;∞] and it is a measurable process as it is a limit of measurable
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processes. Now, we show that fort 2 [0;1�ρ);Rt < ∞;P-a.s. andR satisfies equationE 02: In order to
prove the first property, we show the uniform integrability inn2 N of Rn

t ;0� t < 1�ρ: Applying Itô’s
formula, we obtain

(Rn
t )

2= t+2
Z t

0
Rn

sϕ
n (Rn

s;1�ρ�s)ds+2
Z t

0
Rn

sdNs; 0� t < 1�ρ:

Next, we bound the expectation of the second term above:We obtain

E
�Z t^(1�ρ)

0
Rn

sϕ
n (Rn

s;1�ρ�s)ds

�
� E

�Z t^(1�ρ)

0
jRn

sjϕ (Rn
s;1�ρ�s)ds

�
= E

�Z t^(1�ρ)

0
1fRn

s>0gR
n
sϕ (Rn

s;1�ρ�s)ds

�
� E

�Z t^(1�ρ)

0
1fRn

s>0gds

�
� t:

For the third term, one hasE
hR t^(1�ρ)

0 Rn
udNu

i
= 0: Thus, supn2NE

h
(Rn

t^(1�ρ))
2
i
� 3t: This implies the

uniform integrability ofRn
t^(1�ρ) and thereforeRt^(1�ρ) 2 L1 (Ω) : Next, we show thatRt satisfiesE 02:

First note that

Rt^(1�ρ) = lim
n!∞

Rn
t^(1�ρ)

= lim
n!∞

Z t^(1�ρ)

0
ϕ

n (Rn
s;1�ρ�s)ds+Nt^(1�ρ):

To conclude the proof we show that

lim
n!∞

Z t^(1�ρ)

0
ϕ

n (Rn
s;1�ρ�s)ds=

Z t^(1�ρ)

0
ϕ (Rs;1�ρ�s)ds;

0� t < 1; with probability 1: This will also give the continuity for the paths ofR: Fix ε > 0 and define

ρ
ε
0 , inf ft 2 (0;1�ρ) : Nt = εg ;

ρ
ε
l , infft 2

�
ρ

ε
l�1;1�ρ

�
: Nt �Nρε

l�1
=�R1

ρε
l�1
=2g; l � 1:

By construction, the sequencefρε
l gl2N is nondecreasing and therefore we can defineσ ε , lim

l!∞
ρε

l : For

fixed ω 2 Ω; we apply the dominated convergence theorem in each interval[ρε
l�1;ρ

ε
l ]; l � 1. One has

that,

R1
t = R1

ρε
l�1
+
Z t

ρε
l�1

ϕ
1�R1

s;1�ρ�s
�

ds+Nt �Nρε
l�1
>

R1
ρε

l�1

2
� ε

2l ;

for t 2 [ρε
l�1;ρ

ε
l ] andl � 1; due to the positivity of the integral. Then, using inequality(23), we have for

s2 [ρε
l�1;ρ

ε
l ] that

ϕ
n (Rn

s;1�ρ�s)� ϕ (Rn
s;1�ρ�s)� ϕ

�
R1

s;1�ρ�s
�
� 1

R1
s
� 2l

ε
:

Hence, by the dominated convergence theorem

lim
n!∞

Z
ρε

l

ρε
l�1

ϕ
n (Rn

s;1�ρ�s)ds=
Z

ρε
l

ρε
l�1

ϕ (Rs;1�ρ�s)ds:

This implies that

Rt = Rρε
0
+
Z t

ρε
0

ϕ (Rs;1�ρ�s)ds+Nt �Nρε
0
; ρ

ε
0 � t < σ

ε :
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We prove now thatσ ε = 1� ρ: If ω 2 Ω is such that there existsl for which ρε
l = 1� ρ; we have

finished. By contradiction, assume that the sequence
�

ρε
l

	
l2N is strictly increasing. First of all, by the

definition of
�

ρε
l

	
l2N and the fact that the sequence is strictly increasing, one has thatNρε

l
�Nρε

l�1
=

�R1
ρε

l�1
=2: Taking limits we obtain thatR1

σ ε = 0; due to the continuity of Brownian paths. ThenR1
t +R

σ ε

t ϕ1
�
R1

s;1�ρ�s
�

ds= Nt �Nσ ε ; but this contradicts the law of iterated logarithm whent tends to
σ ε , because the left hand side is positive almost surely fort 2 [ρε

0;σ
ε). Hence we can conclude that the

set ofω 2Ω for which does not exist a finitel such thatρε
l = 1�ρ is a null set. Now, notice thatρε

0 # 0
whenε # 0: Hence,Nρε

0
�!
ε#0

0 and by monotone convergence

lim
ε#0

Z t

ρε
0

ϕ (Rs;1�ρ�s)ds=
Z t

0
ϕ (Rs;1�ρ�s)ds:

Therefore,

Rt = lim
ε#0

Rρε
0
+
Z t

0
ϕ (Rs;1�ρ�s)ds+Nt ; 0� t < 1�ρ:

As R0 = lim
n!∞

Rn
0 = 0; making t = 0 in the above equation we obtain limε#0Rρε

0
= 0: Furthermore, as

jRt j< ∞; P-a.s. we obtain that
R t

0 ϕ (Rs;1�ρ�s)ds< ∞;P-a:s:; for t < σ : Hence we have showed that
Rsatisfies equation(22) : Note that in particular, we have also proved thatRt > 0:

Theorem 35 Let L(Y) =max0�t�1Yt . Then�
Y�;θ �;Z�;H�;ξ �;λ �

�
= (W;α (�;M) ;WM;H;H (1;W1) ;L(W))

satisfies all the requirements to be a(L;µ)-weak equilibrium except the càglàd property in the condition
v).

