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Abstract

The goal of this article is to introduce a new approach to model equilibrium in financial markets
with an insider. We prove the existence and uniqueness in law of equilibrium for these markets. Our
setting is weaker than Back’s one and it can be interpreted as a first theoretical step towards developing
statistical test procedures. Additionally, it allows various forms of insider information to be considered
under the same framework and compared. As major examples, we consider the cases of the maximum
of the demand and the time at which this maximum is taken, which have not been previously treated
in the literature of equilibrium in financial markets with inside information. Simulations indicate that
the expected wealth for the maximum is greater than the expected wealth for its argument.
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1 Introduction

In recent years, the study of mathematical models for financial markets with asymmetry of information
has been gaining an increasing attention from mathematical finance researchers. In a seminal paper and
from the market microstructure point of view, Kyle [16] introduced a model in which an insider, who
knows the value of the stock at some future time, optimizes his wealth while the market-maker makes
prices rational, that is, a rational expectations equilibrium model. The main features of Kyle's model are
that it gives finite utilities and that it is a model of price formation. That is, the insider controls the price
process through his demand of stock shares. Kyle’s model has been extended hy Back [2], Lasserre [17],
Cho [5] and Campi and Cetihl[4], among others.

We consider a continuous time market composed of one risk-free asset and one risky asset. We
assume, without loss of generality, that the risk-free rate is zero. Trading in the risky asset is continuous
in time and quantity. Furthermore, the market is order-driven, that is, prices are determined by the
demand on the risky asset.

There is to be a public release of information at time 1. This information reveals the value of the
risky asset, which we denote liy As the market is order-driven, this entails tidawill be the price at
which the asset will be traded just after the release of information and, therefore, the final profit obtained
through trading on this asset will depend&n

There are three representative agents in the market: the market maker, the insider and the noise
trader. The role of the market maker is to organize the market. That is, according to the asset’s aggregate
demand, the market maker sets the price of the asset and clears the market. The insider is assumed to
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know at the beginning of the trading period some strong information AsayL(Y), not necessarily

equal to&, which depends exclusively on the total demahdThis agent uses this information in order

to maximize his/her expected profit. The noise trader represents all the other participants in the market.
Noise trader’s orders are a consequence of liquidity or hedging issues and are assumed to be independent
of A, but not necessarily df. Thanks to the demand of the noise trader, denoted, ilye market maker

cannot observe the demand of the insider.

Our formulation is weak in the sense that the ve¢fofl, Z) is not given beforehand, in contrast with
the previous literature on this subject. The initial data in our formulatidp j&) whereu is the law of
& and the other ingredients of an equilibrium are part of the problem. The mathematical motivation for
using a weak set-up is due to the fact that in a strong formulation the relationship betwgeandZ
can not be simply stated in general. This relationship is not unique if one only wants to give as initial
data the law of the final price. Furthermore, in genetais not independent ot or Z. However, it is
assumed thaf is made public at the end of the trading period. Heidcis,incorporated in the functional
to be optimized in the equilibrium.

From the economic modelling point of view, the situation can be explained as follows. Suppose the
existence of a financial controller, say a member of an exchange commission, which would like to test
after the time interval has been totally observed (§a¥]) the large trader/insider behavior in a sector
of the market. By a sector, we understand a collection of homogeneous companies sharing a similar
activity, for which one can assign a law fbrits value at = 1. The financial controller observes the data
for different companies in the sector and after some renormalization we can regard the data as different
realizations or sample points in his universe.

With the data, a lavu for £ can be inferred and a functiorlabf the total demand is fixed for testing.

The first step for the controller is to know if it is possible that there exists insiders trading in the stocks of
this sector using the informatidr(Y) and being in equilibrium. Our paper addresses this question. The
next step would be to design a statistical test according to the probabilistic properties of the equilibrium,
but we do not pursue this goal in this paper.

Now, we briefly discuss the concept of weak equilibrium used in this paper.

The difference between the classical notion of equilibrium used in Back [2], Section 1, and the one
proposed here is that in Back the information is exogenously given while here is also part of the definition
of weak equilibrium.

In particular, condition vii) in Definitiofi |7 states that if we fix the noise trade process and the infor-
mation, the strategy used by the insider maximizes his expected final wealth within a suitable admissible
space. This condition can be also interpreted as a local equilibrium condition because the noise trade
process and the information are fixed.

This interpretation is linked to the notion of partial (or local) equilibrium. If the insider finds him-
self/herself at such partial equilibrium point there is no particular reason to move from such a point.

From the point of view of a financial controller, the procedure is carried out after all the data is
available. That s, the final price has already been announced and the controller wants to test the existence
of some insiders in the market. Once the type of information is selected, one can statistically check if the
strategy used by the insider(s) is locally optimal.

It is important to point out that this optimal strategy has the same functional form as the compensator
of the Brownian motioW with respect to its natural filtration enlarged with the random variae).

Besides the weak equilibrium feature, there are various delicate mathematical points where our results
and techniques differ from previously mentioned research. Briefly summarizing, we mention:

1) Due to the generality of the functionl) we use variational calculus (or dynamic principle) and
we do not obtain an HIB equation formulation. In particular, optimal strategies do not depend
only on the insider’s additional information and the value process, the admissible strategies do not
form a linear space and the expected profit dependswhich it is not measurable with respect to
the insider’s filtration. These features introduce some difficulties in order to obtain the optimality
results.

2) One of the conditions of admissibility require that the optimal strategy has to be adapted to the
filtration generated by noise traders process and the insider information. This result which was



easy to obtain in previous articles (in fact, this was just a property of Brownian bridges) becomes
extremely difficult in the generality presented here. In fact, we consider as examples the case where
L (Y) = max Y; corresponds to the maximum of the demand and to the argument of this maximum
L(Y) =argmaxY;. This leads to the study of existence and uniqueness of solutions of stochastic
differential equations with path dependent coefficients which degenerate at random times.

Finally, we compare the expected wealth obtained by the large trader/insider in the two main exam-
ples considered. The simulations indicate that knowinthe time at which the maximum of the total
demand is achieved, gives less expected wealth than kndwjiige maximum of the total demand.

As a final remark, we want to state that one of the main goals of the article is to raise/contribute to
the discussion on the issue of the equilibrium concept for insider-large trader for general information as
it is explained in the article. We do not pretend that this is the unique way to solve the problem. We hope
that other researchers will also present alternative proposals and comments on this model.

The paper is organized as follows. In Section 2 we give some basic definitions and introduce our
weak formulation of equilibrium. Section 3 contains the discussion of the optimization problem for the
insider and a optimality equation is deduced. In Section 4 we relate the properties of the solutions of the
optimality equation with the rationality of prices. Section 5 is devoted to state the main results on the
existence and uniqueness in law of a weak equilibrium. In Section 6 we deal with two basic examples,
previously treated in the literature, the Back’s example and an example on binary information. Section
7 aims to introduce two new examples in the literature of equilibrium for asymmetric markets. First,
in the case that the additional information held by the insider is the maximum of the total demand and
second, in the case of the time at which this maximum is attained. We state and prove the existence and
uniqueness in law of a weak equilibrium in both cases. Finally, we numerically compare the expected
wealth obtained by the insider in these two examples. Section 8 is dedicated to the conclusions. Finally,
Section 9 contains an appendix devoted to prove some technical results.

Throughout the articl€ will denote a constant that may change from line to lité(.2") denotes
the law of the random elemert’.

2 Weak formulation of equilibrium

In this section we introduce the concept of weak equilibrium. First we define the class of pricing rules
and admissible strategies.

Definition 1 We say that a function F[0,1] x R — R satisfies an exponential growth condition if there
exist positive constants B such thatF (t,y)| < AV, for all (t,y) € [0,1] x R.

Definition 2 A pricing rule is a function He 3((0,1) x R), such that H(t,y) > 0,vt € [0,1] and
H, Ht, Hy, Hyy satisfy an exponential growth condition. We denoteiythe set of functions H satisfying
these properties.

In the previous definition we require the pricing rules to satisfy some regularity and growth conditions
for technical reasons. From a modeling point of view, the important assumption is the requirement that
Hy (t,y) > 0,Vt € [0, 1]. This implies that the insider can invert the price process to obtain the total demand
and, hence, the noise trader demand, see Rdrhark 8 c) below.

Definition 3 Given a process Z and a random variable M, we de@gy(M,Z) as the class of' =
FZ v o(M)-adapted caglad processes[i 1) which satisfy
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sup / Hy (s,/ Oudu+Zs> 6<ds € L1 (Q), for somee > 0 (3)
0o<t<1 0 0
and .
exp<C sup / Gsds) ell(Q), vCc>o0 (4)
0<t<1|/0
forallH € J7.

Remark 4 We could replace the technical conditiofi , (2) , (3) and (4)) in the definition 0Bsuy(M, Z)
by the stronger ones

1
/ 165|* ¢ dse L1(Q), for somee > 0 ()
0
and t
eXp<C sup / GsdsD cL}(Q), vc>o. (6)
o<t<1|J/0

The advantage is that conditiorf§) and (€) define a linear space. On the other hand, condit{Bhis
difficult to verify in specific examples.

Definition 5 Given a process Z and a random variable M, independent eféZsay that a process X is
a (M, z)-strategy process if there exigisc Osyp(M, Z) such that X= [50sdst € [0,1].

