
Simulation on multidimensional density functions
through the Malliavin-Thalmaier formula and its

application to finance

Arturo Kohatsu-Higa
Graduate School of Engineering Sciences, Osaka University

1-3, Machikaneyama-cho, Toyonaka-shi, Osaka, 560-8531, Japan

E-mail: kohatsu@sigmath.es.osaka-u.ac.jp

Kazuhiro Yasuda
Faculty of Science and Engineering, Hosei University

3-7-2, Kajino-cho, Koganei-shi, Tokyo, 184-8584, Japan

E-mail: k yasuda@hosei.ac.jp

Abstract

The Malliavin-Thalmaier formula was introduced in
[4] for use in Monte-Carlo simulation. But when this
formula is applied directly for computer simulation, we
show that it is unstable. We propose an approximation
of the Malliavin-Thalmaier formula. First we prove the
central limit theorem to obtain the values of the pa-
rameters in Monte-Carlo simulations which achieves a
prescribed error level. To prove it, we need the order of
the bias and variance of the approximation error. Next
we give an idea of the optimal approximation parameter
and constants, which is often used in the kernel density
estimation method. Finally we apply the Malliavin-
Thalmaier formula and the approximated version to
some models in finance and compare their results.

1 Introduction

We study the problem of estimation of multivariate
density functions using Malliavin calculus. That is, let
F = (F1, ..., Fd) ∈ (D∞)d be a nondegenerate random
vector, where d ≥ 2. Using the classical integration
by parts formula in the Malliavin sense, we have for
x̂ = (x̂1, ..., x̂d) ∈ Rd,

pF (x̂) = E

[
d∏

i=1

1[0,∞) (Fi − x̂i) H(1,...,d)(F ; 1)

]
, (1)

where 1[0,∞)(x) denotes the indicator function and for
i = 2, ..., d,

H(1)(F ; 1) =
d∑

j=1

δ
(
(γ−1

F )1jDFj

)
,

H(1,...,i)(F ; 1) =
d∑

j=1

δ
(
H(1,...,i−1)(F ; 1)(γ−1

F )ijDFj

)
,

where δ denotes the adjoint operator of the Malliavin
derivative operator D and γF is the Malliavin covari-
ance matrix of F . One can find this formula in Nualart
[5], Sanz-Solé [6].

In the expression (1), we have to simulate
H(1,...,d)(F ; 1), which is given by d-iterated Skorohod in-
tegral. The Skorohod integral is an extension of the Itô
integral to non-adapted integrands. This multiple Sko-
rohod integral is difficult to simulate due to the curse
of dimensionality. To solve this problem, Malliavin and
Thalmaier [4] introduced a new type of integration by
parts formula in the Malliavin sense. Through this for-
mula, they obtained the following new expression for
high dimensional probability density functions that can
be used in Monte-Carlo simulations;

pF (x̂) = E

[
d∑

i=1

∂

∂xi
Qd(F − x̂)H(i)(F ; 1)

]
, (2)

where Qd is the fundamental solution of the Poisson
equation. In the Malliavin-Thalmaier formula, one
needs to compute only one Skorohod integral instead
of the d-iterated Skorohod integrals. Therefore we are
free from the curse of dimensionality appearing in for-
mula (1). Nevertheless this formula is unstable when
used for computer simulations. That is, its variance is
infinity;

E




(
d∑

i=1

∂

∂xi
Qd(F − x̂)H(i)(F ; 1)

)2

 = +∞.

This situation also appears in kernel density estima-
tion (KDE) type approximations and therefore we pro-
pose a similar solution to the present stability problem.
Then we give a central limit theorem (CLT) that can
be used to determine the optimal bandwidth. And we
give an idea of the optimal approximation parameter.



2 CLT for approximated
Malliavin-Thalmaier formula

Here, we give the rate of convergence of the modified
estimator of the density at x̂ ∈ Rd.
Definitions and Notations
1. For h > 0 and x ∈ Rd, define | · |h by

|x|h :=

√√√√
d∑

i=1

x2
i + h.