Proof. Properties i) through iv) in the definition of weak equilibrium follow directly. Property v) with the
exception of the càglàd property follows from Lemma 32, Proposition 21 and Theorem 33 (see Remark
19). From the assumptions onH andµ and equation(14) ; we have thatH (�;W�) is aFW-martingale. As
H (t;Wt) = E[H (1;W1) jFW

t ]; property vi) follows. Let’s check property vii). To simplify the notation
we setα t , α (t;M) ;0� t � 1: Note thatα t � 0 if t � τ andα t � 0 if t > τ: From this property, it easily
follows the following inequalityZ 1

0
jα t jdt �

Z
τ

0
α tdt�

Z 1

τ

α tdt � 3 sup
0�t�1

����Z t

0
αsds

���� ; (24)

which combined with Proposition 21 gives thatZ 1

0
jα t jdt 2 Lp (Ω) ; p� 1: (25)

For ε 2 (0;1) ; defineτε;+ = (τ+ ε)^1: Then the processαε = fαε
t , α t1(τ;τε;+]c (t) ; t 2 [0;1]g con-

vergesP�λ ; a.e. toα asε #0 and it satisfiesjαε j � jαj :Now we will prove thatαε 2Θsup(M;WM);8ε 2
(0;1) : First, the càglàd property ofαε follows from the fact that this approximation avoids the essential
discontinuity ofα t in t = τ: The integrability property(1) is trivial. Property(4) follows from equation
(24) : The proof of properties(2) and(3) are similar. We will prove property(2) :We have that

sup
0�t�1

����Z t

0
H(s;Yαε

s )αε
sds

����� sup
0�t�1

���H(t;Yαε

t )
���Z 1

0
jα t jdt;

which belongs toL1 (Ω) by the Cauchy-Schwarz inequality, property(25) and Lemma 44. Accord-
ing to Proposition 48, limn!∞ J(αε;n) = J(αε) for all ε 2 (0;1) whereαε;n is defined according to
Definition 47 with θ = αε . As the functionalJ is concave inΘb(M;WM); we obtain thatJ(η) �
J(αε;n)+Dη�αε;nJ(αε;n) for η 2Θb(M;WM).
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� limε#0J(αε) = J(α): This is analogous to the proof of Proposition 48. Note that using property

(24), we have that
�R 1

0 α t �αε
t dt
�2
�Csup0�t�1

�R 1
0 α t

�2
and����Z 1

0
H (t;Yα

t )α t �H(t;Yαε

t )αε
t dt

����
�
����Z 1

0
H (t;Yα

t )(α t �α
ε
t )dt

����+ ����Z 1

0

�
H (t;Yα

t )�H(t;Yαε

t )
�

α
ε
t dt

����
�C sup

0�t�1
jH (t;Yα

t )j
Z 1

0
jα t jdt

+C sup
0�t�1

Z 1

0

���Hy(t;Y
αε+r(α�αε )
t )

���dr

�Z 1

0
jα t jdt

�2

:

This gives sufficient integrability properties to apply the dominated convergence theorem. Note
that as in the proof of Lemma 44,

sup
0�t�1

���Hy(t;Y
αε+r(α�αε )
t )

����Cexp

�
9B sup

0�t�1

����Z t

0
αsds

�����expfB sup
0�t�1

jZt jg: (26)

� limε#0 limn!∞ Dη�αε;nJ(αε;n) = 0: Repeating the proof of Proposition 49, we obtain
��Dη�αε;nJ(αε;n)

��
� Bε;n

1 +Bε;n
2 ; where

Bε;n
1 ,

����E�Z 1

0

�
η t �α

ε;n
t

��
H (t;Yα

t )�H(t;Yαε;n

t )
�

dt

�����
and

Bε;n
2 ,

����E�Z 1

0

�Z t

0
(ηs�α

ε;n
s )ds

��
Hy (t;Y

α
t )α t �Hy(t;Y

αε;n

t )αε;n
t

�
dt

����� :
Let’s show that limε#0 limn!∞ Bε;n

1 = 0: This follows by dominated convergence, once we have

shown that supε;n
R 1

0

�
η t �α

ε;n
t

��
H (t;Yα

t )�H(t;Yαε;n

t )
�

dt2 L1 (Ω) ; because limn!∞ αε;n=αε ;

P�λ -a.s. and limε#0 αε = α P�λ -a.s. Using inequalities(24) and(26) we obtain����Z 1

0

�
η t �α

ε;n
t

��
H (t;Yα

t )�H(t;Yαε;n

t )
�

dt

����
�
Z 1

0

��η t �α
ε;n
t

��Z 1

0
Hy(t;Y

αε;n+r(α�αε;n)
t )dr

���Yα
t �Yαε;n

t

���dt

�
�

C+
Z 1

0
jα t jdt

�
sup

0�t�1

Z 1

0
Hy(t;Y

αε;n+r(α�αε;n)
t )dr

Z 1

0

��α t �α
ε;n
t

��dt;

which is in L1 (Ω) ; because as in Lemma 44, sup0�t�1 jZt j and sup0�t�1

��R t
0 αsds

�� have expo-
nential moments. The proof of limε#0 limn!∞ Bε;n

2 = 0 can be obtained similarly. Therefore, we
have proved thatJ(η)� J(α) ;8η 2Θb(M;WM): The final result follows from the application of
Proposition 48, using an argument as in the end of the proof of Theorem 15.