Definition 6 Given a final price € L?(Q), a stochastic process Z, a random variable M, independent
of Z, a price semimartingale process=P (R );c[o ) With respect tafZ v o (M) and a(M, Z)-strategy
process X= (X )ic(o,1, We denote by V=V (X, P,§) the agent final wealth defined by

1
V(XPE) =Vo+ [ XdR+ (£ )X,
whenever the above stochastic integral is well defined. Hgie & constant.

Definition 7 (Weak Equilibrium) Let L: C[0,1] — RK be a measurable functional on the canonical
Wiener space angt be a probability measure oR with fozu (dx) < 0. We say that there exists
a (L,u)-weak equilibrium if there exists some probability spa€e.%,P) where there exists three
processes ¥, 8* and Z*, a random variable*, a random vectol™ and a function H € # such
that

i) Y =X +2Z, wherex = J{ 6idsfort € [0,1].

i) A" =L(Y*)isindependent of the procezs.
iif) Z* is a Brownian motion.

iv) £* has the lawu.

V) 0" € Osyp(A",Z%).
vi) Prices are rational. That i 2 H*(t,Y;*) = E[£"|.%,"] fort € [0, 1].
vii) Forall 6 € Ogyp(1*,Z*), one has

ElV (X,PE")] <EV (X*,P*,&7)],
whereX = [;0sds Y% = X +Z* andP. = H*(-,Y?).

Now we give a series of remarks related to this definition.



Remark 8 a)ltis clear that Z is aF%" v o(1*)-Brownian motion, as Zis adapted to this filtration and

is independent ot *.

b)The price of the asset will be equaldb, just after the release of information at time-t1. This price

has to have the pre-specified law Furthermore the relationship betweéh andA ™ is specified through

the rationality of prices (property vi) above) and in genefélis not independent from*Z

c)The natural definition of the insider filtration & = FZ" v 6(1*). This is due to the monotonicity of

the pricing rule and the fact that the insider observes the prices, one has that at time t the insider can
infer Z*. Note that in generaF"" is not necessarily included if¥ .

d)The set of A, Z*)-strategies is usually non empty. Furthermore, in the optimization problem vii),
one may think that is more natural to restrict the opportunity set of strategies to the ones satisfying
L(Y%) = 1*. This means that the insider would realize the giving strong information on the total demand.
In the next section, we will see that the optimum, with or without this restriction, it is the same given
condition ii) in the Definitiof J7.

e)From now on we will always assume thats a probability measure oR satisfying [ X2u (dx) <
without any further mention.

Note that in the above (partial) equilibrium set up the insider optimizes his expected profit given the
informationA™ andz*. In this aspect, the above equilibrium is a partial one. In other words, if the agent
uses the strateg§”, there is no (local) reason to change strategy. It can also be considered as an stable
point where the insider can actually realize all the conditions for a stable market. The above set-up and
the subsequent proofs to follow are not constructive.

3 Optimization problem for the insider

In this section we give necessary conditions for a process to solve the optimization problem stated in
property vii) Given a Wiener process and a fixed random variabM, which is independent of, we
defineF' = F4 Vv o (M). As pointed out in the introduction, we use the classical approach of variational
calculus.

From now on, we denote by a super-ind&xnY; the dependence of the total demand on the strat-
egy of the insider. Theny® = fé 0sds+ Z;. Before studying the optimization problem we remark the
following property for the portfolio process.

Lemma 9 If 6 € Osy(M,Z) then the price process?P=H (t,Y?) is aF'-semimartingale and its de-
composition is given by

t 1 t
PO =R+ [ {h(s Y) + SHiy(sYE) + Hy(s &) Oshds | Hy(s Y)az

The proof is a straightforward application of I1td’s formula, ldsc C1?((0,1) x R) andY? is a
semimartingale in the filtratiofi' = F# Vv o(M). The next lemma is obtained using the integration by
parts formula.

Lemma 10 Let 6 be anyF' -adapted process such thﬁi |6s|ds< « a.s. Then, we have that
1
VEV(X,PY E)=Vo+ / (€ —H(t,Y?))odt.
Jo

Without loss of generality we assume from now on gt 0. The optimization problem we consider

in this sectionis max J(0), where
0€OsupM,2)

J(Q)AE{/Ol(éH(t,Yte))tht}, 6 € Osup(M, Z). )

We also denote bg* £ arge @mz(ag/l( Z)J (0) when this process exists. The difficulties to solve this prob-
€0OsuplM,

lem are due to the nonlinearity of the functiodadnd the fact tha®s,p(M, Z) is not a linear space.



Remark 11 Note that, for@ € Ogp(M,Z), we have that

9(6)| <E {|§ ‘/Ol etdtH +E H/OlH(t,Yte)thtH <o,

due to& € L?(Q) and that6 satisfies conditiongd) and (2). Furthermore, if6 is F'-adapted and
satisfies the integrability conditions that defi®ey,(M,Z), but is not necessarily caglad, then we also
have thaiJ (0)| < .

The first step in our strategy to solve the problem is to study the propertlz®9fin the following
linear subset 0®syp(M,Z) :

©p(M,Z) = {6 € Ogypy(M, Z) : there existK > 0, s.t. Vo, |0s(w)| < K}.
Lemma 12 If v, 0 € Oy(M,Z), then
DVI(8) 2 S3(6+v)ess
de
_E [/0'1\4(5 “H (t,Yte))dt} _E Uol (/0t vsds) Hy(t,Yte)tht} . ®)

Furthermore, the operator D (6) : v— D,J(0) is linear.

Proof. First note that for any, v € ©,(M,Z) ande > 0 one has thafl + ev € ©,(M,Z) and differenti-
ating under the integral sign (see Lemimé 46) and applying Fubini’s theorem, one obtains

30 +enlo=B[ (e —HEY) - [ HsY)odsa]

_E Uolvt(g - H(t,Yte))dt] _E [/01 (/Otvsds> Hy(tme)etdt] .

Remark 13 If 6 € Ogyp(M, Z) is such that

1
B¢ -HLY) - [ (s ¥)osdsl# | —o ©
t

then for any \e ©y(M, Z) we have

E Uolvt(g - H(t,Yte))dt] _E [/01 </Otvsds> Hy(tme)etdt] —0.

From now on, we refer to equatic@ as the optimality equation.

The next step is to prove the concavitydd®) in ©,(M, Z). This is done in the following proposition,
which makes use of a general result on convex analysis, see Proppsjtion 45.

Proposition 14 If H € J# satisfies

1
Hey (t,y) + QHyyy(t, y) <0, (10)

then J(0) is concave iry(M, Z).



Proof. We will show that for evenyp,n € ©,(M,Z), we haveD,, _J () (n)—J(6), which thanks

>J
to Proposition 4p is equivalent tb(6) being concave Givef,n € Op(M,Z), o € [0,1], defines =
n—6 and¥® £ 0 + ad. Fora € [0,1], defineq (a) £ Dy_gJ (W*) = % (W*). We will show that

o (a)= ddezJ(W“) < 0. First, by Lemm@6 we have that

/01 </Ot 5Sds>2Hyy(t,yta)ngdt] B2 (/O‘ 53d5> Hy(tm“)&dt] |

Then we apply integration by parts in the second expectation to obtain that

E [/012 </0t 8sds) Hy(t,YtW)Stdt} - </0165ds>2Hy(1,Y1qﬂ)]

l t 2 o 1 [04 o
/0 (/0 6st) [ (60 + Sy + Hy (6 0w

¢'(a) =—E

—-E

Hence,

(/01 Ssds>2Hy(1,Yf’“)
./01 (/Ot sd5> {Huy(t, Y )+;Hyyy(t,vt‘““)}dt].

Using thatHy > 0 and equatio@ we conclude thap’ (o) < 0 and therefor® is a decreasing function.
On the other hand, an application of the mean value theorem gived(tihat-J (8) = D_gJ(W*') =
¢ (a*), for somea* € [0,1]. Thereforel(n) —J(6) < ¢ (0) =D;_4J(0). m

The following theorem gives a sufficient condition to find the optimal proce€gip(M,Z) .

¢'(a) = —E

+E

Theorem 15 Let H € .7 satisfy(10) . If 6* € Osyp(M, Z) is such that
* 1 *
B |(E—HEY )~ [ Hys Y )ouds| # | =0
t

then J(6) < J(6*),6 € Osyp(M, 2).

Proof. According to Propositio@8 and Propositjor] 49, there exists a seqyéncg, . C Op(M,Z)
such that lim .« J(0°") = J(6") and limy o Dg_g+nJ (6*") = 0,V € Op(M,Z). Using Proposition
[14, we obtain thad is concave i®,(M, Z) and therefore we have théitc ©,(M, Z)

J(8) <J(6") +Dg_g-nJ (67").

Therefore, taking limits one gets thato) < J(6*) for all 6 € ©,(M, Z). Using Propositioh 48 again, we
have that for alb € Osyp(M, Z) there exists a sequen¢@"}, .y € ©(M,Z) such that lim_.,J (6") =
J(6)<J(6%). m

4 Properties of the solutions to the optimality equation

The following proposition is important to find a strate@¥ satisfying the optimality equation and yield-

ing a rational price. It tell us that given an insider’s strategy satisfying the optimality equation, then the
price process associated to this strategy is rational if and only if the market maker sees the associated
total demand as a Brownian motion. In other words, the associated price process is rational if and only if
the market maker sees the total demand as if only the noise trader was buying or selling stocks. Moreover
this suggests the connection between the optimal insider's demand and the compensator of a Brownian
motion with respect to a enlarged filtration, see Rerpafk 19 below.



Proposition 16 Assume there exists a processe Ogyp(M, Z) satisfying the optimality equatio@.
Then H-,Y® ) is aF"’ -martingale if and only if ¥* is aFY’ -Brownian motion.

