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A review of some recent results on Malliavin
Calculus and its applications

Kohatsu-Higa Arturo and Yasuda Kazuhiro

Abstract. We review some of the recent developments of Malliavin Calswand its applications
with some focus in Finance. In particular, we discuss the firifferédnce methods which lead in a
generalised form to kernel density estimation methods. We canipies method in relation with the
Malliavin Calculus method and in particular with the Mallia-Thalmaier formula. We finish by
giving a short review of other developments in the area.
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1 Brief Introduction to Malliavin Calculus

Let (2, F, P; F;) be a filtered probability space. Hefé;} satisfies the usual con-
ditions. That is, it is right-continuous arn@, contains all theP-negligible events in
F. Suppose thaff is a real separable Hilbert space whose norm and inner product
are denoted by - |z and < -,- >p respectively (in this article, we usually have
H = L%([0,T],R%). Let W (h) denote a Wiener process éh

We denote byC>°(R") the set of all infinitely differentiable functiont: R™ — R
such thatf and all of its partial derivatives have at most polynomial growth.

Let S denote the class agimoothrandom variables of the form

F= f(W(hl)a s W(hn))7 (11)

wheref € C;°(R"), hy, ..., hn, € H, andn > 1.
If F'has the form (1.1) we define its derivatilpd” as theH-valued random variable
given by

pF=3 LW (), o W )

We will denote the domain ab in L?P(Q) by D*?. This space is the closure of the
class of smooth random variabl§swith respect to the norm

1

11, = {B[IFP] + E[IDFI |}
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We can define the iteration of the operaidm such a way that for a smooth random
variable F, the derivativeD* F' is a random variable with values d@®*. Then for
everyp > 1 andk € N we introduce a seminorm afidefined by

k
IFIE, = B[IFF] + 3 E[IDFIt.,]-
j=1

For any reap > 1 and any natural number> 0, we will denote byD*» the comple-
tion of the family of smooth random variabl€swith respect to the norrf- ||, ,. Note
thatD’» c D4 if j > k andp > q.
Consider the intersection
D> = () () D"

p>1k>1

ThenD> is a complete, countably normed, metric space.

We will denote byD* the adjoint of the operatob as an unbounded operator from
L?(Q) into L?(; H). That is, the domain ob*, denoted byDom(D*), is the set of
H-valued square integrable random variahlesich that

|E[< DF,u >pgl| < ¢||F|2,
for all £ € D2, wherec is some constant depending ar(here|| - ||» denotes the
L2(Q)-norm).
Suppose thaf" = (Fy, ..., F;) is a random vector whose components belong to the

spaceD!-!. We associate witli" the following random symmetric nonnegative definite
matrix:

’yF:(<DFi7DFj >H) .
1<4,5<d

This matrix is called théalliavin covariance matribof the random vectof'.

Definition 1.1 We will say that the random vectdt = (Fy, ..., F;) € (D>)% is non-
degenerate if the matrix is invertible a.s. and

(detyp) ™" € () LP(Q). (1.2)

p>1

In what follows, we always assun@ € D>, F = (Fi,..., Fy) € (D*) is d-
dimensional nondegenerate random variable. Therefore the integration by pauis fo
las will always hold (see Nualart [39], Proposition 2.1.4, p.100 or Sanz R¥éjosi-
tion 5.4 p.67 and formula (1.3) below). For other references, see [49].

1.1 Three methods to compute densities of random variables on Wiener
space
1.1.1 The classical integration by parts formula

Let F = (I, ..., F;) be a nondegenerate random vector &hal smooth random vari-
able. We denote byp ¢ = E[G/F = z|pr1(z), wherepg1(z) = pr(z) denotes the
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density of . Then there exists a random varialdlg, , . q)(F;1) € LP(Q2) for any
p > 2 such that

pro(X Hl[m) s — &) Ha,(F; Q)| (1.3)

wherel, ) (z) denotes the indicator function. In fact, for 2, ..., d,

Hqy(F;1) = Z(S(ngl)uDFj)’

d
..... o (F31) =3 6(Ha, i (F; G) ()Y DE; ). (14)

Hered denotes the adjoint operator of the Malliavin derivative operét@nd~r the
Malliavin covariance matrix of".

In particular, we remark thatis an extension of thedtintegral that also integrates
non-adapted processes and is usually called the Skorohod integral. Thgaedif
H,...;»(F;1) in iterative form in (1.4) shows that in order to compute this expression
one requires the calculation ffterated stochastic integrals.

1.1.2 The Finite Difference or Kernel Density Method

The finite difference (FD) method consists in computing the approximate deevati
of any distribution function in order to obtain the density function. This introduces
the choice of a parameter in order to compute the approximate derivative.isTdis
particular case of the kernel density estimation method. In fact, this methodegqu
the choice of a kernel functioA” and a sufficiently smalk > 0 (usually called the
bandwidth or the tunning parameter) which gives as an approximation

N
11 (F
25k (
j=1

where (F7,G7), 7 = 1,..., N denotesN independent copies dfF, G) obtained by
simulation.