7.2 L(Y) = argmaxt2[0;1]Yt

In this section we consider the case in which the insider knows the time at which the total demand
achieves its maximum. The first part of this subsection is devoted to obtaining the compensator ofW
with respect to the filtrationFW_σ (τ) ; which we will denote byFτ = fF τ

t ;0� t � 1g. This will be
done dividing the problem into two parts: before the random timeτ and after it. But first, we give the
conditional law ofτ givenFW

t :
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Proposition 36 The conditional law ofτ givenFW
t ; is

P
�
τ > ujFW

t

�
=

(
1�1fMu�γu;t+Wugp2 (Mu�Wt ;1� t) if u< tR 1

u r (Mt �Wt ;v� t;1�v)dv if u� t
;

where r(x;s; t) is given by r(x;s; t), 2p
2πt

φ (x;s)1(0;∞) (x) =
1p
2πt

p2 (x;s) : Moreover, P
�
τ > ujFW

t

�
is

continuous in u; P-a:s:

Proof. If u< t; then

P
�
τ > ujFW

t

�
= P

�
Mu<Mu;1jFW

t

�
= P

�
Mu<Mu;t _Mt;1jFW

t

�
= P

�
Mu<Mu;t ;Mu;t >Mt;1jFW

t

�
+P

�
Mu<Mt;1;Mu;t �Mt;1jFW

t

�
= 1fMu<Mu;tgP

�
Mu;t > γ t;1+Wt jFW

t

�
+P

�
γ t;1> (Mu_Mu;t)�Wt jFW

t

�
= 1fMu<Mu;tg

Z Mu;t�Wt

0
p2 (z;1� t)dz+

Z ∞

(Mu_Mu;t)�Wt

p2 (z;1� t)dz

= 1fMu<Mu;tg
Z Mu;t�Wt

0
p2 (z;1� t)dz+1�

Z (Mu_Mu;t)�Wt

0
p2 (z;1� t)dz

= 1�1fMu�γu;t+Wug
Z Mu�Wt

0
p2 (z;1� t)dz:

If u> t; the calculations are more involved, the idea is to break the maximum processes into pieces that
are independent ofFW

t and pieces that areFW
t -measurable.

P
�
τ > ujFW

t

�
= P

�
Mu<Mu;1jFW

t

�
= P

�
Mt _Mt;u<Mu;1jFW

t

�
= P

�
Mt <Mu;1;Mt �Mt;ujFW

t

�
+P

�
Mt;u<Mu;1;Mt <Mt;ujFW

t

�
= P

�
Mt �Wt < γu;1+Wu�Wt ;Mt �Wt � γ t;ujFW

t

�
+P
�
α t;u< γu;1+Wu�Wt ;Mt �Wt < γ t;ujFW

t

�
:

Hence,

P
�
Mt �Wt < γu;1+Wu�Wt ;Mt �Wt � γ t;ujFW

t

�
=

Z Mt�Wt

0

Z x

�∞

Z ∞

Mt�Wt�y
p1 (x;y;u� t) p2 (z;1�u)dzdydx

=
Z Mt�Wt

0

Z x

�∞
2p1 (x;y;u� t)Φ(Mt �Wt �y;1�u)dydx

=
Z Mt�Wt

�∞

Z Mt�Wt

0_y
2p1 (x;y;u� t)Φ(Mt �Wt �y;1�u)dxdy

=
Z Mt�Wt

�∞
2(φ(jyj ;u� t)�φ (2(Mt �Wt)�y;u� t))Φ(Mt �Wt �y;1�u)dy

=
Z ∞

0
2(φ (jMt �Wt �zj ;u� t)�φ (Mt �Wt +z;u� t))Φ(z;1�u)dz
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On the other hand,

P
�
γ t;u< γu;1+Wu�Wt ;Mt �Wt < γ t;ujFW

t

�
=

Z ∞

Mt�Wt

Z x

�∞

Z ∞

x�y
p1 (x;y;u� t) p2 (z;1�u)dzdydx

=
Z ∞

Mt�Wt

Z x

�∞
2p1 (x;y;u� t)Φ(x�y;1�u)dydx

=
Z ∞

Mt�Wt

Z ∞

0
2p1 (x;x�z;u� t)Φ(z;1�u)dzdx

=
Z ∞

0
4φ (Mt �Wt +z;u� t)Φ(z;1�u)dz:

Summing up, and taking into account thatφ(jzj ;u� t) = φ (z;u� t) ; we obtain

P
�
τ > ujFW

t

�
=

Z ∞

0
2fφ (Mt �Wt �z;u� t)+φ (Mt �Wt +z;u� t)gΦ(z;1�u)dz:

Differentiating under the integral sign, we obtain that there exists a density functionr such that