Proof. Assume thad* andY,?" = fé 0:ds+ Z; satisfy the optimality equation. Note that this equation is
equivalent to

* t *
HEY) = [ Hy(s Y)oLds=BIE|7) - M (11)

whereM, = E[ [3 Hy(s,Y¢")05ds . #]. Makingt = 0 in (L), we obtainH (0,0) + Mo = E[£|.Z}]. Ap-
plying 1t6’s formula toH (t,Y;®") in equation(L1), we get

/Ot{Ht(S,YSG*) + %Hyy(SaYse*)}dS
[ s Y )z BIEL )~ BIE LA - (M Mo, (12)

forallt € [0,1]. The r.h.s of equatiof2) is a continuou§' - local martingale with initial value 0 and the
I.h.s. is a finite variation process with continuous paths. Therefore, both processes must be identically
zero. Therefore, we have that

1

He(t,Y,0) + EHyy(t,\(t"*) =0, telo,1]. (13)

Combining the above equation with Itd’s formula, we have

* .t * *
H(t, Y ) = H (0,0) + / Hy (s, Y& )dY?". (14)
0

If YO is aFY* -Brownian motion then the stochastic integfiHy (s, Y2 )dY¢" is a martingale due to

Lemma' ThereforH t,Y?) is aIE‘Ye*-martingale. Conversely, note that dg > 0, we can write
ft dH &Y
0Hy SYG*
martlngale. AsY?" has the same quadratic variation Zsve obtain thatr®" is actually a Brownian
motion with respect to its own filtratiorm

Hence, if we assume that(t,Y,?") is aF¥® -martingale, therv®” is aF' -local

Corollary 17 If there exists a proces®" € Osyp(M, Z) satisfying equatio@ and H(-,Y?") is anF'? -
martingale, then H and must satisfy

(1Y) + SHy (1Y) =0 (15)

and .
H(LY) = B[§|.71]. (16)

Proof. Equation and the fact thav®" is a Brownian motion in its own filtration leads to equation
(19 . Makingt = 1 in the optimality equatioid), one obtaing16). m

5 Existence and uniqueness in law of weak equilibrium

We start this section with a result giving sufficient conditions to obtaih, & )-weak equilibrium. The

first condition in Theorerh 18 essentially says that the jawf the asset valué must be a smooth trans-
formation of a standard normal random variable. Actually, in the examples of the following sections we
do not specify the lavwu but the pricing ruleH, which gives this smooth transformation. We will con-
sider the pricing rules studied previously in the literature, which-afey) = y andH (t,y) = e/+(1-1/2,
see[[2]. Notice that the exponential pricing rule has much more economical interpretation as it implies



that prices are lognormally distributed. The second condition says that there exists a Brownian motion
W such thatW is a semimartingale with respect to enlarged filtrat®h v o (L (W)). According to
Propositior] 1B, if the insider wants to obtain a rational price process then the total dg€maunt be a
Brownian motion with respect to its natural filtration. Therefore, it is natural to impose that the additional
information of the insider, given bly(Y), is such that the total demand remains a Brownian motion with
respect to the enlarged filtratid v o (L (Y)) and then use the compensator as the insider’s strategy.
The technical condition in order to carry out this argumeiitis’ o (L (Y)) = F' plus some integrability
conditions, which is the third condition in the theorem.

From the economic point of view, it seems reasonable to expect that the insider can not held "too much
information" for an equilibrium to hold. In our framework this is reflected in the semimartingale property
of W. In fact, if L(Y) gives too much information to the insider, théhwill not be a a semimartingale
with respect to the enlarged filtration and, therefore, prices will not be rational. Although there exists
a general criterion to ensure that a given functional satisfies this semimartingale condition, known as
Jacod’s criterion, see for instande [19], this criterion does not apply to our main exampl8s=
maxo<t<1W or L(W) = argmay<t<1W. In other models of insider trading, where the rationality of
prices is not taken into account, this condition is not sufficient to provide realistic models with finite
expected wealth for the insider optimization problem, seé [12]. Usually the information held by the
insider has to be perturbed by some noise, see [12] and [6].

Theorem 18 (Existence)Given a measurable functional:l#’[0,1] — RX and u a probability measure
onR satisfyingfp X1 (dx) < 0. Assume:

1) There exists H .2 such that it satisfie§l5) and

1 2 2
w(A) = E/H(l,ylm)e X/2qx VA€ B(R).

2) There exists a probability spa¢€,.#,P) supporting a Brownian motion W which is a semimartin-
gale in the filtrationFW v & (1), A 2 L (W), with semimartingale decomposition W [§ & (s,A) ds+
W, where W is aF" v & (1)-Brownian motion.

3) & € Ogup(A,WH).

Then
(Y*,G*,Z*,H*,é*,l*) = (W,(X(~,)~),W;L,H,H (17W1) ,2,)

is a(L,u)-weak equilibrium.

Proof. Verification of properties i), iii), iv) and v) in the definition of weak equilibrium is straightforward.
Property ii) follows from the fact thaty* is anFV v o (1)-Brownian motion and, hence, independent
from Z3' Vo (1) = o (1). From hypothesis 1) together with equatii]) , we have that (-, W) is a
FW-martingale. A (t,W) = E[H (1,W,) |.%"], property vi) follows. To check property vii), we apply
It6’s formula toH (-,W)) in the |.h.s. of the optimality equatiq@ with 8 = . Due to hypothesis 1) we
obtain that it is equal to

1 A
EM Hy (s Wo) dWA |7 v 6 (1)

On the other hand, hypothesis 3) implies that,A) is Y o (A)-adapted, which entails th¥l is

FW* v 6 (1)-adapted and one can conclude tB4tv o (1) = F¥* v 6 (1). Hence, due to LemnElM,
the above conditional expectation equals to zero and the conclusion follows from Thegram 15.

Remark 19 Of the three hypothesis in the previous Theorem, hypothesis 3 is difficult to verify in gen-
eral. Besides the integrability conditions in the definitior€gaf(A,W*), a (-,4) must bt v & (A)-

adapted. This property will follow i#V v o (1) = ALY o (A). This problem seems to be difficult to
solve in general.



We deal with this problem in each of the examples to follow in the next sections. The general strategy
is to show existence and uniqueness for s.d.e’s of the form

t
><(:/O o (5,6, Xog) ds+ M,

where V is a Brownian motiorg is a (degenerate) functional and G is a random variable independent
of V. Therefore, X would b&Y v ¢ (G)-adapted.

The following theorem gives a uniqueness result for(thet )-weak equilibrium found in the previ-
ous theorem. Condition 6) in the following theorem deserves a comment. This assumption roughly says
that two weak equilibriums have the same law whenever are obtained through a semimartingale decom-
position of a Brownian motion with respect to a enlarged filtration. In other words, if in Condition 2) of
Theorenj IB we use two different Brownian motions possibly defined in two diferent probability spaces,
the two different weak equilibriums obtained have the same law. From the economic point of view, this
assumption states that if the market maker knew the insider’s aditional information then he would have
exactly the same information flow as the insider.

Theorem 20 (Uniqueness in law)Assume the same hypotheses of Theprém 18 and denfté, by,
Z* H* E* A7) the(L, u)-weak equilibrium. Suppose that there exists another probability space support-
ing processes$Y, 6,2) such that

1) Y = fp 0sds+Z;
2) A =L(Y) is independent of Z
3) Z is a Brownian motion in its own filtration;
4) 6 € Ogyp(A,2);
5) H* (t,Y;) = E[H* (1,Y1)|.%] fort € [0,1].
6) F?vo(A)=F'Vvo(h).
Then, we have that?(Y*, X*,Z*,E* 1) = Z(Y,X,Z,E, 1), where & 2 H*(1,Y1), and therefore
BV (X,P.€)] = E*|V (X*,P*,&7)].

Proof. Applying Itd’s formula in the filtratior® = FZV ¢ (1), we have that

1 1
§—H*(t7Yt)—/t H;‘(S,Ys)esds:/t Hy (s, Yo) dZs,

where in the last equality we have used tHatsatisfies equatio@. After taking conditional expec-
tation, this yields
1
E [g —H*(t,Yt)—/ H; (s, Yo) 00| yt'] —o.
t
Then, by Theorern 15 we have thit) <J(8),Yn € Osup(L (Y),Z). By hypothesis 5and Proposition
one gets tha is a Brownian motion in its own filtration. Therefor&! (Y,A,&) = 2 (Y*,A",&").
As the proces8” is adapted t&"" Vo (1), then it can be written a8 = A(t, Y51, L (Y 1)), Px A-a.s..
Then, definingd; £ A(t, Yo, L(Yjo 1)) and using that? (Y*) = Z (Y), we have that

t .
E {Yt ,st/ eudu@gw(x)} —0.
S

Thus, . t
Yt:/ ésds+Mt:/ 0ds+Z,
JO 0
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whereM is aFY v ¢ (A)-martingale. Given the assumptiol), he uniqueness of the semimartingale
decomposition of with respect tdfY vV 6 (1) proves thah = 6,Px 1 a.s. m
The following result is helpful when proving thatc Osyp(4,2).

Proposition 21 Let Y be a Brownian motion antd = L (Y). Assume that Y has a semimartingale de-
composition with respect t8Y vV ¢ (1) given by Y= fé asds+Z;, where Z is aFfY v ¢ (A)-Brownian
motion. Then,

t
exp<C sup /asdsDeLp(Q), p>1 VC>0,
0<t<1|/0
and .
sup | ['F (s ¥ asdd € LP(@), p>1,
0<t<1|/0

where F is any function satisfying an exponential growth condition.