First, we remark that the classical finite difference method is obtained with the
choice K (z) = 27¢ Hle 1;_1,1y¢(z). The theory of kernel density estimation deals
with the statistical problem of given some dat&, G’), j = 1, ..., N what is the "opti-
mal” way of choosing the kernél” and the tunning parametgr The theory of kernel
density estimation is quite vast and we are not able to give a fair accourd tfebry
but it seems that the multimensional case 1 is less well understood than the one
dimensional case.

In the multidimensional case, one may use multiplicative type of kernels. ites o
of the bias is of ordeh? if the kernel is symmetric and regular in some sense (say

Gaussian type kernels). The variance diverges in the ordéN@fi)fl. For more
information on this method, see e.g. [48] or [55].

X) G (1.5)



4 A. Kohatsu-Higa and K. Yasuda

1.1.3 Malliavin-Thalmaier Representation of Multi-Dimensional Density Func-
tions

We represent the delta function by
do(x) = AQu(x) (x € R% d>2),

in the following sense. Iff is a smooth function then the solution of the Poisson
equationAu = f is given by the convolutio®, = f (see e.g. [20]).

Definition 1.2 Given theR?-valued random vectaF and theR-valued random vari-
able@, a multi-indexa and a powep > 1 we say that there is an integration by parts
formula (IBP formula) in Malliavin sense if there exists a random variah|éFr'; G) €
LP(£2) such that

8(1
ox«

1P, ,(F,G) : E[ f(F)G]:E{f(F)Ha(F;G)} for all f € C)*(R). (1.6)

Related to the Malliavin-Thalmaier formula [38], Bally and Caramellino [7], have
obtained the following result

Proposition 1.3 (Bally, Caramellino [7]) Suppose that for sorpe> 1

sup E[ Q
la|<R ’axl d(

Ty ‘Qd(F—a)’Pl} < oo forall R >0, acR?
@.7)

(). IfIP,,(F;G) (i =1,...,d) holds then the law af is absolutely continuous with
respect to the Lebesgue measureRshand the density - is represented as

d

(ii). If 1P, ,(F;G) holds for every multi-index with || < m + 1 thenpr € C™(R?)
and for every multi-index with |p| < m one has

or
o o, PF(X) a

The heuristic idea of the above proof is to use the integration by parts formula in
Malliavin sense as follows

— X).Z;I(Z p)(F G)

d

@ (F;G)

d
pe) = B[AQu(P - x)6] = 3B [ s0u(r - x06] - £

1=1 =1

Next we impose conditions to assure that the assumptions of propositiomel.3 a
satisfied.
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Corollary 1.4 If G € D*, F = (F,...,Fy) € (D*®)? is a nondegenerate random
vector, then the probability density function of the random vegt®s

d
pr(x)=E | aiQd(F —x)Hy(F;G)| .
i=1 v

1.1.4 Theoretical comparison of the methods

The method of kernel density estimation is the oldest method of the three method
introduced above and the one that has been used by practioners for a long tiene
method is easy to implement and various standard reccomendations arelawailab
the choice of kernel&” and the tunning parametgr

The classical integration by parts formula (1.3) attracted the attention of practition-
ers as it allows in principle the calculation of density functions using Monte Carlo
simulations without any bias (see e.g. [22] and [23]).

In comparison with kernel density estimation methods this method does not require
any tunning as there is no bias. In exchange, the estimator obtained by intedmatio
parts involve in general iterated stochastic integrals and its calculation is not available
for all models. Furthermore, the estimator obtained by integration by parts has a co
stant variance which tends to be big and one needs to use variance redusitaual sn

In the one dimensional case a thorough comparison between the classgatiote
by parts formula and the kernel density estimation method can be found in [29h Whe
the dimension is bigger than one, one can try to computé-iterated Skorohod inte-
grals but this becomes cumbersomel @screases. Furthermore as stochastic integrals
have to be approximated by their Riemman sum counterparts the error incidasges.
ertheless one can still write the system of linear equations satisfied by the bigker
derivatives and try to use this structure in order to improve the system simulation (see
e.g. [17]).

Another alternative that is in between the classical integration by parts andtied ke
density estimation method is the Malliavin-Thalmaier formula (1.8).