P
�
τ > ujFW

t

�
=
Z 1

u
r (Mt �Wt ;v� t;1�v)dv:

Furthermore, this density is smooth in all its variables due to the regularity ofφ and Φ: For the ex-
plicit computation of this density we refer to [14]. To conclude the proof we only need to show that
P
�
τ > ujFW

t

�
, as a function ofu; is continuous inu= t:We have that

lim
u!t

P
�
τ > ujFW

t

�
= lim

u!t
P
�
Mu<Mu;1jFW

t

�
= P

�
Mt �Mt;1jFW

t

�
;

where we have used the dominated convergence theorem for conditional expectations and theP-a:s:
continuity int of the paths ofMt andMt;1:

Proposition 37 If 0� s� t � 1; we have that

E
�
1fτ>tg

�
Wt �

Z t

0

Mu�Wu

τ�u
du

�
jF τ

s

�
= 1fτ>tg

�
Ws�

Z s

0

Mu�Wu

τ�u
du

�
:

Proof. Let A2FW
s and f a bounded Borel measurable function, then taking into account thatτ has a

conditional density givenFW
t ; in the setfτ > tg ; we have that

E
�
1A f (τ)1fτ>tg (Wt �Ws)] = E[1AE

�
f (τ)1fτ>tgjFW

t

�
(Wt �Ws)

�
= E

�
1A

Z 1

t
f (u) r (Mt �Wt ;u� t;1�u)du(Wt �Ws)

�
:

Applying Theorem 30 and Tanaka’s formula, we obtain that the last expectation is equal to

E
�
1A

Z 1

t
f (u) r (jWt j ;u� t;1�u)du

�
2
Z t

s
dL0

v (W)�
Z t

s
d jWvj

��
= E

�
1A

Z 1

t
f (u) r (jWt j ;u� t;1�u)du

�
�
Z t

s
sgn(Wv)dWv

��
:

Notice thatr (jWt j ;u� t;1�u) = 2p
2π(1�u)

φ (Wt ;u� t). Using Itô’s formula, we can write

r (jWt j ;u� t;1�u) =
2p

2π (1�u)
φ (0;u)+

Z t

0

2p
2π (1�u)

∂xφ (Wv;u�v)dWv;
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Then, the former expectation is equal to

E

"
1A

Z 1

t
f (u)

Z t

s
�sgn(Wv)

2p
2π (1�u)

∂xφ (Wv;u�v)dvdu

#

= E
�
1A

Z 1

t
f (u)

Z t

s

jWvj
u�v

r (jWvj ;u�v;1�u)dvdu

�
= E

�
1A

Z 1

t
f (u)

Z t

s

Mv�Wv

u�v
r (Mv�Wv;u�v;1�u)dvdu

�
= E

�
1A

Z t

s
E
�
1fτ>tg f (τ)

Mv�Wv

τ�v
jFv

�
dv

�
= E

�
1A f (τ)1fτ>tg

Z t

s

Mv�Wv

τ�v
dv

�
:

As theσ -algebraF τ
s is generated by elements of the form 1A f (τ), whereA2FW

s and f is a bounded
Borel function, we obtain the result using elementary properties of the conditional expectation. Note
also, that (Mt �Wt ;Mt) and(jWt j ;2Lt (0)) are not the same processes. We can interchange them because
we are dealing with expectations, and therefore they only depend on the law of the processes, which are
equal by Theorem 30.

Now, we are going to prove an analogous result for the case after the timeτ. In the proof we will use
the decomposition ofW with respect toFW_σ (M) (see Theorem 31).

Proposition 38 If 0� s� t � 1, we have that

E
�
1fτ�sg

�
Wt +

Z t

0
ϕ (M�Wu;1�u)du

�
jF τ

s

�
= 1fτ�sg

�
Ws+

Z s

0
ϕ (M�Wu;1�u)du

�
Proof. Let A2FW

s and f (τ) = 1fτ�rg; where 0� r � 1:We have that

E
�
1A f (τ)1fτ�sg (Wt �Ws)

�
= E

�
1A1fτ�rg1fτ�sg (Wt �Ws)

�
= E

�
1A1fτ�r^sg1fτ�sg (Wt �Ws)

�
= E

�
1A1fMŝ r=Mg1fτ�sg (Wt �Ws)

�
=�E

�
1A f (τ)1fτ�sg

Z t

s
ϕ (M�Wu;1�u)du

�
:

Notice that 1fτ�r^sg=1fMŝ r=Mg isFW
s _σ (M)-measurable, and thatϕ(M�Wu;1�u) isF τ

u -measurable
becauseM =Mτ . The elements of the form 1A f (τ) ;whereA2FW

s and f (τ) = 1fτ�rg; 0� r � 1; gen-
erate theσ -algebraF τ

s . Therefore as in the proof of the previous proposition we obtain the result using
elementary properties of conditional expectations.