Proof. To prove the first statement, notice that

t p
exp(C sup / ocsds‘) < exp(pC sup |Y;|)exp(pC sup |Z]).
0<t<1{/0 0<t<1 0<t<1
By the Cauchy-Schwarz inequality, taking into account thaindZ are Brownian motions, we obtain
that
t p 2
B { exp(C sup / asdsD ] < (E[exp(ZpC sup |Yt|)]) < 0o,
0<t<1|/0 0<t<1

To prove the second statement, not that

’/OtF(s,Ys) add <c(p) (‘/OtF(s,Ys)dYs

)

p t
+’/0 F(sYs)dZs

Define . .
ML 2 / F(sYo)dY% and MZ2 / F (s Ys) dZs.
0 0

Here,M?! is aFY-local martingale. By the BDG inequality (see Theorem 73, pag. 222 in [19]), taking
into account thaF satisfies an exponential growth condition and tha a Brownian motion, we obtain

that
D 1 p/2
E[sup]Mﬂ} < GuE (/ F(s7YS)2ds)>
0<t<1 0
1 p/2
< GuE ( / A2exp(ZB|Ys)ds>
0
<

CoAPE {exp(pB sup Yt|)} < oo,
0<t<1

ThusM? is aFY-martingale and syp,-; [M{| € LP(Q),p > 1. We can repeat the same argument for
M?2, taking into account thal? is aFY v o (1)-local martingale.m

6 Back’'s example and an example of binary information

In this section we comment on two known examples where the general result in THegrem 18 applies.
Throughout this section we will consider a Brownian motrdefined on a complete probability space
(Q,.#,P). From now on, we denote by(x,t) the density of a centered Gaussian random variable with
variancet, by @ (x,t) its distribution function an@ (x,t) = 1— ®(x,t).

11



In all the examples to follow in the next sections, we assumeythata probability measure dR
with [ x?u (dX) < c0 and that there existd € # satisfying(15) and

wim= [ P DI VACBR).

Theorem 22 Let W be a Brownian motion. Then W is a semimartingale respect to the filti&ffon
o (W) with decomposition

W - /Ot (X(u)Wl)du_i_V\éWl, Wte [07 1]7 (17)

where WY is aFW v ¢ (W;)-Brownian motion,

Wy —W
1-t

o (t, W) = (18)

forallt €[0,1).

The previous result is well known and its proof can be found, for instancg, in [11], Théoréme 1. In
[11], Corollaire 1.1, it is also discussed the connection between the Brownian Bidget\W }o<t<1
and the Brownian motion{lvwwl}ogd, showing that these two processes have the same natural filtration
and thaw\, is independent O{WW1}0§t<1. This idea is later used in order to consider equ asa
linear equation, where the unknown functioiig @) andw™ (w) andW; (@) are given. The following
result is slightly more general than Corollaire 1.1[in/[11], in the sense that if we assume that we are given
a Brownian motiorB and a random variablg, independent frorB and not necessarily Gaussian, we can
construct a process with terminal valueG. In the particular case th&t’(G) = .4 (0,1), the procesX
is a Brownian bridge wittX; = G.

Theorem 23 Let B be a Brownian motion and G a random variable independen; bbb defined in the
same probability spac€Q,.7,P). Then there exists a unique strong solution X adapted to the filtration
BV & (G) of the following stochastic differential equation

(G- X
x(:/0 —CdstB, te[01). (19)

Furthermore, if we assume that the law of G i€NL), then X is a Brownian motion with respect its
own filtration.

Proof. As G is independent dB, one has thaB is F® v ¢ (G)-Brownian motion. Using as an integrating

factor(1—t) ™1, we obtain
X G dB
d = dt .
<1—t) (1-t)2 1

Therefore, one has thxt =tG+ (1—t)j8 fTBSS,O <t < 1 Inlemma 6.9 of[[13], pag. 358, it is proved
that the process

_ t dB,

= — —_— <
B = (1 t)/o o 0<t<l,
By =0,

is a continuous, centered Gaussian process with covariance fusction st. Hence we have proved
existence and uniqueness for the solutions of the equétiin If we assume thaG ~ N (0,1), we
have thatG is a continuous, centered Gaussian process with covariance fusttias the sum of two
independent Gaussian processes is still a Gaussian proceBsamils are independent, we obtain that
X is a continuous, centered Gaussian process with covariance fusetiorthus a standard Brownian
motion. m
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The following property is important to determine the finiteness of optimal utilities. grorO0,
E[/3|a(t,G)|Pdt] < o if and only if p < 2, where

o (t,X) = %7 Vvt e[0,1].
Let’s state the weak equilibrium result for this case.
Theorem 24 Let L(Y) =VY;. Then
(Y*,B*,Z*,H*,é*,l*) =X,a(,G),B,H,H(1,G),L(X))
is a(L,u)-weak equilibrium.

In this particular case the above weak equilibrium is in fact a strong type equilibrium. For this, see
Theorem 1 in[[2] or Proposition 2 in[5].

Theorem 25 Assume that we are given a Brownian motion Z and a strong informdtigkssume that
H* € 2 satisfies[15) and& ~ H* (1,N(0,1)). Set6; £ a(t,(H*) " (1,€)). Then(H*,6*) is an equi-
librium. That is,
e H*(t,Y*) is a rational price, that is H(t,Y*) = E[£|.Z"].
e Forall 6 € Ogyp(£,2), one has
BV (X,R.E)] < BV (X*,P*,&)],
where X*) = s 6)ds Y =X 17 and B = H (-, Y™).

Now we consider the case in which the insider knows that the total demand at time 1 is greater or
equal to a fixed constaat The next two results are quoted from [12], example 4.6.

Theorem 26 Let W be a Brownian motion. Then W is a semimartingale respect to the filtf&{fon
0 (1ja.0) (Wh)) with decomposition

t
W = /0 0 (U, Lae) (Wa)) du+WR, Yt €[0,1],
where W is aFW v o (1[a_,m> (Wi))-Brownian motion,

oW —al-t)
dW—al-t)

oW —al-t)

o (t,1g.0) (Wh)) = ®(a—W,1-t)

o) (WA) + Law)e (Wa),

forallt €[0,1].
Lemma 27 We have thaE[ fy | o (t, Lia ) (Wh)) \Zdt} <o
Theorem 28 Let B be a Brownian motion and G a Bernoulli random variable independent bo

defined on the same probability spaée,.%, P). Then there exists a unique strong solution X adapted
to the filtrationF® v ¢ (G) of the following stochastic differential equation

"= /( D (X — 21 t))l{l}(G)-i-Wl{O}( ))dS+B[7 0<t<1l (20

13



Proof. First we will prove that¥(x,t) £ ¢ (x—a,1—t)/®(x—a,1—t) is Lipschitz in thex variable
fort € [0,1), fixed. Note that we can take= 0, without loss of generality. Furthermord} (x,t) =
Wi(x/v/1-t,0)/v/1-t.

We have that
_ﬁq&(xvl_t)q)( 9 t) ( (Xal_t))z

(®(x1-1))

X

= —HW%(XJ) — (¥ %(Xat))

3(x/v/1—1,0) + (wg(x/\/ﬁ,O))z} .

AW (x.t) =

B 1 { X
1t | VIt
Fix t* < 1, then

1
sup [aWh(x )| < T suplywh(%.0) + (Wh(%.0))°].
te[0t*] xR yeR

Applying I'Hospital’s rule, it can be shown that

. 2
Jim_yWh(y.0) + (Wh(y.0))

. 2
lim yW5(3,0) + (W5(y.0))

1,

0.

which entails that sypjg ) xer |xW5 (X,t)| < . Therefore W (x,t) is Lipschitz in thex variable uni-
formly int € [0,t*],t* < 1. To study the growth o1 (x,t) we takea = 0. Then,

1
‘q'% (X’t> ‘ < \/W suﬁw%(ya 0)7
—1* ye

for t € [0,t*],t* < 1. It can be shown that lig, W3(y,0) = 0 and lim_, . W3(y,0)/y = —1, which

implies that sup.p Wi(y,0) < . Hence W1 (x,t) satisfies a linear growth condition, foe [0,t*],t* < 1.

Using the classical results on s.d.e.’s, we have that there exists a unigue strong solution to the following
equation

/wl s)ds+B, 0<t<1l

We can use a similar reasoning M2 (x,t) £ ¢ (x—a,1—t) /®(a—x,1—t) and get the same conclu-
sions. Finally, thé™® v o (G)-adapted process £ Y11, (G) + Y10, (G) solves our problemm

Theorem 29 Let L(Y) = 1j5) (Y1) Then
(Y5072 H* E*, 1) = (W, & (-, L) (W) , W3, H, H (1L W4) , L (W)
is a(L,u)-weak equilibrium.

Proof. We apply Theorerp 18. The first hypothesis of the theorem is assumed. The second hypothesis
follows from Theoren@G Finally that € Osyp(1jac) (W1) ,W?) follows from Lemm'? Proposition
[21 and Theorein 28 (see Remprk 1#).

7 The maximum and its argument

In this section we deal with two examples that are more complicated, but by far more interesting. In
particular, the second example is new in the literature of insider trading with initial strong information.
Throughout this section we will consider a Brownian motrdefined on a complete probability space
(Q,.7,P). We consider the maximum process in the intefsd], Ms;,0 < s< t < 1 defined byMs; =
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maxs<u<t W, To simplify notation we usék £ Moy, 7t = argmax<s<tWs, M = My, 7 £ 71. andyg, =

Mst —Ws. The density and distribution function gf, are given bypz (x,t —s) 22 (x,t—9) 1(0,00) (X)

Endl‘lg(x,t —9) £ [§'p2(zt —s)dz Similarly, the density of the random vectors;, W — W) is given
Yy

2(2x—y) —(x-y)?
pl(xa y7t - S) £ 27'C(t — S)S exp{ Z(t _ S) 1(0,°°)><(*°°,X) (X7 y) .