The significance of the Maliiavin-Thalmaier formula is clear. Instead ofdhe
iterated stochastic integrals which appear in (1.3) we have instead only ohastoc
tic integral. The problem with the above formula is that the expectation is well de-

fined in the sense of duality. That i%@d(F —x) € LP(Q) for anyp < 2 and

Hy(F;G) € LY(Q) for p~* + ¢! = 1. Therefore the variance of the Malliavin-
Thalmaier estimator is infinite.
In fact, we have for some constasy that

8 xZ;
axi Qd(x) = Ad@

Therefore, we have to resort again to kernel density estimation methods. Wesvill s
later that the order of degeneration of these estimators is milder in comparison with
estimators of the type (1.5).
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2 Error Estimation for the Malliavin-Thalmaier for-
mula

In order to avoid the explosion of the variance of the Malliavin-Thalmaier estimator
we have proposed the use of a kernel density type alternative to this estiositay,
instead ofQ), we define

0

E)xi

Li

x|}

h(x) = Ay

where| - |, is defined as

d
x[p =, | Y a2 +h (h>0, x€RY).
i=1

Then we define the approximation to the density functiof afs;

Za Qi(F —x)Hei) (F;G) | - (2.1)

pFG

Note that clearly@, = QY. We now give the Central Limit Theorem associated with
the proposed approximation.

Theorem 2.1 Let Z be a random variable with standard normal distribution and let
(FU),GU)) e (D*®)?xD*>, j € N be a sequence of independent identically distributed
random vectors.

(). Whend = 2, setn = {#J andN = {

fixed throughout. Then ds— 0

e 1J for some positive constaiit

s
=1 i=1 ¢

N
1 D oo , ) -
n(sza w—x>H@<F;c><-f>-pF,G<x>) _ Jas-cro
J

(2.2)
whereH ;) (F;G)V, i =1,....d, j = 1,...,N, denotes the weight obtained in tji¢h
independent simulation (the same that generatés and G)).

(i)). Whend > 3, setn = | ;-¢¢
C fixed throughout. Then d@s— 0

1 XK o
(V2L

J andN = {JCQJ for some positive constant
h2T1(In 1)2

BEW —x)H) (F; )W — pF7g()A<)) — CxXzZ — C¥C.

(2.3)

This result clearly also gives the asymptotic bias and variance of the estimlators.
fact the bias is of the order

PRO(R) — b (R) = CRhIn & + C¥h+o(h), 2.4)
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Note that this bias is almost of the same order as in the kernel density estimation
method. The asymptotit?(2)-error is of the order fod = 2,

#| (2o

and ford > 3,

2
(Za Qi(F —%)H(F;G) — pF,G(*))

All the above constant€’¥ have explicit expressions that depend on the density
itself. Note that the order of explosion of thHé(2)-error is reduced in comparison
with the classical kernel density estimation methods.

%)H)(F;G) — pF,G@c)) = Cfln +0() (xeR),

X 1 1 S d
:C4h(2il+0<hgl) (XGR )

3 Financial application

When computing the greek of any option, the instability of the calculation comes fro
the irregulaties of the payoff function. In Foueret al. it was shown how to deal with
the problem. One essentially divides the payoff function in two parts

F=F+4+F}

The first functionF}* is a smooth function which depends on a smoothing parame-
ter h and the second localizes the irregularity of the payoff. In the second we apply
the previous integration by parts formula and in the first one uses a direct simulation
method. The question on the choice of the paranmietemains although in Fouraiet

al. the authors seem to suggest that this is not an important issue. Neverthaies
that this is also a tunning problem. In financial applications, one could uséat®aal
integration by parts as follows.

d
o

- df(x)(%pmmdx

f(FH ZH(J) ( iFu 7)

The classical application to Greek calculations is for the case whewolves a step
function.
Another possibility hinted by the Malliavin-Thalmaier formula is

/f asz( —x)dy

- E[f(F")]
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Therefore one can use any of the following alternative expressions (undencega
ularity conditions, for details see [32])

s (.25
[/f 0265% (y — F“)dyH()( agl:”ﬂ (3.1)

In some cases, the above representation for the Greeks gives a variantienseftect.
In fact, if we consider Delta of a digital put option with two assets;

9.,
S}

8
c’m

-y
ze

“TEQ1(0< S < K1)1(0< 57 < K»),

then a method by Fouraiet al. [22] without localization gives the following expres-
sion;

1
T [1 (0<Sh < K)1(0<S2< Kp) H, (s;,s%; f)*;{ﬂ . (32)
0

On the other hand, an expression of this new method gives as follows;

. s} aSk
€ r EQ g1 (571“3512“) H(l) S’Zl“as%a% +EQ g2 (STvsT) H(?) STaSI%a ool )

S} oS¢

(3.3)

where we can explicitly calculate the integral parts of (3.1) to obtain that

1 - K - K
g1(x,y) := — 4 arctan Y _ arctan 2 2 _ arctan —2 + arctan Y 2 ,
27 T x r— K, r— K,
g (LC y) 1 In ($2+y2)(($_K1)2+(y_K2)2>
dr - ((r— K )2+ 9?)(a% + (y — K2)?)

If we assume that the assets follow the Black-Scholes model, then (3.3pgaesnce
reduction effect, compared with (3.2). In Kohatsu-Higa, Yasuda [31], we cdrtHim
simulation results where we conclude that the variance of (3.3) is about a third of
variance of (3.2). This issue needs to be further studied.