The next lemma gives us an integrability result for the drift term in theFτ -decomposition ofW:

Lemma 39 We have thatE
hR 1

0 jα (t;τ)jdt
i
< ∞ andE

hR 1
0 jα (t;τ)j

2dt
i
= ∞:

Proof. As in Lemma 32, we have that

E
�Z 1

0
1[0;τ)

Mt �Wt

τ� t
dt

�
= E

�Z 1

0
1[τ;1] (t)ϕ (M�Wt ;1� t)dt

�
;

where the integrands are positive. The second part of the statement follows as in Lemma 32.
The main result of this section is the following theorem which gives the semimartingale decomposi-

tion of W in the filtrationFτ :

Theorem 40 W is aFτ -semimartingale with the following decomposition

Wt =
Z t

0
α (u;τ)du+Wτ

t ; (27)

where

α (u;τ) =
Mu�Wu

τ�u
1[0;τ) (u)�ϕ (M�Wu;1�u)1[τ;1] (u)

and Wτ is aFτ -Brownian motion.
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Proof. If we defineWτ
t ,Wt �

R t
0 α (u;τ)du; we have a process inL1 (Ω) ; becauseE[

��R t
0 α (u;τ)du

��]�
E[
R t

0 jα (u;τ)jdu] < ∞; by Lemma 39. Furthermore, the quadratic variation ofWτ is t; becauseW is a
FW

t -Brownian motion and
R �

0 α (u;τ)du is a process of finite variation. Hence, by the Levy’s character-
ization of the Brownian motion, we only need to prove thatWτ is aFτ - local martingale. To show this,
using Proposition 37 and Proposition 38; we obtain the conclusion as in the proof of Theorem 2, in [15].

Theorem 41 The Brownian motion W in the decomposition(27) is FWτ _σ (τ)-adapted.

Proof. First we will show that the following s.d.e. has a unique strong solution.

E1 : Xt =
Z t

0

MX
s �Xs

ρ�s
ds+Bt ; 0� t < ρ;

whereB is a Brownian motion with respect its own filtration andρ is a random variable independent ofB

and taking values in[0;1] :We will prove first thatΨ
�
t;X[0;t]

�
= MX

t �Xt
τ�t is functional Lipschitz. We have

that ��Ψ�t;X[0;t]��Ψ
�
t;Y[0;t]

���� 1
τ� t

�
jXt �Yt j+

��MX
t �MY

t

��	 :
Obviously, jXt �Yt j � MjX�Yj

t : On the other handMX
t � MX�Y

t +MY
t ; which gives thatMX

t �MY
t �

MjX�Yj
t : We also have thatMY

t � MY�X
t +MX

t , which yieldsMY
t �MX

t � �MX�Y
t � �MjX�Yj

t : Hence,��Ψ�t;X[0;t]��Ψ
�
t;Y[0;t]

���� 2
τ�t M

jX�Yj
t : By Theorem 7 in chapter V of Protter [19], we obtain the exis-

tence and uniqueness of solutions forE1.
Now, if we takeBt =Wτ

t andρ = τ; we obtain thatX must coincide withWt for t < τ: This means
thatWt is FWτ

t _σ (τ)-adapted. Furthermore, as limt!τ Wt =Wτ ; one also has thatWτ is FWτ

t _σ (τ)-
adapted.

The next step is to show existence and uniqueness for solutions of

E2 : Xt =G�
Z t

ρ

ϕ (G�Xs;1�s)ds+Bt �Bρ ; ρ � t < 1;

whereB is a Brownian motion with respect its own filtration,ρ is a random variable independent ofB and
taking values in[0;1] andG is aF B

ρ -adapted random variable. The existence is proved in Proposition 34
and the uniqueness in Theorem 33. If we takeBt =Wτ

t ;ρ = τ andG=M we obtain thatX must coincide
with Wt for t � τ: This means thatWt is FWτ

t _σ (τ)-adapted.

Theorem 42 Let L(Y) = argmax0�t�1Yt .Then�
Y�;θ �;Z�;H�;ξ �;λ �

�
= (W;α (�;τ) ;Wτ ;H;H (1;W1) ;L(W))

satisfies all the requirement to be a(L;µ)-weak equilibrium except the càglàd property in the condition
v).

Proof. The proof of this result is exactly the same as the one for Theorem 35, except for the càglàd
approximations used. In this case, forε 2 (0;1) ; defineτε;+ = (τ+ ε)^1 andτε;� = (τ� ε)^0: Then
the processαε = fαε

t , α t1(τε;�;τε;+]c (t) ; t 2 [0;1]g convergesP�λ ;a.e. toα asε # 0 and it satisfies
jαε j � jαj.

7.3 Comparing the expected wealth ofM and τ

In this subsection we show using numerical calculations that the information about the time at which the
total demand achieves its maximum gives less expected profit that the information about the maximum.
That is,

J(α (�:τ))� J(α (�:M)) :
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We can write

J(α (�;M)) = E
�Z 1

0

�
E
�
ξ jFW

1

�
�H (t;Wt)

�
α (t;M)dt

�
= E

�Z 1

0
(H (1;W1)�H (t;Wt))α (t;M)dt

�
:

Note that

E
�Z 1

0
H (t;Wt)α (t;M)dt

�
= E

�Z 1

0
H (t;Wt)dWt

�
�E

�Z 1

0
H (t;Wt)dWM

t

�
= 0;

because the integrability properties ofH yield that
R t

0 H (s;Ws)dWs and
R t

0 H (s;Ws)dWM
s are aFW-

martingale and aFW _σ (M)-martingale, respectively. As the same arguments work forα (�;τ) ; we
obtain that forλ 2 fM;τg

J(α (�;λ )) = E
�
H (1;W1)

Z 1

0
α (t;λ )dt

�
:

Note also that, afterτ; the compensators ofM andτ coincide. Hence, the problem is reduced to verify if

A(M), E
�
H (1;W1)

Z
τ

0

M�Wt

1� t
dt

�
� E

�
H (1;W1)

Z
τ

0

Mt �Wt

τ� t
dt

�
, A(τ):

7.3.1 Computation ofA(M) and A(τ)

An exact computation ofA(M) andA(τ) is difficult. This is due to the fact that we need to compute
integrals with respect to the joint density of(W1;τ) conditioned toFW

t ; which is unknown. Although we
have computed explicitly this density, it turns out that it is useless because of its complicated expression.
Therefore, we perform a Monte Carlo simulation.