Without loss of generality, we assume 0 < h < 1.
2. For i = 1, ..., d, define the approximated first deriva-
tive of the fundamental solution of Poisson equation; for
x ∈ Rd,

∂

∂xi
Qh

d(x) := Ad
xi

|x|dh
as Ad is some known constant.
3. Then we define the approximation to the joint den-
sity function of a d-dimensional random vector F =
(F 1, ..., F d) as; for x̂ ∈ Rd,

ph
F (x̂) := E

[
d∑

i=1

∂

∂xi
Qh

d (F − x̂)H(i)(F ; 1)

]
. (3)

This is an approximation of the Malliavin-Thalmaier
formula.

Remark 1 For fixed h > 0, (3) has finite variance;

E




(
d∑

i=1

∂

∂xi
Qh

d (F − x̂) H(i)(F ; 1)

)2

 < +∞.

In what follows ⇒ denotes weak convergence and the
index j = 1, ..., N denote N independent copies of the
respective random variables.

Theorem 1 Let Z be a random variable with standard
normal distribution. And F (j) ∈ (D∞)d is a random
vector which has independent identical distribution.
(i). When d = 2, set n = C

h ln 1
h

and N = C2

h2 ln 1
h

for
some positive constant C fixed throughout.

n


 1

N

N∑

j=1

2∑

i=1

∂

∂xi
Qh

2

(
F (j) − x̂

)
H(i) (F ; 1)(j) − pF (x̂)




=⇒
√

C x̂
3 Z − Cx̂

1 C

as h → 0, where H(i)(F ; 1)(j), i = 1, ..., d, j = 1, ..., N ,
denotes the weight obtained in the j-th independent sim-
ulation (the same that generates F (j)) and Cx̂

1 , Cx̂
3 are

some constants.
(ii). When d ≥ 3, set n = C

h ln 1
h

and N = C2

h
d
2 +1(ln 1

h )2

for some positive constant C fixed throughout.

n


 1

N

N∑

j=1

d∑

i=1

∂

∂xi
Qh

d

(
F (j) − x̂

)
H(i) (F ; 1)(j) − pF (x̂)




=⇒
√

Cx̂
4 Z − Cx̂

1 C

as h → 0, where Cx̂
1 , Cx̂

4 are some constants.

To prove Theorem 1, we need the order of the error
of the approximation to the density.

Proposition 1 Let F be a nondegenerate random vec-
tor, then for x̂ = (x̂1, ..., x̂d) ∈ Rd,

pF (x̂)− ph
F (x̂) = Cx̂

1 h ln
1
h

+ Cx̂
2 h + o(h),

where Cx̂
1 and Cx̂

2 are constants which depend on x̂,
but are independent of h. The constants can be written
explicitly.

Proposition 2 Let F be a nondegenerate random vec-
tor. For x ∈ Rd,

E




(
d∑

i=1

∂

∂xi
Qh

d (F − x̂) H(i)(F ; 1)− pF (x̂)

)2



=





Cx̂
3 ln

1
h

+ O(1) d = 2,

Cx̂
4

1

h
d
2−1

+ o

(
1

h
d
2−1

)
d ≥ 3

where Cx̂
3 and Cx̂

4 are constants which depend on x̂,
but is independent of h. The constants can be written
explicitly.

The proofs can be found in Kohatsu-Higa and Yasuda
[3].

3 Test simulation results for the
multivariate Geometric Brownian
motion (the Black-Scholes model)

We consider the following linear stochastic differen-
tial equations (SDEs), which is the well known Black-
Scholes model; for i = 1, ..., d,

dSi
t = µiS

i
tdt +

d∑

j=1

σi
jS

i
tdW j

t ,

where µi and σi
j , i, j = 1, ..., d, are positive constants

and W i
t , i = 1, ..., d, is a standard d-dimensional Wiener

process.
As we well know, the solution of the SDEs has the

lognormal density. Now we compare simulation results



of the density in four methods when d = 2, the clas-
sical formula in Malliavin Calculus, (1), the Malliavin-
Thalmaier formula, (2), the approximated Malliavin-
Thalmaier formula, (3), and the KDE method (two
ways) with the Gaussian kernel and a diagonal band-
width matrix, which is a nonparametric density estima-
tion method (for more details, see Wand and Jones [7]).
Here we use the following parameter values;

dS1
t

S1
t

= 0.01dt + 0.1dW 1
t + 0.2dW 2

t

dS2
t

S2
t

= 0.02dt + 0.3dW 1
t + 0.2dW 2

t .