4 Estimation of the optimal value ofh

4.1 About Optimal h

In this section, we give an ad-hoc method to compute a quasi-optimal valuesifg
similar ideas as in kernel density estimation and the central limit theorem obtained in



A review of Malliavin Calculus and its applications 9

Theorem 2.1. We consider tli& (£2) error of approximation;

N /d 2
P {le 2 (Z aaxi Qi (O =) Hoo(F: U“’) —pr (k)} SN CEY

j=1 \i=1

From Theorem 2.1 and the comments following it, we haveifer2,

(11) =y {c§< In 0(1)} + (1 - Jb) {Cf‘hlnflb +CEh+ 0(h)}2

2

2
JrN

pPr (}A() ’

%1 L % . 1
{Cl hlnﬁ +C’2h+0(h)}pp (%) — N

and ifd > 3,

1( . 1 1 1 o1 2

2 ( o 1 )
—|—N{C’lhlnh+02h+o(h)}pp(x)—

Then we select the leading terms from the above equations to find a trade-offrrelatio
between the small bias and the exploditfgerror;

1 .. 1 o 2
—C%n = *x\ 7 p2 =2
g(h) _ Ncl(?’ n h + (Cl) Qh 5 d 9

Note that the intervention of the sample size becomes crucial in the abovitoequa
the right choice ofV will make the variance of the estimator converg®to

By considering the minimum value gfh), finally we obtain the following asymp-
totic optimal value forh;

Cg‘
—_— d=2
%x\2"’ ’
ho ) VN (4.2)

d—2 Cf 77
2 d>3.
ey 2

The problem with the above theoretical formula is that it requires the knowledge of th
constantso¥.
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4.2 Calculation of ConstantsCy, C¥ and C¥

Here we give a heuristic idea on how to obtain the constéatitéor i = 1,3, 4 using
pilot simulation. From our CLT result, we have

d
”(zlv ( _X)H()(F 1)”—pp(5<)) = \JCOXZ-C¥
(4.3)

whereC* = Cf if d = 2 andC* = Cf if d > 3. LetY,"" be the left hand side of
(4.3). Therefore we consider the following approximation

YN 0\ /C*Z - CFC.
Then using that follows a standard Normal districution, we have the following ap-
proximations;

E [Y;W} ~E { X7 - C{‘C} — _CFC, (4.4)

2 2
E [(Y;»N) } ~E ( c:}zc{‘c)

The computation of constants is done by first fixing the valuesd ahd N in test
simulations, this gives the value of the constarandn according to the relation in the
CLT (Theorem 2.1).

We use these test Monte-Carlo simulations in order to approach the mean and the
variance in (4.4) and (4.5). In practice, one obtains a stable resulffdout the result
of C¥ is unstable if one uses all the choicesiand NV in the pilot simulations. This is
due to the fact that when the value@becomes too small then the above procedure is
not good to obtain the value 6¥¢ as the error terms become bigger than the quantity
to be estimated. To estabilize the estimation, besides deleting (or avoiding) te sim
lations with small values of’, we additionally consider the following approximating
procedure folC¥.

= % 4 (C¥C)’. (4.5)

v 1 ~ b’
M Z Yo ™ \/7\/MZ - Creny,

where letZ be a random variable with the standard normal distribution. Now if we try
this test simulatior times using different values af, then we have

L
13 () = Teteron - iy 3monon
=1

k=1

Therefore we obtais as follow;
M h(l),N
Zl 1 (M 1 Y5 L(k) )
YL, OO

X
01N
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Remark 4.1 Once we obtain the consta6t’, we can modify the approximation as
follows;

b . « 1
Pl (%) = pl (%) + CF hlnﬁ

Then from the bias error (2.4), we can improve the bias of the error;

e (%) = 7 (%) = () = (1 () + CERIn ) = Ch-+ o).

5 Numerical Results

In this section, we give a short report on some simulation results on the following
models: the multidimensional Black-Scholes model and two factor modeisande:
the Heston model [24] and the double volatility Heston model [21], [25].

5.1 The Multidimensional Black-Scholes Model

We consider the following-dimensional Black-Scholes model; foe 1, ..., d,

SZ_

uzdt—&—ZU dw}, Si=s"
Jj=1

wherep; and a;'., i, = 1,...,d are constantss’, i = 1,...,d is a positive constant,
andW = {W, = (W}, ..., W& }i>o is ad-dimensional standard Brownian motioin,
whose components are independent of each other. As it is well knoyaitheensity
of the random vecto$; = (S%., ..., S%) is the lognormal density which can be written
explicitly. andx—! = (a&l)i,jzl 4 IS the inverse matrix of.

.....

We can also represent the density. (x) through the Malliavin-Thalmaier formula.