First of all, we have considered a uniform partitionπm=
�

ti = i
m

	
i=0;:::;m of the interval[0;1]. We

sample the paths of a Brownian motion in this partition and approximate the integral inside the expecta-
tion by its upper Riemann sum inπm. We have usedH (1;W1) as a control variate to reduce the variance
of our estimators. Recall that the variance ofH (1;W1) can be computed analytically and the covariances
Cov(H (1;W1) ;H (1;W1)

R
τ

0
M�Wt

1�t dt) and Cov(H (1;W1) ;H (1;W1)
R

τ

0
Mt�Wt

τ�t dt) have been estimated do-
ing a pilot simulation with number of simulationsn= 1000: The main simulations, including the control
variate, have lengthn= 105:We have repeated the simulations for different partitions. We quote here the
results withm= 10000 and we also compute a 99% confidence interval[L;U ] for each simulation. The
results are showed in the following tables. Hereβ denotes the value of the control variate. The pricing
rules that we use in our experiments areH(t;y) = y andH(t;Y) = ey+(1�t)=2 , which are solutions to the
heat equation (15). We denote them by the letters L and E respectively. These examples of pricing rule
are the examples considered in Back [3] and yields that the prices process follows a Brownian motion
and a geometric Brownian motion, respectively. In the first case, note that price or demand information
are the same.

Monte Carlo estimation of optimal utilitiesbA L U bσn β HbA(M) 0:684 0:675 0:693 1:074 1:062 LbA(τ) 0:189 0:186 0:192 0:376 0:616 LbA(M) 2:656 2:625 2:687 3:775 1:955 EbA(τ) 1:386 1:379 1:393 0:829 0:718 E

From these simulations one is inclined to postulate thatJ(α (�:τ))� J(α (�:M)).
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Remark 43 It is worth pointing out that these examples can also be considered in the Karatzas-Pikovsky
setting, see [12]. In this setting, one studies the portfolio optimization problem of an agent with additional
information, with respect to the small investor. This model assumes that the price dynamics is given
exogenously and that the insider can not influence the price process (for more information, on this type
of formulation, see e.g.[12], [1], [9], [8], [7], [3] and [6], among others). In fact, in this framework

the finiteness of logarithmic utilities for the insider is determined by the quantityE
hR 1

0 jα(s)j2ds
i
. By

Lemmas 39 and 32, we have that in both cases the logarithmic utility for the insider is infinite. However,
as the compensator is the same afterτ, we decided to compute the previous expectation untilτ: The
result is

E
�Z

τ

0
jα(s;M)j2ds

�
< E

�Z
τ

0
jα(s;τ)j2ds

�
= ∞;

which is the reverse conclusion as the one shown in the above table. Nevertheless, there are two major
differences between our approach and the Karatzas-Pikovsky’s one. First, in Karatzas-Pikovsky’s ap-
proach the insider is risk averse, while in our approach is risk neutral. Moreover, in Karatzas-Pikovsky’s
approach the insider has no influence in the price dynamics, while in our model the price process is
driven by the insider’s demand. Therefore, it would be interesting to extend our model to risk averse
insiders to try to examine this issue further.

8 Conclusions

In this paper we construct a model which allows the existence of a rational expectations equilibrium, in a
weaker sense than that of Kyle-Back’s setting, with an insider possessing information different from the
value of the asset at the end of the trading interval. We provide sufficient conditions for the existence and
uniqueness in law of a weak equilibrium. Our model allows to compare the expected wealth obtained by
insiders with different kinds of information. We study in some detail the examples of the maximum and
the time at which the maximum of the demand is achieved, finding that the first provides more expected
final wealth than the second. In order to deal with these examples we prove a new initial enlargement
formula for the argument of the maximum of a Brownian motion. Moreover, we prove the existence and
uniqueness of a strong solution for a stochastic differential equation with a drift degenerating at a random
time.

9 Appendix

Lemma 44 Let F be a function satisfying an exponential growth condition andθ a process satisfying
(4), thensup0�t�1

��F(t;Yθ
t )
�� belongs to Lp (Ω) ; for any p� 0; where Yθ

t =
R t

0 θ sds+ Zt and Z is a
Brownian motion.

Proof. Thanks to the exponential growth condition onF; one has that

sup
0�t�1

���F(t;Yθ
t )
���p� A sup

0�t�1
exp

�
pB

����Z t

0
θ sds+Zt

�����
� AexpfpB sup

0�t�1

����Z t

0
θ sds

����gexpfpB sup
0�t�1

jZt jg:

The result follows from(4) and the fact that the law of sup0�t�1 jZt j has finite exponential moments.

