
Radon Series Comp. Appl. Math8, 1–26 c© de Gruyter 2009

A review of some recent results on Malliavin
Calculus and its applications

Kohatsu-Higa Arturo and Yasuda Kazuhiro

Abstract. We review some of the recent developments of Malliavin Calculus and its applications
with some focus in Finance. In particular, we discuss the finite difference methods which lead in a
generalised form to kernel density estimation methods. We compare this method in relation with the
Malliavin Calculus method and in particular with the Malliavin-Thalmaier formula. We finish by
giving a short review of other developments in the area.
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1 Brief Introduction to Malliavin Calculus

Let (Ω,F , P ;Ft) be a filtered probability space. Here{Ft} satisfies the usual con-
ditions. That is, it is right-continuous andF0 contains all theP -negligible events in
F . Suppose thatH is a real separable Hilbert space whose norm and inner product
are denoted by‖ · ‖H and < ·, · >H respectively (in this article, we usually have
H = L2([0, T ], Rd)). Let W (h) denote a Wiener process onH.

We denote byC∞
p (Rn) the set of all infinitely differentiable functionsf : R

n → R

such thatf and all of its partial derivatives have at most polynomial growth.
Let S denote the class ofsmoothrandom variables of the form

F = f(W (h1), ...,W (hn)), (1.1)

wheref ∈ C∞
p (Rn), h1, ..., hn ∈ H, andn ≥ 1.

If F has the form (1.1) we define its derivativeDF as theH-valued random variable
given by

DF =

n
∑

i=1

∂f

∂xi

(W (h1), ...,W (hn))hi.

We will denote the domain ofD in Lp(Ω) by D
1,p. This space is the closure of the

class of smooth random variablesS with respect to the norm

‖F‖1,p =
{

E
[

|F |p
]

+ E
[

‖DF‖p
H

]}
1
p

.
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We can define the iteration of the operatorD in such a way that for a smooth random
variableF , the derivativeDkF is a random variable with values onH⊗k. Then for
everyp ≥ 1 andk ∈ N we introduce a seminorm onS defined by

‖F‖p
k,p = E

[

|F |p
]

+

k
∑

j=1

E
[

‖DjF‖p

H⊗j

]

.

For any realp ≥ 1 and any natural numberk ≥ 0, we will denote byDk,p the comple-
tion of the family of smooth random variablesS with respect to the norm‖ · ‖k,p. Note
thatDj,p ⊂ D

k,q if j ≥ k andp ≥ q.
Consider the intersection

D
∞ =

⋂

p≥1

⋂

k≥1

D
k,p.

ThenD
∞ is a complete, countably normed, metric space.

We will denote byD∗ the adjoint of the operatorD as an unbounded operator from
L2(Ω) into L2(Ω;H). That is, the domain ofD∗, denoted byDom(D∗), is the set of
H-valued square integrable random variablesu such that

|E[< DF, u >H ]| ≤ c‖F‖2,

for all F ∈ D
1,2, wherec is some constant depending onu (here‖ · ‖2 denotes the

L2(Ω)-norm).
Suppose thatF = (F1, ..., Fd) is a random vector whose components belong to the

spaceD1,1. We associate withF the following random symmetric nonnegative definite
matrix:

γF =
(

< DFi, DFj >H

)

1≤i,j≤d
.

This matrix is called theMalliavin covariance matrixof the random vectorF .

Definition 1.1 We will say that the random vectorF = (F1, ..., Fd) ∈ (D∞)d is non-
degenerate if the matrixγF is invertible a.s. and

(det γF )−1 ∈
⋂

p≥1

Lp(Ω). (1.2)

In what follows, we always assumeG ∈ D
∞, F = (F1, ..., Fd) ∈ (D∞)d is d-

dimensional nondegenerate random variable. Therefore the integration by parts formu-
las will always hold (see Nualart [39], Proposition 2.1.4, p.100 or Sanz [47],Proposi-
tion 5.4 p.67 and formula (1.3) below). For other references, see [49].