Lemma 5.1 Let F = St be a nondegenerate random vector. Then the depgjtyan
be expressed as

det(x) (Wi oiT
=M E 1)it T 4 5.1
o9 = A0 [|ST_X|dz >{s;+s;}]v &

for x € R?, whereE{, i,j=1,..,d,isa(d — 1) x (d — 1)-matrix obtained front by
deleting row; and columry.

For more details on the above Lemma, see Kohatsu-Higa and Yasuda [32].
Hence we have the following approximation of (5.1); foe R<,

4 , .
24 det(s)) (Wi oiT
=A E 1)iti L4z . 5.2
P, (x dz |:|5Tx Z det () {S} * S }] (5-2)

h j=1
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Now we provide a short summary of results in cdse 2. The simulation result
through the classical representation is unstable and does not work well (varliesse
reduction methods are applied (e.g. see [30], [28] and [12]), because oftbarapce
of a double-Skorohod integral for the Malliavin weight. Compared with the cldssica
method, the Malliavin-Thalmaier formula (5.1) works better since it does nohiavo
double Skorohod integral. But the density approximation exhibited unexppetdd,
which are due to the unstable behawor;ﬁ#@d This instability also appears when
the density estimation is magnified locally. To improve these instability, we use the
approximation formula (5.2). In fact, this approximation although slightly biased in
comparison with the Malliavin-Thalmaier formula (5.1), behaves smoothly. Foe mo
details and graphs, see Kohatsu-Higa and Yasuda [33].

5.2 Heston Model

In this section, we provide some simulation results for the Heston model [24];

S, = pSydt + /o SpdW
dvy = — (v — 0)dt + rr/ordW 2,

whereu, ~, 6, x are constants with > %2 (see Lamberton, Lapeyre [35]) and
WY, w® are standard Brownian motions wit{iv,\" W ?] = pt

We introduce a new standard Brownian motignwhich is independent o\ﬂ/t@)
andw ) = pw? + /1 — p2Z,. We also change variables. Sét:= In(S,/S,) —
andu, := av;. Then from 16's formula, we have the following dynamics;

dX; = —dt+\/>{ dW(2)+\/1—7dZt}

duy = —(uy — ab)dt + ar/ugdW .

(5.3)

As the exact value of the joint density value (df;, u;) is unknown, we estimate the
value by using the Malliavin-Thalmaier formula, the approximated version and the
finite difference algorithm applied to the Kolmogorov equation.

SetF := (Fy, Fy) := (X¢, us) for fixedt > 0. First we give the Malliavin-Thalmaier
formula for this model. Fox = (21, 22) € R?, we have

pr Z‘F x\z y(F51)|, (5.4)
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where

1
Ho(F:1) =2 [z,

Hey(Fi1):= 1 {A~ B},

(2) 1 b e(s) . ar? tse(s) . Vak tg@ @)
= Vo /\F o et e S Rl

dZsdr

B .

B p e(s) B 1 ter |
. m/au—p?)e(t)/o N a(l—p2>e<t>/o 0 7=

+2 1_pp2€( /tf/(%/r \/LdZ dW(2)+ @ / f/ \ﬁdstZm

) m s (ot = [ L L2 /ijzdwp).

And our approximation is given as follows;

2
Fifxi
—F — = H(F;1
;|F—X|% (z)( a)

All the stochastic integrals appearing in the above formulas are approximated using
the corresponding Riemmann sums. This obviously introduces a further erapr of
proximation in the above formulas. We will compare the above approximationsvalue
with the following deterministic method.

(5.5)

Finite Difference method applied to the associated Kolmogorov equation

Next we give the corresponding forward Kolmogorov equation of the modg); (5.

Op+ Opt  u Opy 821?75 8]725 u 9*p;  aw’u O’p; 2 0Pt
o ) e TP amou P or Y20 0 T2 a2 alzs%l)t.

The initial condition is the Dirac delta function;

po(x,u) = do(z)do(u — ug).

When we compute the approximative solution to equation (5.6), we use the fajowin
explicit scheme;

Pkt _ pk. . pk . _ pk Pk _ Pk
L ] N b —ypk 4 (;—; + ;m) —’“"mx L 4 (y(uy — af) + ar?) —”“mu LIzl
LY u Py, —2PF + Phy n KU,R:’Z'H +PEy ;= Pl - Pl
2a (A{E) PrU AzAu
k k k
+ ar®u; Py — 287 + P o (5.7)

2 (Au)? ’
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where P}, := py, (i, ujlup) and At, Az, Au > 0. In order to achieve a stable sim-
ulation (positivity of the density) in the negative correlation case, we use therirwa
difference method w.r.tz and the backward difference method w.rtfor the term

g;gt 1. The stability property also requires some particular relation between the pa-
rameters, that is, assume that = = Aw is small enough, (||)MHAQ7‘Z)2+M > At
under a restrictior; < u; < co, (iii). 3= > —pr, (V). arx > —2p. 2

Kernel density estimation method

We compare the density value to the kernel density method. Here we use tb&dbau

kernel and all bandwidth sizes are the same. That isFfoe (Fy,--- , Fy) andx =
(21, ...,2q) € RY,
N (4) 2
1 > 1 1 1 (F" — ;)
e N j=1 ht i=1 Var o <_2}12> 7 o

WhereFi(j), i=1,..,d, j=1,.., N is asequence of r.v.'s, copies Bf.