Proposition 45 Let Θ be a convex real linear space and J a functional defined onΘ: Assume that for
anyθ 2Θ there exists the Gâteaux derivative of J. That is, for all v2Θ the following limit exists

DvJ(θ), lim
ε!0

J(θ + εv)�J(θ)
ε

;

and the application v7!DvJ(θ) is linear for everyθ 2Θ: Then, the following statements are equivalent:
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1) J is concave;

2) J
�
θ

2�� J
�
θ

1�+D
θ

2�θ
1J
�
θ

1� ; 8θ
1;θ 2 2Θ:

Proof. If J is concave thenJ
�
αθ

2+(1�α)θ 1� � αJ
�
θ

2�+ (1�α)J(θ 1);8θ
1;θ 2 2 Θ;α 2 [0;1]:

This implies

J
�
θ

1+α
�
θ

2�θ
1���J

�
θ

1�
α

� J
�
θ

2��J
�
θ

1� ; 8θ
1;θ 2 2Θ;α 2 [0;1]:

Taking the limit whenα tends to zero, by the assumption on the existence of the Gâteaux derivative,
we obtainD

θ
2�θ

1J
�
θ

1� � J
�
θ

2�� J
�
θ

1� ;8θ
1;θ 2 2 Θ: Conversely, assume that the statement 2) is

satisfied. Setθ = αθ
2+(1�α)θ 1; then we have that

J
�
θ

1�� J(θ)+D
θ

1�θ
J(θ) ;

J
�
θ

2�� J(θ)+D
θ

2�θ
J(θ) :

Multiplying the first inequality byα and the second one by(1�α) and adding them one obtains

αJ
�
θ

1�+(1�α)J
�
θ

2�� J(θ)+D
α(θ1�θ)+(1�α)(θ2�θ)J(θ) :

As α(θ 1�θ)+(1�α)
�
θ

1�θ
�
= 0; the result follows.

Lemma 46 Assume that H2H andθ ;v2Θb(M;Z): Then, for allε 2 (�1;1) ; we have that for i= 1;2

di

dε i

�
E
�Z 1

0
(ξ �H(t;Yθ+εv

t ))(θ t + εvt)dt

��
= E

�Z 1

0

di

dε i

�
(ξ �H(t;Yθ+εv

t ))(θ t + εvt)
�

dt

�
:

Proof. We do the proof fori = 2. First, we estimate���� d2

dε2

n
(ξ �H(t;Yθ+εv

t ))(θ t + εvt)
o����

�
�����Hyy(t;Y

θ+εv
t )

�Z t

0
vsds

�2

(θ t + εvt)

�����+
����2Hy(t;Y

θ+εv
t )

�Z t

0
vsds

�
vt

����
�C

n���Hyy(t;Y
θ+εv
t )

���+ ���Hy(t;Y
θ+εv
t )

���o ;
whereC is a constant which is independent ofε. These quantities are bounded inLp(Ω) as Lemma 44
shows. Hence, the result follows by the dominated convergence theorem.

Definition 47 Let θ 2Θsup(M;Z) : For every n2 N; defineθ
n
t = θ t1fsups�t jθsj�ng: Clearly, the sequence

fθ ngn2N � Θb(M;Z): We also have thatfθ
ngn2N converges P� λ a.s. toθ . Furthermore,fθ

ngn2N
converges toθ in L1 (P�λ ) by dominated convergence, becausejθ nj � jθ j.

Proposition 48 Assume thatθ 2 Θsup(M;Z) : Then,limn!∞ J(θ n) = J(θ) ; where J is the functional
defined in(7) :

Proof. We can define the following sequence ofFI -stopping timesτn = infft � 1 : sups�t jθ sj > ng: In
the setfτn > tg; one has that for alls� t; jθ sj � n andθ

n
s = θ s: On the other hand, in the setfτn � tg;

one has that sups�t jθ sj> n andθ
n
t = 0:Moreover,τn " 1; P-a.s., whenn tends to infinity. We have that

jJ(θ)�J(θ n)j �
����E�ξ

Z 1

0
(θ t �θ

n
t )dt

�����+ ����E�Z 1

0

�
H(t;Yθ

t )θ t �H(t;Yθ
n

t )θ n
t

�
dt

�����
, An

1+An
2:

27



Applying Cauchy-Schwarz, we obtain

An
1� E

�
jξ j
����Z 1

0
(θ t �θ

n
t )dt

������ E[jξ j2]1=2E
"�Z 1

0
(θ t �θ

n
t )dt

�2
#1=2

:

The first expectation is finite, becauseξ has moments of second order. For the second expectation, notice

that if we fix ω 2 Ω; by dominated convergence, we have that limn!∞

�R 1
0 (θ t �θ

n
t )dt

�2
= 0;P-a.s.,

becauseθ 2 L1 (Ω� [0;1]) : Furthermore,�Z 1

0
(θ t �θ

n
t )dt

�2

=

�Z 1

τn
θ tdt

�2

�C sup
0�t�1

�Z t

0
θ sds

�2

;

which is inL1 (Ω) ; by hypothesis(4). Therefore, also by dominated convergence one has that

lim
n!∞

E

"�Z 1

0
(θ t �θ

n
t )dt

�2
#
= 0:

For the termAn
2; we have thatZ 1

0

�
H(t;Yθ

t )θ t �H((t;Yθ
n

t )θ n
t

�
dt =

Z 1

τn
H(t;Yθ

t )θ tdt; P-a.s.