Let us recall a theorem by Lévy that links the maximum prodéssith the Brownian local timé} (W).

Theorem 30 The pairs of processe§M; —W, M;);0 <t < oo} and {(|W|,2LY (W));0 <t < o} have
the same laws under P

For more details, seé [113]; chapter 3, Theorem 6.17. Furthermore, it is easy to show that, for a fixed
t, Mt —W ~ 7. Finally, we set

Z(Xat) ez

P
My (x,t)

A —
= = 7z
24 fo e—‘zdy

?(xt) 10w (X)-
74 L(Y) = maxeoq ¥

In this subsection we consider the case in which the insider knows the maximum of the total demand. A
more general version of the following result is proved in Jelllin [10] (see Proposition 3.24, pag. 49). See
also Mansuy and Yof [18] for an update reference on enlargement of filtrations theory.

Theorem 31 Let W be a Brownian motion. Then W is a semimartingale respect to the filtf&{fon
o (M) with decomposition

t
W :/ o (u,M)du+ WM, vte[0,1],
0
where W is aFFV v ¢ (M)-Brownian motion,

M

-W
Tl{MKM} —o(M-W,1-t) 1w}

o(t,M) = 1

Note that Iy, <my = Ljo7) (1) -
Lemma 32 We have thali [fol|oc(t,M)|dt} < wandE [f01|(x(t,M)|2dt = oo,
Proof. To deduce the convergence of the first expectation, notice that
E [/Ola(t,M)dt} — B[] — EWM] =0,

which implies

1 M_W 1
E|:/0 1{Mt<M} 1_t dt:l :E|:/O 1{Mt:M}(P(M —W,l—t)dt .

As the integrands in the above expectations are positive, the problem is reduced to show

1 M _W
E |:A 1{Mt<M}1_tdt:| < 0o,
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Let's compute this expectation

! M —W M1 —W
E[/O 1{M>Mt}7l—t dt]—E[/ 1{M11>Mt} 1t dt]

. Tt,1
=5 [ o 150

Conditioning with respec#V and using Lemm@O, this expectation is equal to

///—ple )pz(y7t)dxdydt:\/§<oo_

To show the divergence of the second moment, notice that

! 2
EUO o (t,M) dt]
1 M—W\ ?

Therefore, it suffices to show the divergence of one of the above expectations. The second expectation
above is equal to

_E +EU011{MMI}(<p(MV\é,lt))zdt}

B [ Lo (0 -2t
_E Ul/mw (9 (M =W, 1—t))? pz(x,lt)dxdt}
—/// (y,1—1))?p2(x,1—t) p2(y,t) dxdydt

pz (v,1
—// M y,l t p(y,t)dydt

But this integral is infinite, because

(P2(y,1-1))? - -——
Y Ry amy PO =P 01-0p (00 =~ 0

and this implies thatfy’ pzyy%p (y,t)dy= oo, Wt € [e,1— €], which is a set of positive Lebesgue
measure provided < 1/2. m
In order to verify thata (-,M) is F¥" v & (M)-adapted we prove thaV is FV" v o (M)-adapted,

which follows from the following result.

Theorem 33 Let B be a Brownian motion and G a positive random variable independent b6tB
defined in the same probability spa@®, .#, P) . Then there exist a unique strong solution X adapted to
the filtrationF® v o (G) of the following stochastic differential equation

t
xt:/O <Gl f (wee) ~ @G- X 1-9) T G}>ds+a 1)

where M¢ £ maxp<s<t Xs.

Proof. Our approach to the solution @) is to write X = X! Ljop) (1) + )([21[,,71) (t), wherep £
inf {t : X! = G}, X! andX? are the solutions to the following s.d. e s

tG—
& Xt1=/o T s ds+B[, 0<t<p;
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and
t
& XtZ:G—/(p(G—st,l—s)ds+Bt—Bp, p<t<l;
p

which we denote byi andéy, respectively. The next step is to show the existence and uniqueness of the
solutions to£; andé&,. Note, thatp < 1 is aF®Vvo (G)-stopping time.

e Existence and uniqueness for the solutionsgf: Follows as in the case of the Brownian bridge
(see lemma 6.9 of [13], pag. 358).

e Existence and uniqueness for the solutiopf Note that the drift has a singularitytat p. That
is, lim,_,o+ @ (X,t) = co,t > 0. Instead of proving existence and uniquenesssfove will prove it
for the following equivalent s.d.e.

t
& Rt:/ogo(Rs,l—p—s)ds—s—Nt, 0<t<1-p.

The s.d.eé is obtained froms, through the change of variablBs= G — thﬂ, andN; = —(Byyp —

By ). The existence is proved in Proposit@ 34. To prove the uniqueness, we may cdgsier
R! — R? the difference of two positive solutior® andR? of &3. Then, applying Itd’s formula to
AtZA(l_p), we obtain thaP-a.s.

A(2/\(1—p)

= Z/OtMlp) (R-R) (p(RL1-p—5)—¢(RR,1-p—s))ds<0,

aso (x,t) > o (yt) if x<yforallt e (0,1).
u

Proposition 34 There exists a positive, continuous, strong solution with respéet toc (p) to
t
Rt:/Oq)(Rs,l—p—S)ds+Nt, 0<t<1l-p, (22)

where N is a Wiener process apd= (0,1) is a random variable independent BY .

Proof. First of all, note that
X (X,t) <L Vt>0,xeR. (23)

We definep” (x,t) £ exp{—2(% + 1)} ¢ (x,t), which satisfies23) with ¢" instead ofp. This sequence
of functions is monotone increasing im bounded and converges ¢ox,t) for eachx € R, t > 0 such
thatx*4t~% > 0. Furthermore,
11 1 1
0" (x0) = expl 2 + )} (20 0c0) + o (x)
1

~ (e F-otx0) gx).

Using inequality(23) , one obtains that sypg ., 1[0 [0x¢" (X, t)| < o, which implies thaip" (x,t) is a
Lipschitz function. Therefore, for a fixede N, we have the existence and uniqueness of solutions for
the following s.d.e.

t
Rtn:/o(p”(RQ,l—pfs)dSJrN, 0<t<l-p.

By a comparison theorem, we have tR{R ™ > R;0 <t < 1—p) = 1, which shows thalR £ limp_.. R,
0 <t < 1— p exists almost surely ifi—o, ] and it is a measurable process as it is a limit of measurable

17



processes. Now, we show that foe [0,1—p),R < «,P-a.s. andR satisfies equatiod,. In order to
prove the first property, we show the uniform integrabilitynig N of R!,0<t < 1— p. Applying Itd’s
formula, we obtain

t t
(Rtn)2:t+2/ Rg(p”(RQ,lfpfs)ds+2/ RN, 0<t<1-p.
0 0

Next, we bound the expectation of the second term abéeeobtain

E[/:A(”st (RL1-p— s>ds]<E[/wl RIp(R.1-p -3¢

tA(1-p)

tA(1-p)
:EUO 1{Rg>o}RQ(P(R271—P—S)dS} <EU0 1{Rg>0}d3] <t.
For the third term, one hds {fé“l’m Rid Nu] =0. Thus, sup.yE {(R[”A(lfm)z} < 3t. This implies the
uniform integrability ofR{‘MPm and thereforeR (1) € L1(Q). Next, we show thaR satisfiessy.
First note that

Rna-p) _,!RW/\
) M<1fp) non
= lim ¢" (RS, 1= p—9)ds+ N1 p).-

n—o /o
To conclude the proof we show that

. tA(1-p) tA(1—p)
lim ‘Pn(RQJ*P*S)dSZ/ ¢(R,1—p—s)ds
0

n—oo 0

0 <t < 1, with probability 1 This will also give the continuity for the paths Bf Fix € > 0 and define

po—mf{tE(Ol p) N =et,
2inf{t € (pf_1,1-p) 1N —Npe = leﬁlgil/Z}, | > 1.

By construction, the sequenépf } < is nondecreasing and therefore we can defifie- llmpf. For

fixed o € Q, we apply the dominated convergence theorem in each intgpfal,pf], | > 1. One has

that,
1

1 RP|€1 €
RP|1+/ YRL1-p—s)ds+N — Not , > — = > o

fort € [pf_;,p{] andl > 1, due to the positivity of the integral. Then, using inequa@, we have for
s€ [p{_y,pf] that

2I

<Z.
€

"R1-p-9<oRL1-p-9<o(R,1-p-9 <

A

Hence, by the dominated convergence theorem

) of of

lim / ¢"(RS,1-p—sjds= | = ¢(R,1—p—9)ds
-1

n—oo

Pi—1

This implies that

t
+/ ¢(Rs,1—p—s)ds+N—Npe, pg=t<o®.
Po
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We prove now that® = 1—p. If ® € Q is such that there existsfor which p{f = 1—p, we have
finished. By contradiction, assume that the seques{rp.f@}IeN is strictly increasing. First of all, by the

definition Of{PfheN and the fact that the sequence is strictly increasing, one haN,;lhat NPil =
fR‘l)l‘g l/2. Taking limits we obtain thaRL. = 0, due to the continuity of Brownian paths. ThBh+

o ot (RL,1—p —s)ds= N — Nge, but this contradicts the law of iterated logarithm whetends to
o¢, because the left hand side is positive almost surely &jpg, 6°). Hence we can conclude that the
set ofw € Q for which does not exist a finitesuch thap{ = 1— p is a null set. Now, notice thatj | O
whene | 0. Hence,Npg $ 0 and by monotone convergence

t t
Iim/ (p(RS,lfpfs)ds:/ 0 (Rs,1—p—9)ds
p 0

€0 8

Therefore,

t
=IlimR,e Rs,1—p— < 1-p.
R im mﬁ:ﬁ¢(& p—s)ds+N, 0<t<l-—p

As Ry = lim Rj = 0, makingt = 0 in the above equation we obtain ipR,: = 0. Furthermore, as

n—oo

|R| < o0, P-a.s. we obtain tha,f(t) ¢ (Rs,1—p —s)ds< »,P-as, fort < . Hence we have showed that
R satisfies equatiof2d) . Note that in particular, we have also proved tRat> 0. m

Theorem 35 Let L(Y) = max<i<1Y;. Then
(Y*,0%,Z" H*,&*,1%) = W, a (-,M), WM H,H (L,Wy) L (W))

satisfies all the requirements to béla p1)-weak equilibrium except the caglad property in the condition
V).