To use (5.8), we have to decide how to choose the bandwidth size. To ingroduc
this optimal choice and the calculations of constants as in Section 4, we epiisd
general case of KDE. Lek’ : R — R, be a function with [, 2*K (x)dz = 0 for

a=1,3. And forx = (21, ...,74) € R?, set

x| Tlx (P

Then we have the following central limit theorem for kernel density estimations.

PKDE

Proposition 5.2 Seth = (&~ )d+4 andn = | %], whereC is a positive constant. Let
Z be a random variable with standard normal distribution. Then we have

1 L1 FY9 _ g, : .
n NZWHK T —pr(x) | =/ C3Z - CYC,

WhereFi(j), i1=1,..,d, j =1,2,...are ani.i.d. random variable of;.

In fact, from Scott [48], we have that the bias error is

1 .
pF(X)—p}}(DE(x):—h22/ 2K(z dzZapF O (h*) =1 C¥R* + O (h?).

1When the correlation is positive, we have to use anothereqipation to achieve stability.
21f we use other approximation or consider a case 0, these relations vary.



A review of Malliavin Calculus and its applications 15

And also we obtain thé&?2-error;

P [{hldf[z« (%32) —p’;(DE<x>}2] - hldmx)fll [ a0 ()

1
= CQ+O(hd 1)

Finally, we obtain an optimal bandwidth size from a calculation like in Section 4.
Then we obtain the following asymptotic optimal size of the bandwidth

h— (M‘) o (5.9)
4N (CF)?

And we can calculate the constaxts, C¥ through a pilot simulation as explained in
Section 4.2 and following Proposition 5.2.
Using a KDE method on the Laplacian of the Poisson kernel

We also can estimate the density function through the Laplacian of the Poigseh ke
That is, forx € R¢,

pr (X) = E [0 (FF (5.10)

P|Y Lo

If we simulate (5.10) directly, it is clear that the simulation will return either zero or an
error.
Therefore we introduce the following approximation of (5.10);4as 0,

Plhoi (%) [Z a2 (F )]. (5.11)

We give a central limit theorem for (5.11).

Proposition 5.3 SetN = | < | andn = |75+, whereC is a positive con-
h™Z (In $)2 o

stant. LetF¥), j € N be an i.i.d. random variable of and Z be a random variable
with the standard normal distribution. Then As— 0, we have

(iEs

The proof uses the following error estimations. First, the bias error is

(Fm _ X) —pp (ﬁ)) —\/CFz - CFC.

Ao 1 A
P (%) = plpes (X) = CEIn 3+ CEh+ ofh),
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whereC¥ andC¥ are some constants definedgsandCy in the Malliavin-Thalmaier
formula respectively. Next, the-error;

2
. 1 1
{28 QQ )—pF(X)} :hfgcs +O<hg’>7
whereC5 is some positive constant.

As before, we obtain the following optimal bandwidth

d+4

dCx
AN (é{‘)z

And we can calculate the constant, C¥ through a pilot simulation as Section 4.2
and Proposition 5.3.

h= (5.12)

Numerical results

Now we give a survey of the simulation results on the model (5.3). We use the/follo
ing parameters;

parameter | [ value
initial log stock price So | 100
(initial volatility ) vo | 0.1

scale parameter a 3
expected return 1 0.1
speed of mean reversion | ~ 2
0
KR
t

long term mean 0.1
volatility of volatility process 0.2
maturity 1

We estimate the density value (@t «) = (0,0.3) (the initial point). We simulate two
cases, the correlatign= —0.1, —0.8, through five methods, the Malliavin-Thalmaier
formula, the approximated Malliavin-Thalmaier formula, the finite difference method
applied to the Kolmogorov equation (orngy= —0.1), the Gaussian kernel density esti-
mation and the Laplacian of the Poisson kernel method. Then their dertsityatsn
and variances appear in Figures 5.1 and 5.2.