1.1 Three methods to compute densities of random variables on Wiener
space

1.1.1 The classical integration by parts formula

Let F = (F1, ..., Fd) be a nondegenerate random vector andG a smooth random vari-
able. We denote bypF,G = E[G/F = x]pF,1(x), wherepF,1(x) ≡ pF (x) denotes the
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density ofF . Then there exists a random variableH(1,2,...,d)(F ; 1) ∈ Lp(Ω) for any
p > 2 such that

pF,G(x̂) = E

[

d
∏

i=1

1[0,∞)(Fi − x̂i)H(1,2,...,d)(F ;G)

]

, (1.3)

where1[0,∞)(x) denotes the indicator function. In fact, fori = 2, ..., d,

H(1)(F ; 1) :=
d
∑

j=1

δ
(

G(γ−1
F )1jDFj

)

,

H(1,...,i)(F ; 1) :=

d
∑

j=1

δ
(

H(1,...,i−1)(F ;G)(γ−1
F )ijDFj

)

. (1.4)

Hereδ denotes the adjoint operator of the Malliavin derivative operatorD andγF the
Malliavin covariance matrix ofF .

In particular, we remark thatδ is an extension of the Itô integral that also integrates
non-adapted processes and is usually called the Skorohod integral. The definition of
H(1,...,i)(F ; 1) in iterative form in (1.4) shows that in order to compute this expression
one requires the calculation ofi-iterated stochastic integrals.

1.1.2 The Finite Difference or Kernel Density Method

The finite difference (FD) method consists in computing the approximate derivative
of any distribution function in order to obtain the density function. This introduces
the choice of a parameter in order to compute the approximate derivative. Thisis a
particular case of the kernel density estimation method. In fact, this method requires
the choice of a kernel functionK and a sufficiently smallh > 0 (usually called the
bandwidth or the tunning parameter) which gives as an approximation

1

N

N
∑

j=1

1

hd
K

(

F j − x̂

h

)

Gj (1.5)

where(F j , Gj), j = 1, ..., N denotesN independent copies of(F,G) obtained by
simulation.

First, we remark that the classical finite difference method is obtained with the
choiceK(x) = 2−d

∏d
i=1 1[−1,1]d(x). The theory of kernel density estimation deals

with the statistical problem of given some data(F j , Gj), j = 1, ..., N what is the ”opti-
mal” way of choosing the kernelK and the tunning parameterh. The theory of kernel
density estimation is quite vast and we are not able to give a fair account of the theory
but it seems that the multimensional cased > 1 is less well understood than the one
dimensional case.

In the multidimensional case, one may use multiplicative type of kernels. The order
of the bias is of orderh2 if the kernel is symmetric and regular in some sense (say
Gaussian type kernels). The variance diverges in the order of

(

Nhd
)−1

. For more
information on this method, see e.g. [48] or [55].
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1.1.3 Malliavin-Thalmaier Representation of Multi-Dimensional Density Func-
tions

We represent the delta function by

δ0(x) = ∆Qd(x) (x ∈ R
d, d ≥ 2),

in the following sense. Iff is a smooth function then the solution of the Poisson
equation∆u = f is given by the convolutionQd ∗ f (see e.g. [20]).

Definition 1.2 Given theRd-valued random vectorF and theR-valued random vari-
ableG, a multi-indexα and a powerp ≥ 1 we say that there is an integration by parts
formula (IBP formula) in Malliavin sense if there exists a random variableHα(F ;G) ∈
Lp(Ω) such that

IPα,p(F,G) : E

[

∂α

∂xα
f(F )G

]

= E
[

f(F )Hα(F ;G)
]

for all f ∈ C
|α|
0 (Rd). (1.6)

Related to the Malliavin-Thalmaier formula [38], Bally and Caramellino [7], have
obtained the following result

Proposition 1.3 (Bally, Caramellino [7]) Suppose that for somep > 1

sup
|a|≤R

E

[

∣

∣

∣

∂

∂xi

Qd(F − a)
∣

∣

∣

p

p−1

+
∣

∣

∣Qd(F − a)
∣

∣

∣

p

p−1

]

< ∞ for all R > 0, a ∈ R
d

(1.7)

(i). If IPi,p(F ;G) (i = 1, ..., d) holds then the law ofF is absolutely continuous with
respect to the Lebesgue measure onR

d and the densitypF is represented as

pF (x) = E

[

d
∑

i=1

∂

∂xi

Qd(F − x)H(i)(F ;G)

]

. (1.8)

(ii). If IPα,p(F ;G) holds for every multi-indexα with |α| ≤ m+1 thenpF ∈ Cm(Rd)
and for every multi-indexρ with |ρ| ≤ m one has

∂ρ

∂xρ
pF (x) = E

[

d
∑

i=1

∂

∂xi

Qd(F − x)H(i,ρ)(F ;G)

]

.