Proof. Properties i) through iv) in the definition of weak equilibrium follow directly. Property v) with the
exception of the caglad property follows from Lemjméa 32, Propoditipn 21 and Th¢oiem 33 (see Remark
). From the assumptions ¢handu and equatior@ , we have thaH (-,W) is aFW-martingale. As

H (t, W) = E[H (1, W) |. "], property vi) follows. Let’s check property vii). To simplify the notation

we seta £ a (t,M),0<t < 1. Note thatoy > 0if t < 7 andog < 0if t > 7. From this property, it easily
follows the following inequality

1 T -1 t
/ |o|dt < / o dt — / odt < 3 sup / asds, (24)
JO JO JT 0<t<1|/0
which combined with Propositign P1 gives that
1
/ low|dt € LP(Q), p> 1. (25)
0

Fore € (0,1), definet®* = (14 ¢€) AL Then the procesa® = {af = at1igze+pe (t),t € [0, 1]} con-
vergesP x 4, a.e. toa ase | 0 and it satisfieso?| < || . Now we will prove thai® € Ogyp(M,WM), Ve €
(0,1). First, the caglad property af? follows from the fact that this approximation avoids the essential
discontinuity ofe in t = 7. The integrability property)) is trivial. Property(d) follows from equation
(24) . The proof of propertieg?) and(3) are similar. We will prove propert{2) . We have that

sup
0<t<1

t 1
/ H(svsa€>a§d% < sup [HEY)| [ fou ot
0 0<t<1 0
which belongs td.! (Q) by the Cauchy-Schwarz inequality, prope(85) and Lemm@. Accord-
ing to Propositior] 48, lim..J (a*") = J(a®) for all € € (0,1) wherea®" is defined according to
Definition |47 with & = af. As the functionall is concave in@,(M,WM), we obtain that(n) <
J(0®") + Dy _gend (") for n € Op(M,WM).
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e limgoJ(af) =J(a): This is analogous to the proof of Proposn@ 48. Note that using property
, we have tha(fo o — afdt) < CSURy<t<1 (fo at> and

‘/ H(t,Yt"‘)at—H(tXt“s)afdt‘

0
1 1 .

<| [ rexne-ana+| [ (Hexo -nex) ot
0 0

<C sup |H (X" |/ || dt
o<t<

" € £ 1 2
+C Sup/ ‘Hy(t,Yt“ +r(a-a >)(dr(/ atdt) .
0<t<170 0

This gives sufficient integrability properties to apply the dominated convergence theorem. Note
that as in the proof of Lemnja 44,
t
/ agds
0

o limgolimp e Dyy_gend (a®") = 0: Repeating the proof of Propositi49, we obtddy _ yend (af")]
< B{"+B5", where

sup Hy(t,YtaE“(“*aE))’ gCexp{gB sup

0<t<1 0<t<1

bew( sup [zl (26

0<t<1

eN A
B, =

B[ (- af") (M -Hee ) o

E [/Ol (/Ot (Ne— ") ds) (Hy (%) e~ Hy 2, %" ™) dt} .

Let's show that limolimn_e Bi*“ = 0. This follows by dominated convergence, once we have
shown that sup, fo (1; — o ") (H t,Y,%) —H (t,Yt"‘E’")) dte L}(Q), because lim .o a®" = af,
Px A-a.s. and lina g af = a P x A-a.s. Using inequalitie§24) and (26) we obtain

and

en a
B, =

[ o LX)~ HLYE™)) dt
< /O | — 0" /0 Hy(t, %@ g [y

1 1 £n en 1
< {C+/ (xtdt} sup [ Hy(t,y* e ))dr/ o — o "] dit
0 0

0<t<1/0

_Yta&',n dt

which is inL'(Q), because as in Lemn@44 $up-1 |Z:| and sup.-q | asds have expo-
nential moments. The proof of ligylimn_.. B5" = 0 can be obtained similarly. Therefore, we
have proved that(n) <J(a),Vn € Ob(M,WM) The final result follows from the application of
Propositiorf 4B, using an argument as in the end of the proof of Th¢orem 15.

7.2 L(Y)=argmaxcoyM

In this section we consider the case in which the insider knows the time at which the total demand
achieves its maximum. The first part of this subsection is devoted to obtaining the compen##tor of
with respect to the filtratioffV o (7) , which we will denote byF* = {.%7,0 <t < 1}. This will be

done dividing the problem into two parts: before the random tinaad after it. But first, we give the
conditional law ofr given.Z".
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Proposition 36 The conditional law ot given. 7\ is

{11 wesro o) P2 (Mu—WE1—) if U<t

P(t>uRY) = ’
(z>ul.7") JEr (M =W, v—t, 1—v)dv if u>t

where r(x,s,t) is given by i(x,s,t) = \/%an) (%,9) L{o.0) (X) = —2=P2(X,S) . Moreover, P(t > u[.Z") is
continuous in uP-as.

Proof. If u<t, then
P (7> u#")
= P(My<My1|Z") =P (My < Myg VM1 | ZY)
= P(My <My, Myt > M1 ZY) + P (My < Mz, Mug < Mea| ZY)
= 1{Mu<Mut}P(Mut > Y1 FWFEY) +P (11> (MyV Myg) —W.7Y)
Myt —W

= 1{Mu<Mut}/ p2(z,1—t)dz+ (Mo pvz\&(z,l—t)dz

Myt —W (MyVMy ) —W
_ 1{MU<MUI}/ o (21— t)dz+1 / P2(z,1—t)dz

If u>t, the calculations are more involved, the idea is to break the maximum processes into pieces that
are independent oV and pieces that ar&"/-measurable.

P(z>u#")
= P(My<My1|Z") =P (M VM < Myt | ZN)

P(Mt <My, My > Mt,u|i%w) + P(Mtvu <My, M < Mt’“‘gztw)
= P(M—W < 7,1 +Wo—W, M —W > Yt,u|ftw)

+P (tu < Y1 +Wa— WM —WE < 7 | RY)

Hence,

P (My =W < 71 +Wo — W, My — W > [ 7Y)
Mi—W X 0
/ / / p1(X,y,u—t)p2(z,1—u)dzdydx
M —W -y

/ / 2p1 (X,y,u—1t) ® (M; =W —y,1—u) dydx

Me—W M —W
/ / 2p1 (X, y,u—t) ® (M; —W —y,1—u) dxdy

(o)

/M O(131U—1) — 0 (2(My ~WW) — y,u— 1)) (M — Wi — y, 1 u)dy

88

/ 200 (M —We— 2, u—t) — ¢ (M —We +Zu—1))® (21— u)dz

0
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On the other hand,

P (Yeu < Yuz +Wo—We, My =W < 7 | RY)

= / // p1 (X, y,u—t) p2(z,1—u)dzdydx
M —

/ / 2pl(xvyau_t)¢‘(x_yal_U)dydx

Mt —

/ / 2p1 (X, x—z,u—t)®(z,1—u)dzdx
Mt —W

/o 40 (Mi —W +zu—t)®(z, 1—u)dz

Summing up, and taking into account thetz| ,u—t) = ¢ (z,u—t), we obtain
P(r>u.#")
/o 2{¢ Mt =W —zu—t)+¢ (M —W +zu—1t)} ®(z,1—u)dz

Differentiating under the integral sign, we obtain that there exists a density fumctioch that
1
P(t>u#Y) :/ r (Mg —W,v—t,1—v)dv
u

Furthermore, this density is smooth in all its variables due to the regularigy afd ®. For the ex-
plicit computation of this density we refer to [14]. To conclude the proof we only need to show that
P (7> ul#"), as a function ofi, is continuous iru = t. We have that

limP (7> u ) = lim P (My < Myl #AY) =P (M < M1 | 7Y),

where we have used the dominated convergence theorem for conditional expectations Rsadsthe
continuity int of the paths oM; andM; ;. m

Proposition 37 If 0 < s<t <1, we have that

t My —W, SMy—W,
E |:1{T>t} (W_/O —u du) yg] = 1{T>t} (Ws—/o —u du) .

Proof. Let Ac .Z¥ and f a bounded Borel measurable function, then taking into accountthas a
conditional density giver#" | in the set{t > t}, we have that

E [1af (7) L{zoty (W —We)] = B[1AE [f (1) 1{r>t}\32tw] (W — W) |

]E[lA/f F (M =W, U — t,lu)du(V\&WS)].

Applying Theorenj 3p and Tanaka’s formula, we obtain that the last expectation is equal to

[1A/f F(W],u—t,1— udu( /d /Std|v\4,|)]
[1A/f (W, u—t,1- u>du( [ samwaw ) .