In Figure 5.1, we have computed two different approximations of the Kolmegoro
equation. That is(Axz, Au) = (0.02,0.02) for “PDE 1” and (Ax, Au) = (0.01,0.01)
for “PDE 2”. These results depend heavily on the approximation of the initradition
(the Dirac function), In order to achieve a stable simulation (positivity of the density),
we need to restrict the region af Then the calculation looses small mass on the
boundary of the region. Hence our results depend on these conditions.tiesdase
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Num. of Monte-Carlo -- Density of Heston model
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Figure 5.1 Number of MC simulations and density estimates of the Heston model
(p=-0.1)
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Figure 5.2Number of MC simulations and variance of the density estimates for Heston
model p = —0.1)
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Num. of Monte-Carlo -- Density of Heston model
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Figure 5.3 Number of MC simulations and density estimates for the Heston model
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Figure 5.4 Number of MC simulations and variance of the density estimates for the
Heston model{ = —0.8)
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Method Bias error p=-0.1 p=—0.8
MT formula C{‘hln% + C¥h + o(h) C¥ =97.2983 C¥ = 273.0708762
KDE C¥h? + O(h?) C¥ = 30258018 CF = 9209822.1
Poisson | C¥hlIn % + C¥h+o(h) | CF =195.2020997

C* = 274.6290929

Table 5.1 Bias error and constants computed using pilot simulations for the Heston

model
Method L2-error p=—0.1 p=—0.8
<, 1
Ciln—+0(1) (d=2) R X
MT formula P CF =42.741 | CF =159.642
Vs (d=>3)
b 1
KDE C3 o3 +0() CF = 372966 | CF = 92540.7
. ae 1 1 n e o
Poisson Cig+ o(h—d) C¥ = 0.555882 | (% = 0.598472
2 2

Table 5.2 L?-error and constants computed using pilot simulations for the Heston

model
Method Optimal size ofh p=-0.1 p=-0.8
- I
C% )2
A (d=2)
x)2
MT formula (2N(Cl) s, 4.75119 x 1075 | 3.27177 x 10~°
d—2 C¥ ¥
Fa) @29
acx \ ™
KDE 722 0.0024256 0.0028585
AN(CY)
dC”,)"c d~2+4
Poisson <:°’2> 0.000193937 0.000158309
AN(CF)

Table 5.30ptimal bandwidth: for the Heston modekl(= 2 and N = 10°)

Method N=10* | N=10° | N =106
MT formula 0.406 3.978 39.312
KDE 0.296 2.933 27.456
Poisson 0.312 3.37 28.143

Table 5.4Computation time for the Heston model (in seconds)
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p = —0.8, (5.7) does not satisfy the stability conditions, we have not included them in
Figure 5.3.

In Figure 5.1 and 5.3, we give simulation results using the Malliavin-Thalmaier
formula and its approximation with the optimal value fofusing (4.2)). The number
of time steps until maturity i$0, that is,At = ¢/50 = 0.02 and the number of the
Monte-Carlo simulation changes from* to 105. From these graphs, we can say that
the approximative Malliavin-Thalmaier formula 2.1 performs well in comparison to
the other approximative density values (Figure 5.1 and 5.3). In Figures & 2 4nwe
can see that the variance of the approximated Malliavin-Thalmaier formula is stable
and about a half of the variance of the Malliavin-Thalmaier formula wittout

Note that even if we use the optimal size of the bandwidtine variance of KDE is
comparatively larger than the other methods. Compared with KDE, the Rdissoel
method works better. To redu@é-error, the optimal size of the parametebecomes
slightly big, then we find that the numerical results have somewhat largerodas &
Figure 5.1 and 5.3.

In Tables 5.1 and 5.2, we give the constant values from the central limit theore
obtained using pilot simulations. Here we first simulate through each methaglriay u
fromh = 0.1toh = 1071 and N = 10°. The cases in which the value 6fis too
small are removed from further consideration. This gives a narrow rarige/loére the
pilot simulation are carried out. For these we Wée= 10° andM = 100. The results
of the calculations appear in Tables 5.1 and 5.2. In Table 5.3, we giwapthreal size
of the parametek for the caseV = 10% by using the constants from Tables 5.1 and
5.2. And we also give the simulation times for each method. In this respectisheve
big difference among the methods.

5.3 Double Volatility Heston Model

In this section, we consider&adimensional case, the double volatility Heston model
[25] which is a special case of [21], given by

S, = pSydt + /oSy dW P + \Jug S dw®,
dvy = (0 — v)dt + kr/0rdBY
duy = 0B — up)dt + 7 /u;dB?

wherey, v, 0, x, a, 3, T are constants withd > £ andas > =, andw ", w», BV, B

are standard Brownian motions witHW, ") BV] = p,t andE[W,? B?] = pat (—1 <
p1, p2 < 1) and others are independent of each other.
Then we introduce Brownian motior& " andz?,

W = pBY 4\ /1= 2z, and WP = p, B 4 /1 - p32.

whereBW | | zMW, B@) | |2 andZz™ | | Z(® where| | stands for independence of
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processes. And s&f; := In(S;/Soy) — ut, Vi := ayv; andU; := asus. Then we have

ai

1/V, U o1 @ V103 (1)
X, = —= (2 + 2 ) ar + 22 /V,dB VoA vdz
+ 5 ( + a2) + = taby + o 1ALy

P2 @ , V1-p3 )
B B [Z
+ % VUAB,™ + % VUAZ™ (5.13)

dVi =~ (a6 — V;) dt + Jark/VidBY
dU, = o (asfp — Uy) dt + Jaz7\/TUdBL.