We have used the Euler-Maruyama approximation with
10 time steps and N = 104 Monte Carlo simulations
at each point. The range of the values for (S1

t , S2
t ) is

[0, 200] × [0, 200] in the figures (a), and the range of
values in figures (b) is [72.5, 82.5] × [82.5, 92.5]. The
initial values are S1

0 = S2
0 = 100 and t = 1. From

Figure 1, we can conclude that the usual method does
not work well for both cases. As it can be seen from
Figure 2, there are some points where the estimate is
unstable. This is clearly due to the infinite variance of
the Malliavin-Thalmaier estimator. From Figure 3, we
find that we can improve the simulation at the unstable
points in Figure 2. Here the choice of h = 0.01 was an
ad-hoc choice. We give the simulation of KDE with
global bandwidth in Figure 4 and pointwise bandwidth
in Figure 5. For more details about KDE, see Wand
and Jones [7].

4 Estimation of the Optimal Value of h

4.1 About Optimal h
In this section, we introduce an ad-hoc method to

compute the “optimal” h using similar ideas as in ker-
nel density estimation and the central limit theorem ob-
tained in Theorem 1. We consider the following value;

E








1
N

N∑

j=1

(
d∑

i=1

∂

∂xi
Qh

d

(
F (j) − x̂

)
H(i)(F ; 1)(j)

)

− pF (x̂)

}2

 . (4)

From Proposition 1 and Proposition 2, the value is, if
d = 2,

(4) =
1
N

{
Cx̂

3 ln
1
h

+ O(1)
}

+
(

1− 1
N

) {
Cx̂

1 h ln
1
h

+ Cx̂
2 h + o(h)

}2

+
2
N

{
Cx̂

1 h ln
1
h

+ Cx̂
2 h + o(h)

}
pF (x̂)

− 1
N

pF (x̂)2 ,

and if d ≥ 3,

(4) =
1
N

{
Cx̂

4

1

h
d
2−1

+ o

(
1

h
d
2−1

)}

+
(

1− 1
N

){
Cx̂

1 h ln
1
h

+ Cx̂
2 h + o(h)

}2

+
2
N

{
Cx̂

1 h ln
1
h

+ Cx̂
2 h + o(h)

}
pF (x̂)

− 1
N

pF (x̂)2 .

Then, from the variance-bias trade-off relationship (see
pp.22 in [7]), we select the following terms from the
above equation;

g(h) :=





1
N

Cx̂
3 ln

1
h

+
(
Cx̂

1

)2
h2, d = 2,

1

Nh
d
2−1

Cx̂
4 +

(
Cx̂

1

)2
h2, d ≥ 3.

By considering the minimum value of g(h), finally we
obtain the following optimal h;

h =





√
Cx̂

3

2N(Cx̂
1 )2

, d = 2,

{
d− 2
4N

Cx̂
4

(Cx̂
1 )2

} 2
2+d

, d ≥ 3.

4.2 Calculation of Constants Cx
1 , Cx

3 and Cx
4

Here we give an idea of how to obtain the constants
Cx̂

i for i = 1, 3, 4. From our CLT result, we have

n


 1

N

N∑

j=1

d∑

i=1

∂

∂xi
Qh

d

(
F (j) − x̂

)
H(i) (F ; 1)(j) − pF (x̂)




=⇒
√

Cx̂
a Z − Cx̂

1 , (5)

where C x̂
a = Cx̂

3 if d = 2 and C x̂
a = Cx̂

4 if d ≥ 3. Let
Y h,N
x̂ be the left hand side of (5). Therefore we consider

as follows;

Y h,N
x̂ ≈

√
Cx̂

a Z − Cx̂
1 C.

Then from the above relation, we have the following
approximations;

E
[
Y h,N
x̂

]
≈ E

[√
Cx̂

a Z − Cx̂
1 C

]
= −Cx̂

1 C, (6)

E

[(
Y h,N
x̂

)2
]
≈ E

[(√
Cx̂

a Z − Cx̂
1 C

)2
]

= Cx̂
a +

(
C x̂

1 C
)2

. (7)

Note that Z is a random variable with the standard
normal distribution. And once we determine h, N for
test simulation, the constant C is decided by using the
relation in the CLT (Theorem 1). In test simulation,
the constant C depends on h, N .