Notice thatr ((W|,u—t,1—u) = Using Itd’s formula, we can write

2

Vi’ *fﬁ
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Then, the former expectation is equal to

E

1A/1 f(u) /St —sgn(W,) 277.'(21U)8X¢ (W, u—v) dvdu}

_ W]
=E 1/ )/S u_vr(\/\A,|,uv,1u)dvdu}
) 1A/ f(u)/st MV_WVr(MV_vvv,u_vJ—u)dvdu}

u—v
t My, —
_E 1A/S]E[1{T>t}f(r) V_://W|£i\,}dv} {m( 1{T>t}/ WV }

As thec-algebraZ( is generated by elements of the formfit), whereA ¢ .Z¥ andf is a bounded
Borel function, we obtain the result using elementary properties of the conditional expectation. Note
also, that K — W, M;) and(|W |, 2L; (0)) are not the same processes. We can interchange them because
we are dealing with expectations, and therefore they only depend on the law of the processes, which are
equal by Theoretn 30m

Now, we are going to prove an analogous result for the case after the timéhe proof we will use
the decomposition 8V with respect td&"Vv o (M) (see Theore@l).

Proposition 38 If 0 < s<t <1, we have that
t S
E [1{T<S} <W+/o oM —V\lu,l—u)du) 9’5] =1icy <W5+/0 oM —Wu,l—u)du>
Proof. LetA e ZV andf (1) = 1i7<ry, where 0<r < 1. We have that

E[1af (7) Ljr<gg W —We)| = B [1al{r<r Le<s) (W —W6)]
=B [1aL{r<rps) Lrcs) W —We)| = B [1aLpmg, —my Lir<s) (W — W) ]

t
__E [1Af () 1{@}/ o (M—W,1— u)du] .
S

Notice that L« nsy = Limg, =M} IS FU v 6 (M)-measurable, and th@(M —W,, 1—u) is .#F-measurable
becauseé = M;. The elements of the formyT (7) ,whereA € Z¥ andf (1) = 1<, 0<r <1 gen-
erate thes-algebraZ¢. Therefore as in the proof of the previous proposition we obtain the result using
elementary properties of conditional expectatioms.

The next lemma gives us an integrability result for the drift term inRh&lecomposition ofV.

Lemma 39 We have thak [fol|a(t,r)|dt] < wandE [fol|a(t,'c)|2dt] — o,

Proof. As in Lemmd 3R, we have that

E{/Oll[o@M;_ } U 1oy () 9 (M —W,1— t)dt}

where the integrands are positive. The second part of the statement follows as in Cejnma 32.
The main result of this section is the following theorem which gives the semimartingale decomposi-
tion of W in the filtrationIF®.

Theorem 40 W is alF*-semimartingale with the following decomposition

t
W= [ alun)dutw, 27)
0
where
My —W,

a(ur) =

Lio,) (W) — @ (M =Wy, 1 —u) Ly g5 (u)

and W' is aF*-Brownian motion.
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Proof. If we defineW® £ W — f3 o (u,7) du, we have a process It (Q), becausé| | [y a (u, 7) du|] <

[fo | (u,7)|du] < oo, by Lemm' Furthermore, the quadratic variatioMfis t, becausaV is a
ZN-Brownian mot|0n andja (u,7)duis a process of finite variation. Hence, by the Levy’'s character-
ization of the Brownian motion, we only need to prove t#tis aF*- local martingale. To show this,
using Propositiofi 37 and Propositjor] 38 obtain the conclusion as in the proof of Theorem 2, in [15].
u

Theorem 41 The Brownian motion W in the decompositif@) is FW* v o (1)-adapted.

Proof. First we will show that the following s.d.e. has a unique strong solution.

é: X = / ds+Bt, 0<t<p,

whereB is a Brownian motion with respect its own filtration ands a random variable independent®f

and taking values if0, 1] . We will prove first that¥ (t X, t]) M- ME—X s functional Lipschitz. We have
that

1
| (t:X01) =¥ (t, Yon) | < Q{W—YtH\MtX—MtY’}

Obviously, [% —%| < M"Y on the other hand4X < M*~Y + MY, which gives thatviX — MY <
M*~Y!. We also have thalvlY < MY X+ MX, which yieldsMY — MX < —MX*Y < —M*"Y!. Hence,
W (t,X0n) =¥ (t.Yo0)| < 5 M'X ¥l By Theorem 7 in chapter V of Prottér [19], we obtain the exis-
tence and uniqueness of solutlons&yr

Now, if we takeB; = W' andp = 7, we obtain thaiX must coincide withM for t < 7. This means
thatW is ZV* v o (1)-adapted. Furthermore, as limW = W;, one also has that; is .2V’ v ¢ (1)-
adapted.

The next step is to show existence and uniqueness for solutions of

t
& Xt=G—/ ¢(G—X51-9s)ds+B—By, p<t<l,
p

whereB is a Brownian motion with respect its own filtratignjs a random variable independent®énd
taking values iff0,1] andG is agé‘B -adapted random variable. The existence is proved in Propo E on 34
and the uniqueness in Theor@ 33. If we tBke-W*, p = T andG = M we obtain thaX must coincide

with W for t > 1. This means thaty is f/“W V o (t)-adapted.m

Theorem 42 Let L(Y) = argmax<i<1Y;.Then
(Y*,0%,Z" H", &%, A7) = (W, e (-, 7) ,W",H,H (1,Wh) L (W))

satisfies all the requirement to be(l, it)-weak equilibrium except the caglad property in the condition
V).

Proof. The proof of this result is exactly the same as the one for Theprém 35, except for the caglad
approximations used. In this case, foe (0,1), definet® " = (t+¢)Alandt®™ = (t—€)A0. Then

the processr® = {af £ tLge getpe (1)t € [0,1]} converged x A,a.e. too ase | 0 and it satisfies

|af| < |al|. m

7.3 Comparing the expected wealth oM and

In this subsection we show using numerical calculations that the information about the time at which the
total demand achieves its maximum gives less expected profit that the information about the maximum.

That is,
(o () < I(a(-M)).
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We can write

—
&
e

[ @2t - Hew) am
/Ol(H (1L,W1) —H (t,V\é))a(t,M)dt} .
Note that
E{/lH(tV\A)a(t M)dt}:EV (t, W) dW] VHI\M dV\(M}_O
Jo ’ ’ .
because the integrability properties lf yield that fjH (s,Ws) dW and [ H (s, Ws) dWM are aF"W-

martingale and & v ¢ (M)-martingale, respectively. As the same arguments workofor ), we
obtain that forA € {M, 7}

1
3a(2) =B |H@w) [ alta)d].
0
Note also that, after, the compensators & andz coincide. Hence, the problem is reduced to verify if

T™M-W TM-W | A
- dt} EE{H(l,Wl)/O o~ dt] 2 (7).

AM)2E [H (17W1)/0

7.3.1 Computation of A(M) and A(t)

An exact computation oA(M) andA(7) is difficult. This is due to the fact that we need to compute
integrals with respect to the joint density@¥4, t) conditioned toZ", which is unknown. Although we
have computed explicitly this density, it turns out that it is useless because of its complicated expression.
Therefore, we perform a Monte Carlo simulation. _

First of all, we have considered a uniform partitiop = {t = +},_, _, of the interval0,1]. We
sample the paths of a Brownian motion in this partition and approxirﬁaie the integral inside the expecta-
tion by its upper Riemann sum imy,. We have use#l (1,W,) as a control variate to reduce the variance
of our estimators. Recall that the variancdHfl,W; ) can be computed analytically and the covariances
Cov(H (L,Wy) , H (L,W) [ ¥=Mdt) and CoyH (1,W4) ,H (1,Wy) f§ =M dt) have been estimated do-
ing a pilot simulation with number of simulatioms= 100Q The maln S|mulat|ons including the control
variate, have length = 10°. We have repeated the simulations for different partitions. We quote here the
results withm= 10000 and we also compute a 99% confidence intétval] for each simulation. The
results are showed in the following tables. HBrdenotes the value of the control variate. The pricing
rules that we use in our experiments &té,y) =y andH (t,Y) = e+(1-9/2 'which are solutions to the
heat equatior] (15). We denote them by the letters L and E respectively. These examples of pricing rule
are the examples considered in Back [3] and yields that the prices process follows a Brownian motion
and a geometric Brownian motion, respectively. In the first case, note that price or demand information
are the same.

Monte Carlo estimation of optimal utilities
A L U On B

A(M) | 0.684 | 0.675| 0.693 | 1.074 | 1.062
A(t) | 0.189| 0.186 | 0.192 | 0.376 | 0.616
A(M) | 2.656 | 2.625 | 2.687 | 3.775 | 1.955
A(t) | 1.386 | 1.379| 1.393 | 0.829 | 0.718

mim|rr|—|XI

From these simulations one is inclined to postulate dfat(-.7)) < J(a (-.M)).
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Remark 43 Itis worth pointing out that these examples can also be considered in the Karatzas-Pikovsky
setting, se€ [12]. In this setting, one studies the portfolio optimization problem of an agent with additional
information, with respect to the small investor. This model assumes that the price dynamics is given
exogenously and that the insider can not influence the price process (for more information, on this type
of formulation, see e.@.[12]/[1],[19],[18], [7], [3] and [€], among others). In fact, in this framework

the finiteness of logarithmic utilities for the insider is determined by the qudﬁtﬁyﬂg |a(s)\2ds}. By

Lemmag$ 39 ar[d 32, we have that in both cases the logarithmic utility for the insider is infinite. However,
as the compensator is the same aftewe decided to compute the previous expectation anfithe

result is
E M|a(s,|v|)|2ds] <E [/:oc(s,rﬂzds] o,

which is the reverse conclusion as the one shown in the above table. Nevertheless, there are two major
differences between our approach and the Karatzas-Pikovsky's one. First, in Karatzas-Pikovsky’s ap-
proach the insider is risk averse, while in our approach is risk neutral. Moreover, in Karatzas-Pikovsky’s
approach the insider has no influence in the price dynamics, while in our model the price process is
driven by the insider's demand. Therefore, it would be interesting to extend our model to risk averse
insiders to try to examine this issue further.