The heuristic idea of the above proof is to use the integration by parts formula in
Malliavin sense as follows

pF (x) = E
[

∆Qd(F − x)G
]

=

d
∑

i=1

E

[

∂2

∂x2
i

Qd(F − x)G

]

= E

[

d
∑

i=1

∂

∂xi

Qd(F − x)H(i)(F ;G)

]

.

Next we impose conditions to assure that the assumptions of proposition 1.3 are
satisfied.
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Corollary 1.4 If G ∈ D
∞, F = (F1, ..., Fd) ∈ (D∞)d is a nondegenerate random

vector, then the probability density function of the random vectorF is

pF (x) = E

[

d
∑

i=1

∂

∂xi

Qd(F − x)H(i)(F ;G)

]

.

1.1.4 Theoretical comparison of the methods

The method of kernel density estimation is the oldest method of the three methods
introduced above and the one that has been used by practioners for a long time. The
method is easy to implement and various standard reccomendations are available on
the choice of kernelsK and the tunning parameterh.

The classical integration by parts formula (1.3) attracted the attention of practition-
ers as it allows in principle the calculation of density functions using Monte Carlo
simulations without any bias (see e.g. [22] and [23]).

In comparison with kernel density estimation methods this method does not require
any tunning as there is no bias. In exchange, the estimator obtained by integration by
parts involve in generald iterated stochastic integrals and its calculation is not available
for all models. Furthermore, the estimator obtained by integration by parts has a con-
stant variance which tends to be big and one needs to use variance reduction methods.

In the one dimensional case a thorough comparison between the classical integration
by parts formula and the kernel density estimation method can be found in [29]. When
the dimension is bigger than one, one can try to compute thed-iterated Skorohod inte-
grals but this becomes cumbersome asd increases. Furthermore as stochastic integrals
have to be approximated by their Riemman sum counterparts the error increases.Nev-
ertheless one can still write the system of linear equations satisfied by the higherorder
derivatives and try to use this structure in order to improve the system simulation (see
e.g. [17]).

Another alternative that is in between the classical integration by parts and the kernel
density estimation method is the Malliavin-Thalmaier formula (1.8).

The significance of the Maliiavin-Thalmaier formula is clear. Instead of thed-
iterated stochastic integrals which appear in (1.3) we have instead only one stochas-
tic integral. The problem with the above formula is that the expectation is well de-

fined in the sense of duality. That is,
∂

∂xi

Qd(F − x) ∈ Lp(Ω) for any p < 2 and

H(i)(F ;G) ∈ Lq(Ω) for p−1 + q−1 = 1. Therefore the variance of the Malliavin-
Thalmaier estimator is infinite.

In fact, we have for some constantAd that

∂

∂xi

Qd(x) := Ad

xi

|x|d .

Therefore, we have to resort again to kernel density estimation methods. We will see
later that the order of degeneration of these estimators is milder in comparison with
estimators of the type (1.5).
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2 Error Estimation for the Malliavin-Thalmaier for-
mula

In order to avoid the explosion of the variance of the Malliavin-Thalmaier estimator,
we have proposed the use of a kernel density type alternative to this estimator,using
instead ofQ, we define

∂

∂xi

Qh
d(x) := Ad

xi

|x|dh
.

where| · |h is defined as

|x|h :=

√

√

√

√

d
∑

i=1

x2
i + h (h > 0, x ∈ R

d).

Then we define the approximation to the density function ofF as;

ph
F,G(x) := E

[

d
∑

i=1

∂

∂xi

Qh
d(F − x)H(i)(F ;G)

]

. (2.1)

Note that clearly,Qd = Q0
d. We now give the Central Limit Theorem associated with

the proposed approximation.

Theorem 2.1 Let Z be a random variable with standard normal distribution and let
(F (j), G(j)) ∈ (D∞)d×D

∞, j ∈ N be a sequence of independent identically distributed
random vectors.
(i). Whend = 2, setn =

⌊

C
h ln 1

h

⌋

andN =
⌊

C2

h2 ln 1
h

⌋

for some positive constantC

fixed throughout. Then ash → 0

n





1

N

N
∑

j=1

2
∑

i=1

∂

∂xi

Qh
2 (F (j) − x̂)H(i) (F ;G)

(j) − pF,G(x̂)



 =⇒
√

Cx̂

3 Z − Cx̂

1 C,

(2.2)
whereH(i)(F ;G)(j), i = 1, ..., d, j = 1, ..., N , denotes the weight obtained in thej-th
independent simulation (the same that generatesF (j) andG(j)).