We apply Monte-Carlo simulation to the left hand
side of the approximations (6) and (7). We obtain a
stable result for Cx̂

a , but the result of Cx̂
1 is unstable.

So we consider another idea of approximation for C x̂
1 ,

that is,

1
M

M∑

k=1

Y h,N
x̂,(k) ≈

√
Cx̂

a

1√
M

Z̃ − Cx̂
1 Ch,N ,

where let Z̃ be a random variable with the standard
normal distribution. Now if we try this test simulation
L times using different h, then we have

1
L

L∑

l=1

(
1
M

M∑

k=1

Y
h(l),N
x̂,(k)

)
≈ − 1

L

L∑

l=1

Cx̂
1 Ch(l),N

= −Cx̂
1

1
L

L∑

l=1

Ch(l),N .

Therefore we obtain Cx̂
1 as follow;

Cx̂
1 ≈ −

∑L
l=1

(
1
M

∑M
k=1 Y

h(l),N
x̂,(k)

)

∑L
l=1 Ch(l),N

.

Remark 2 Once we obtain the constant Cx̂
1 , we can

modify the approximation as follows;

ṗh
F (x̂) = ph

F (x̂) + Cx̂
1 h ln

1
h

.

Then from Proposition 1, we can improve the bias of
the error;

pF (x̂)− ṗh
F (x̂) = pF (x̂)−

(
ph

F (x̂) + Cx̂
1 h ln

1
h

)

= Cx̂
2 h + o(h).

5 Simulation of the Heston model

Let St be a stock price process and vt be a volatility
process in the Heston model [2];

dSt = µStdt +
√

vtSt

{
ρdW

(2)
t +

√
1− ρ2dW

(1)
t

}
,

dvt = γ(θ − vt)dt + κ
√

vtdW
(2)
t ,

where µ, γ, θ, κ are positive constants satisfying γθ ≥
3γ2

4 , ρ ∈ [−1, 1] is a constant and W (1) and W
(2)
t

are Brownian motions and independent of each other.
And we transform the model as follows; set Xt :=
ln(St/S0)− µt and ut := avt.

dXt = − ut

2a
dt +

√
ut

a

{√
1− ρ2dW

(1)
t + ρdW

(2)
t

}
,

dut = −γ(ut − aθ)dt +
√

aκ
√

utdW
(2)
t .

We simulate the joint density of (Xt, ut) by us-
ing pramater values in Figure 6. We compare

values of it in three approaches, through the for-
ward Kolmogorov equation (partial differential equa-
tion approach; see Drăgulescu and Yakovenko [1]),
the Malliavin-Thalmaier formula and the approximated
Malliavin-Thalmaier formula with the optimal h, in
Figure 7 by using values in Figure 6. And we give the
confidence intervals. Then results of the Kolmogorov
equation through finite difference method depend on an
approximation of the initial condition (the Dirac delta
function) and sizes of difference. Even if we do enough
number of Monte-Carlo simulation, we have some sin-
gular points in the Malliavin-Thalmaier formula. But
we can improve its approximation by using the pro-
posed scheme.

6 Conclusion

We give a stable approximation of the Malliavin-
Thalmaier formula. Then we prove the CLT for the
approximation error. To prove the CLT, we estimate
errors of the bias and variance. And for computer sim-
ulation, we give an idea how to choose the optimal ap-
proximation parameter and constants, which is often
used to obtain the optimal bandwidth in KDE. Finally,
we apply the approximated formula for the multiasset
Black-Scholes model and the Heston model in finance.

References
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Fig. 1: The classical formula (1)
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Fig. 2: The Malliavin-Thalmaier formula (2)
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Fig. 3: The approximation of the Malliavin-Thalmaier
formula (3) (h = 0.01)
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Fig. 4: KDE with global h1, h2
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Fig. 5: KDE with pointwise h1(x), h2(x)
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Fig. 6: Parameters
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