Notice that, Z 1

0

���H(t;Yθ
t )θ t

���dt � sup
0�t�1

���H(t;Yθ
t )
���Z 1

0
jθ t jdt < ∞; P�a:s:;

becauseθ 2 L1 (Ω� [0;1]). Hence, limn!∞
R 1

τn H(t;Yθ
t )θ tdt= 0;P-a.s., by dominated convergence. Fur-

thermore,
���R 1

τn H(t;Yθ
t )θ tdt

����Csup0�t�1

��R t
0 H(s;Yθ

s )θ sds
��which is inL1 (Ω) ; by hypothesis(2). Thus,

by dominated convergence theorem we obtain that limn!∞ An
2= 0:

Proposition 49 Assume thatθ 2Θsup(M;Z) satisfies the optimality equation(9). Then,limn!∞ Dη�θ
nJ(θ n)

= 0; for all η 2Θb(M;Z); where Dη�θ
nJ(θ n) is given by(8) :

Proof. As θ 2Θsup(M;Z) satisfies equation(9), Remark 13 yields

E
�Z 1

0
(η t �θ

n
t )f(ξ �H(t;Yθ

t ))�
Z 1

t
Hy(s;Y

θ
s )θ sdsgdt

�
= 0:

Therefore, ��Dη�θ
nJ(θ n)

��� ����E�Z 1

0
(η t �θ

n
t )(H(t;Y

θ
t )�H(t;Yθ

n

t ))dt

�����
+

����E�Z 1

0

�Z t

0
(ηs�θ

n
s)ds

�
(Hy(t;Y

θ
t )θ t �Hy(t;Y

θ
n

t )θ n
t )dt

�����
, Bn

1+Bn
2:

For the termBn
1; one has that

E
�Z 1

0
(η t �θ

n
t )(H(t;Y

θ
t )�H(t;Yθ

n

t ))dt

�
= E

�Z 1

0
1ft>τngη t(H(t;Y

θ
t )�H(t;Yθ

τn+Zt �Zτn))dt

�
:
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Whenn tends to infinity the integrand in the last equation tends to 0; P
 λ -a.s. So we only need to
justify the application of the dominated convergence theorem. We have,P
λ -a.s., that���η t(H(t;Y

θ
t )�H(t;Yθ

τn+Zt �Zτn))
����Cf sup

0�t�1

���H(t;Yθ
t )
���+ ���H(t;Yθ

τn+Zt �Zτn)
���g;

By Lemma 44, sup0�t�1

��H(t;Yθ
t )
�� is an integrable random variable. These quantities are bounded in

Lp(Ω) as the proof of Lemma 44 shows. Hence by dominated convergence limn!∞ Bn
1= 0: For the term

Bn
2; one has

E
�Z 1

0

�Z t

0
(ηs�θ

n
s)ds

�
(Hy(t;Y

θ
t )θ t �Hy(t;Y

θ
n

t )θ n
t )dt

�
= E

�Z 1

τn

�Z t

0
(ηs�θ

n
s)ds

�
Hy(t;Y

θ
t )θ tdt

�
= E

�Z 1

τn

�Z t

τn
ηsds

�
Hy(t;Y

θ
t )θ tdt

�
+E

�Z 1

τn

�Z
τn

0
(ηs�θ s)ds

�
Hy(t;Y

θ
t )θ tdt

�
, Bn

2;1+Bn
2;2:

The termBn
2;1 converges to zero due to the dominated convergence theorem as����Z 1

τn

�Z t

τn
ηsds

�
Hy(t;Y

θ
t )θ tdt

����= ����Z 1

τn
ηs

�Z 1

s
Hy(t;Y

θ
t )θ tdt

�
ds

����
�C sup

0�t�1

����Z t

0
Hy(s;Y

θ
s )θ sds

����Z 1

τn
jηsjds�C sup

0�t�1

����Z t

0
Hy(s;Y

θ
s )θ sds

���� 2 L1 (Ω) ;

thanks to condition(2) and that
R 1

τn jηsjdsconverges to zero asn tends to infinity. The termBn
2;2 converges

to zero due to the dominated convergence theorem as����Z 1

τn

�Z
τn

0
(ηs�θ s)ds

�
Hy(t;Y

θ
t )θ tdt

�����C sup
0�t�1

����Z t

0
(ηs�θ s)ds

����
� sup

0�t�1

����Z t

0
Hy(s;Y

θ
s )θ sds

���� 2 L1 (Ω) ;

thanks to conditions(3) and(4) ; thatη 2 Θb (M;Z) and that
��R t

τn Hy(s;Yθ
s )θ sds

�� converges to zero asn
tends to infinity.

Lemma 50 Let a;b2 R; and s; t > 0; thenZ ∞

0
φ (x+a;s)φ (x+b; t)dx= φ (b�a;s+ t)

�
1�Φ(

at+bs
s+ t

;
st

s+ t
)

�
:

Proof. To prove this statement, rewrite the product of the two density functionsφ (x+a;s)φ (x+b; t) as
a single density function by completing squares in the exponent.
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