8 Conclusions

In this paper we construct a model which allows the existence of a rational expectations equilibrium, in a
weaker sense than that of Kyle-Back’s setting, with an insider possessing information different from the
value of the asset at the end of the trading interval. We provide sufficient conditions for the existence and
unigueness in law of a weak equilibrium. Our model allows to compare the expected wealth obtained by
insiders with different kinds of information. We study in some detail the examples of the maximum and
the time at which the maximum of the demand is achieved, finding that the first provides more expected
final wealth than the second. In order to deal with these examples we prove a new initial enlargement
formula for the argument of the maximum of a Brownian motion. Moreover, we prove the existence and
unigueness of a strong solution for a stochastic differential equation with a drift degenerating at a random
time.

9 Appendix
Lemma 44 Let F be a function satisfying an exponential growth condition @ral process satisfying

(@), thensup1 |F(t,Y,?)| belongs to B(Q), for any p> 0, where ¥ = [{8sds+Z and Z is a
Brownian motion.

Proof. Thanks to the exponential growth conditionBone has that

}

t
/ Gsd%}exp{pB sup |Z]}.
0 0<t<1

sup
0<t<1

p 't
F(t,Yt")‘ <A sup exp{ pB‘/ 0sds+7Z
o<t<1 0

< Aexp{pB sup
o<t<1

The result follows from{4) and the fact that the law of sy |Z| has finite exponential moments.

Proposition 45 Let © be a convex real linear space and J a functional define®®oAssume that for
any 6 € O there exists the Gateaux derivative of J. That is, for al® the following limit exists

o i J(0+9)=3(0)

DyJ(0) lim .

)

and the application v» D,J(0) is linear for everyd € ©. Then, the following statements are equivalent:
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1) Jis concave;
2) J(6%) <J(0Y)+Dy2_gd(0), V6l6%cO.

Proof. If Jis concave thed (6% + (1— ) 8Y) > aJ (62) + (1— «)J(6%),V6,0% € ©,a € [0,1].
This implies
J(6+oa(6%2—0%)) —J(6%)
o

>J(6%)-J(6%), v6l0°€0O,a€c(0,1].

Taking the limit whena tends to zero, by the assumption on the existence of the Gateaux derivative,
we obtainDy2 413 (61) > J(62) —J(6'),v6',62 € ©. Conversely, assume that the statemenis2
satisfied. Seé = a6+ (1— a)6?, then we have that

J(6%) <JI(8)+Dg1_oJ(6),
J(6%) <J(8)+Dy2_4I(0).

Multiplying the first inequality byor and the second one % — o) and adding them one obtains
@ (6%) +(1—a)J (6%) < J(8) +Dgg1_g). (1a)(62-6)I (6)-
As (6 —0)+(1—a) (61— 6) =0, the result follows.m

Lemma 46 Assume that K 7 and6,v € ©y(M,Z). Then, for alle € (—1,1) , we have that for& 1,2
d E ' H(t,Y,2"€Y)) (6 dt| | =E td H(t. YY) (0 at
der (B[ [ @R o) ecrewdt| ) =B | (6 X)) (B +ew)) ot

Proof. We do the proof foi = 2. First, we estimate

e {Enee e @ren)]

<

t 2
(e ['veds) (01-+ew)
0

<C { ‘Hyy(thte%V) } ;

whereC is a constant which is independentaf These quantities are boundedLif(Q) as Lemma 44
shows. Hence, the result follows by the dominated convergence thearem.

t
+ ‘ZHy(t,Yt"“") < / vsds> Ve
0

-+ [Hy ()

Definition 47 Let6 € Osp(M,Z). For every ne N, definefy = Ot1(sup_,|6s/<n}- Clearly, the sequence
{6" ey € Op(M,Z). We also have thafé"}, . converges P A a.s. tof. Furthermore,{6"},
converges t® in L* (P x 1) by dominated convergence, beca{g¥ < |6|.

Proposition 48 Assume tha® € Osyp(M,Z). Then,limp_.J(6") = J(0), where J is the functional
defined in(7) .

Proof. We can define the following sequence®tstopping timeg" = inf{t < 1: SUR<¢ |0s| > n}. In

the set{z" > t}, one has that for a <t,|6s] < nand6Z = 6. On the other hand, in the sgt" <t},
one has that syp, |6s| > nand6;' = 0. Moreover,z" 1 1, P-a.s., whem tends to infinity. We have that

13(6)—J(8")] < ’E [5 /Ol(et - OP)dt] ‘ + ’E [/Ol (H(t,yte)et - H(t,yte")etn) dt} ’

£ AT+AS.
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Applying Cauchy-Schwarz, we obtain

L 1/2
A< jel| [ o onyat] | < miig e

(/Ol(et—e{‘)dt)j

The first expectation is finite, becauséas moments of second order. For the second expectation, notice
2

that if we fix w € Q, by dominated convergence, we have that,lim (fol(et - GP)dt) = 0,P-as.,

becaus® € L1 (Q x [0,1]). Furthermore,

1 2 1 2 t 2
(/ (Gte{‘)dt> </ Btdt) <C sup </ Gsds> ,
0 o o<t<1 \Jo

which is inL'(Q), by hypothesis@). Therefore, also by dominated convergence one has that

(/Ol(et—e{‘)dt)z] —0.

limE

n—oo

For the termA}, we have that

1 . 1
/ (HEX)0 —H(E Y )ep)dt:/ H(t,Y9)6dt, P-as.
0 [

Notice that,

/(;1‘H(t,\(te)6t‘dt§ sup

1
H(t,Yte)‘/ 6dt <o, P—as,
o<t<1 0

becaus® € L1(Q x [0,1]). Hence, lim . [+ H(t,Y%?)6:dt = 0,P-a.s., by dominated convergence. Fur-
thermore,‘ =G (t,Yt")tht‘ < Csupy<1 | JoH (s, Y)0sds whichisinL (Q), by hypothesig2). Thus,
by dominated convergence theorem we obtain thaf lig\) = 0. m

Proposition 49 Assume that € ©s.p(M, Z) satisfies the optimality equati@l). ThenJimp_. Dy _gnJ (6")
=0, for all 1 € ©,(M,Z), where D,_nJ (6") is given by(g).

Proof. As 6 € Osyp(M, Z) satisfies equatioff), Remarl 1B yields

1 1
5| [ - 0016 -HLX) - [ (s )osdsat| o
Therefore,
1 n
Dn-and(6)] <[5 [ (nc- 60) (M) - R e

1 t n
+‘E [/ </ (nseg‘)ds) (Hy(t,Y)0 — Hy (t, X )9?)dtH
0 0
£ B 4 BY.

For the termB", one has that
1 n
B [ (- 0D (H?) - HOLY e
0

1
=E [/0 Lo (H(E YY) —H(t Y + Z —Zrn))dt} :
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Whenn tends to infinity the integrand in the last equation tends,tB ® A-a.s. So we only need to
justify the application of the dominated convergence theorem. We Ravd,-a.s., that

MHEY) ~H(E YA+ 20— Zen))| <C{ sup 2

0<t<1

HEYE) |+ [H (Y + 2~ Zan)

By Lemm, sup<1 |H(t,Y?)| is an integrable random variable. These quantities are bounded in
LP(Q) as the proof of Lemn‘@M shows. Hence by dominated convergengeJiB] = 0. For the term
BJ, one has

E [ I (/f ne- eg)ds) (Hy (.Y Hﬂt%"”)&“)dt}

_ V: ((/Ot(ns—eg)ds> Hy(t,Yte)tht]
_E Vl (/t 77st> Hy(t,Yte)tht} +E Vl (/OT (Ne— Gs)ds) Hy(t,Yte)etdt:|

=B, +B3y.

The termB5 ; converges to zero due to the dominated convergence theorem as

: tnnsds Hy(t,Y,?)6.dt| = :ﬂs 1Hy(t,Yt6)9tdt d
Jal Joms(

t t
/ Hy (s, YO)0sds / Hy (s, Y&)04ds € L1(Q),
0 0

<C sup

1
[ng/ds<C sup
0<t<1 Tn

0<t<1

thanks to conditiorf2) and thatffln |ns| dsconverges to zero astends to infinity. The terrB} , converges
to zero due to the dominated convergence theorem as

1 T 1
/ </ (”s—es)ds> Hy(t»Yt")tht‘<c sup /(ns—es)ds
T 0 0

n 0<t<1

ell(Q),

t
X sup /Hy(s,Ys")Gsds
0

0<t<1

thanks to conditiong3) and (@), thatn € ©, (M, Z) and that] /1, Hy(s, Y¢)8sds| converges to zero as
tends to infinity. m

Lemmab50 Letabe R, and st > 0, then

i b
/0 ¢ (x+a,9) ¢ (x+Db,t)dx=¢ (b—a,s+1) (1_¢(atsits’ss+tt)>'

Proof. To prove this statement, rewrite the product of the two density functigrs- a,s) ¢ (x+ b,t) as
a single density function by completing squares in the exporent.
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