Through usual calculations for weight; (X, V;, U; 1) i = 1,2, 3, we obtain the
Malliavin-Thalmaier formula. Although the weights are too long to write here (See
Kohatsu-Higa and Yasuda [34]) the computational complexity is the same as in th
previous example. Then we compare the density value and variance through s
methods as the Heston model.

Numerical results

We use the following parameters;

Parameter | Notation|  Value
Correlation (p1, p2) (0.2,—-0.15)
Scale parameters (a1,as2) (1,1)
Speed of mean-reversion (v, @) (2,1.5)
Long term mean 0,0) (0.2,0.15)
Volatility of volatility process (k,7) (0.2,0.15)
Initial value of volatility process (Vy, Up) (0.2,0.15)
Initial value of log-price Xo 0
Maturity t 1
Time step size At 1/200 = 0.005

The density estimates are carried at the p@int, «) = (0, 0.2,0.15) (the initial point).
From Figure 5.5, we arrive at conclusions similar to those related to the Heston
model case. The KDE method has a large bias and variance even if weeuggtimal
bandwidth size. The bias error of the Poisson kernel method is larger thaoriiee
sponding biases of the Malliavin-Thalmaier formula without and withvariance of
the approximated Malliavin-Thalmaier formula with the optirha much smaller than
the variances of the other methods. We can easily find that the Malliavin-Tiealma
formula (withouth) have some singular values in Figure 5.6. But the approximated
version is stable and has smaller variance.
Expressions of the Malliavin weights are similar to ones of the Heston model. But
computation time is longer than the Heston case, since a problem appearsmnéhen
performs the simulation of the two volatiltiy processes (the CIR model), for which we
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Num. of Monte-Carlo -- Density value of the double vola. Heston model
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Figure 5.5 Number of MC simulations and estimation of the density for the double
volatility Heston model
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Figure 5.6 Number of MC simulations and variance of the density estimates for the
double volatility Heston model
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need a precise approximation. The time step Aize- 0.005 is smaller than the Heston
case. Therefore this issue has to be taken into account in the final result.

6 Conclusions and further comments

In this article we have only concentrated on the integration by parts formula in the
setting of Wiener spaces and we have compared the kernel density meifitiodis-
tegration by parts methods. In [18], an interesting mixed approach is introduced, al-
though some of the results do not seem encouraging it may lead to new ide&svfo
simulation methods.

There is also another tendency to obtain the infinite dimensional integrationtisy pa
formula as a limit of finite dimensional integration by parts. This is the point of view
of [15] which also shows that there are various other integration by parts formatae th
can be obtained beside the classical ones. This approach can alsal leagsetically
as shown in [5] and [53]. This has also lead to interesting results in the jump driven
stochastic differential equations.

There is an increasing literature dealing with the integration by parts formula in the
setting of Levy driven stochastic differential equations. In the early 90's this became a
hot topic of research leading to articles and books (see the references, [11[4{13],
[45], [46], [14], [51] and [52] ). There are various approaches that lead to differen
integration by parts formula depending which variable one uses to base the integratio
by parts. Some use the jump distribution, other the jump times and other areibased
other variables. There is not a unified approach as in the Wiener case. tinases, as
in the case of the Wiener space, the interest is in proving the existence aothegss
of densities for solutions of stochastic differential equations with jumps.

There is another approach centered in the chaos decompositions. Seanfmlesx
[37], [36]. This approach leads to a definition of derivative but its consempsefor
densities of random variables have been largely ignored. Also, in this settiney, it
comes hard to verify that the solution of stochastic differential equations with jumps
are differentiable.

In the past few years various authors have studied the application of this methodo
ogy in finance and insurance. Leading to similar studies of greeks in Fin8rege.g.

[6], [8], [16], [43], [19] and [27].

Another issue that has raised recent interest is the application of the asymptotic
expansion theory developed by S. Watanabe on Wiener space (see [5G4 231and
recently extended to the Poisson space case. These formulas found aatippiic
statistics in the form of Berry-Essen type expansions (see [54] or [50]). In Finance
this has lead to approximative formulas for option pricing. In particular, there has
been a recent development of expansion formulas using greeks (sed [2P#n This
formulas seem to have an application in the calibration problem. Although we still
seem far from solving this difficult problem from the practical point of view.

Partial approaches that do not seem to lead to a clear expansion buppgrexia
mative formulas can be found in [1], [2] and[3]. We also remark that there are various
other competitive approaches using partial differential equations or a catidvirof
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probabilistic arguments and analytic ones. For this, see eg. [4], [26] and [44].
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