(ii). Whend ≥ 3, setn =
⌊

C
h ln 1

h

⌋

andN =

⌊

C2

h
d
2

+1(ln 1
h
)2

⌋

for some positive constant

C fixed throughout. Then ash → 0

n





1

N

N
∑

j=1

d
∑

i=1

∂

∂xi

Qh
d(F (j) − x̂)H(i) (F ;G)

(j) − pF,G(x̂)



 =⇒
√

Cx̂

4 Z − Cx̂

1 C.

(2.3)

This result clearly also gives the asymptotic bias and variance of the estimators.In
fact the bias is of the order

pF,G(x̂) − ph
F,G(x̂) = Cx̂

1 h ln
1

h
+ Cx̂

2 h + o(h), (2.4)
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Note that this bias is almost of the same order as in the kernel density estimation
method. The asymptoticL2(Ω)-error is of the order ford = 2,

E





(

2
∑

i=1

∂

∂xi

Qh
2 (F − x̂)H(i)(F ;G) − pF,G(x̂)

)2


 = Cx̂

3 ln
1

h
+ O(1) (x̂ ∈ R

d),

and ford ≥ 3,

E





(

d
∑

i=1

∂

∂xi

Qh
d(F − x̂)H(i)(F ;G) − pF,G(x̂)

)2


 = Cx̂

4

1

h
d
2
−1

+o

(

1

h
d
2
−1

)

(x̂ ∈ R
d).

All the above constantsCx̂

i have explicit expressions that depend on the density
itself. Note that the order of explosion of theL2(Ω)-error is reduced in comparison
with the classical kernel density estimation methods.

3 Financial application

When computing the greek of any option, the instability of the calculation comes from
the irregulaties of the payoff function. In Fournié et al. it was shown how to deal with
the problem. One essentially divides the payoff function in two parts

F = Fh
1 + Fh

2

The first functionFh
1 is a smooth function which depends on a smoothing parame-

ter h and the second localizes the irregularity of the payoff. In the second we apply
the previous integration by parts formula and in the first one uses a direct simulation
method. The question on the choice of the parameterh remains although in Fournié et
al. the authors seem to suggest that this is not an important issue. Nevertheless note
that this is also a tunning problem. In financial applications, one could use the classical
integration by parts as follows.

∂

∂µ
E[f(Fµ)]

=

∫

Rd

f(x)
∂

∂µ
pF (µ, x)dx

= E



f(Fµ)

d
∑

j=1

H(j)

(

Fµ,
∂

∂µ
Fµ,j

)



 .

The classical application to Greek calculations is for the case whenf involves a step
function.

Another possibility hinted by the Malliavin-Thalmaier formula is

f(x) =

∫

f(y)

d
∑

i=1

∂2Qd

∂x2
i

(y − x)dy
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Therefore one can use any of the following alternative expressions (under certain reg-
ularity conditions, for details see [32])

∂

∂µ
E[f(Fµ)] =

d
∑

j=1

E

[

f(Fµ)H(j)

(

Fµ,
∂Fµ,j

∂µ

)]

=
d
∑

i,j=1

E

[∫

f(y)
∂2Qd

∂xi∂xj

(y − Fµ)dyH(i)

(

Fµ,
∂Fµ,j

∂µ

)]

. (3.1)

In some cases, the above representation for the Greeks gives a variance reduction effect.
In fact, if we consider Delta of a digital put option with two assets;

∂

∂S1
0

e−rT EQ
[

1
(

0 ≤ S1
T ≤ K1

)

1
(

0 ≤ S2
T ≤ K2

)]

,

then a method by Fournié et al. [22] without localization gives the following expres-
sion;

e−rT EQ

[

1
(

0 ≤ S1
T ≤ K1

)

1
(

0 ≤ S2
T ≤ K2

)

H(1)

(

S1
T , S2

T ;
∂S1

T

∂S1
0

)]

. (3.2)

On the other hand, an expression of this new method gives as follows;

e−rT

{

EQ

[

g1

(

S1
T , S2

T

)

H(1)

(

S1
T , S2

T ;
∂S1

T

∂S1
0

)]

+ EQ

[

g2

(

S1
T , S2

T

)

H(2)

(

S1
T , S2

T ;
∂S1

T

∂S1
0

)]}

,

(3.3)
where we can explicitly calculate the integral parts of (3.1) to obtain that

g1(x, y) :=
1

2π

{

arctan
y

x
− arctan

y − K2

x
− arctan

y

x − K1
+ arctan

y − K2

x − K1

}

,

g2(x, y) :=
1

4π
ln

(x2 + y2)((x − K1)
2 + (y − K2)

2)

((x − K1)2 + y2)(x2 + (y − K2)2)
.

If we assume that the assets follow the Black-Scholes model, then (3.3) givesa variance
reduction effect, compared with (3.2). In Kohatsu-Higa, Yasuda [31], we can find the
simulation results where we conclude that the variance of (3.3) is about a third of
variance of (3.2). This issue needs to be further studied.

4 Estimation of the optimal value ofh

4.1 About Optimal h

In this section, we give an ad-hoc method to compute a quasi-optimal value ofh using
similar ideas as in kernel density estimation and the central limit theorem obtained in
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Theorem 2.1. We consider theL2(Ω) error of approximation;

E













1

N

N
∑

j=1

(

d
∑

i=1

∂

∂xi

Qh
d

(

F (j) − x̂

)

H(i)(F ; 1)(j)

)

− pF (x̂)







2





. (4.1)

From Theorem 2.1 and the comments following it, we have ford = 2,

(4.1) =
1

N

{

Cx̂

3 ln
1

h
+ O(1)

}

+

(

1 − 1

N

){

Cx̂

1 h ln
1

h
+ Cx̂

2 h + o(h)

}2

+
2

N

{

Cx̂

1 h ln
1

h
+ Cx̂

2 h + o(h)

}

pF (x̂) − 1

N
pF (x̂)

2
,

and ifd ≥ 3,

(4.1) =
1

N

{

Cx̂

4

1

h
d
2
−1

+ o

(

1

h
d
2
−1

)}

+

(

1 − 1

N

){

Cx̂

1 h ln
1

h
+ Cx̂

2 h + o(h)

}2

+
2

N

{

Cx̂

1 h ln
1

h
+ Cx̂

2 h + o(h)

}

pF (x̂) − 1

N
pF (x̂)

2
.

Then we select the leading terms from the above equations to find a trade-off relation
between the small bias and the explodingL2-error;

g(h) :=











1

N
Cx̂

3 ln
1

h
+
(

Cx̂

1

)2
h2, d = 2,

1

Nh
d
2
−1

Cx̂

4 +
(

Cx̂

1

)2
h2, d ≥ 3.

Note that the intervention of the sample size becomes crucial in the above equation:
the right choice ofN will make the variance of the estimator converge to0.

By considering the minimum value ofg(h), finally we obtain the following asymp-
totic optimal value forh;

h =























√

Cx̂

3

2N(Cx̂

1 )2
, d = 2,

{

d − 2

4N

Cx̂

4

(Cx̂

1 )2

}

2
2+d

, d ≥ 3.

(4.2)

The problem with the above theoretical formula is that it requires the knowledge of the
constantsCx̂

i .
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4.2 Calculation of ConstantsCx

1
, Cx

3
and Cx

4

Here we give a heuristic idea on how to obtain the constantsCx̂

i for i = 1, 3, 4 using
pilot simulation. From our CLT result, we have

n





1

N

N
∑

j=1

d
∑

i=1

∂

∂xi

Qh
d

(

F (j) − x̂

)

H(i) (F ; 1)
(j) − pF (x̂)



 =⇒
√

Cx̂

a Z − Cx̂

1 C,

(4.3)

whereCx̂

a = Cx̂

3 if d = 2 andCx̂

a = Cx̂

4 if d ≥ 3. Let Y h,N
x̂

be the left hand side of
(4.3). Therefore we consider the following approximation

Y h,N
x̂

≈
√

Cx̂

a Z − Cx̂

1 C.

Then using thatZ follows a standard Normal districution, we have the following ap-
proximations;

E
[

Y h,N
x̂

]

≈ E

[
√

Cx̂

a Z − Cx̂

1 C

]

= −Cx̂

1 C, (4.4)

E

[

(

Y h,N
x̂

)2
]

≈ E

[

(

√

Cx̂

a Z − Cx̂

1 C

)2
]

= Cx̂

a +
(

Cx̂

1 C
)2

. (4.5)

The computation of constants is done by first fixing the values ofh and N in test
simulations, this gives the value of the constantC andn according to the relation in the
CLT (Theorem 2.1).

We use these test Monte-Carlo simulations in order to approach the mean and the
variance in (4.4) and (4.5). In practice, one obtains a stable result forCx̂

a , but the result
of Cx̂

1 is unstable if one uses all the choices ofh andN in the pilot simulations. This is
due to the fact that when the value ofC becomes too small then the above procedure is
not good to obtain the value ofCx̂

1 as the error terms become bigger than the quantity
to be estimated. To estabilize the estimation, besides deleting (or avoiding) the simu-
lations with small values ofC, we additionally consider the following approximating
procedure forCx̂

1 .

1

M

M
∑

k=1

Y h,N

x̂,(k) ≈
√

Cx̂

a

1√
M

Z̃ − Cx̂

1 Ch,N ,

where letZ̃ be a random variable with the standard normal distribution. Now if we try
this test simulationL times using different values ofh, then we have

1

L

L
∑

l=1

(

1

M

M
∑

k=1

Y
h(l),N
x̂,(k)

)

≈ − 1

L

L
∑

l=1

Cx̂

1 Ch(l),N = −Cx̂

1

1

L

L
∑

l=1

Ch(l),N .

Therefore we obtainCx̂

1 as follow;

Cx̂

1 ≈ −
∑L

l=1

(

1
M

∑M
k=1 Y

h(l),N
x̂,(k)

)

∑L
l=1 Ch(l),N

.
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Remark 4.1 Once we obtain the constantCx̂

1 , we can modify the approximation as
follows;

ṗh
F (x̂) = ph

F (x̂) + Cx̂

1 h ln
1

h
.

Then from the bias error (2.4), we can improve the bias of the error;

pF (x̂) − ṗh
F (x̂) = pF (x̂) −

(

ph
F (x̂) + Cx̂

1 h ln
1

h

)

= Cx̂

2 h + o(h).

5 Numerical Results

In this section, we give a short report on some simulation results on the following
models: the multidimensional Black-Scholes model and two factor models in finance:
the Heston model [24] and the double volatility Heston model [21], [25].

5.1 The Multidimensional Black-Scholes Model

We consider the followingd-dimensional Black-Scholes model; fori = 1, ..., d,

dSi
t

Si
t

= µidt +
d
∑

j=1

σi
jdW j

t , Si
0 = si,

whereµi andσi
j , i, j = 1, ..., d are constants,si, i = 1, ..., d is a positive constant,

andW = {Wt = (W 1
t , ...,W d

t )}t≥0 is a d-dimensional standard Brownian motioin,
whose components are independent of each other. As it is well know, thejoint density
of the random vectorST = (S1

T , ..., Sd
T ) is the lognormal density which can be written

explicitly. andΣ−1 = (σ−1
ij )i,j=1,...,d is the inverse matrix ofΣ.

We can also represent the densitypST
(x) through the Malliavin-Thalmaier formula.

Lemma 5.1 LetF = ST be a nondegenerate random vector. Then the densitypST
can

be expressed as

pST
(x) = Ad

d
∑

i=1

E





Si
T − xi

|ST − x|d
d
∑

j=1

(−1)i+j det(Σj
i )

det(Σ)

{

W j
T

Si
T

+
σi

jT

Si
T

}



 , (5.1)

for x ∈ R
d, whereΣj

i , i, j = 1, ..., d, is a (d − 1) × (d − 1)-matrix obtained fromΣ by
deleting rowj and columni.

For more details on the above Lemma, see Kohatsu-Higa and Yasuda [32].
Hence we have the following approximation of (5.1); forx ∈ R

d,

ph
ST

(x) := Ad

d
∑

i=1

E





Si
T − xi

|ST − x|dh

d
∑

j=1

(−1)i+j det(Σj
i )

det(Σ)

{

W j
T

Si
T

+
σi

jT

Si
T

}



 . (5.2)
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Now we provide a short summary of results in cased = 2. The simulation result
through the classical representation is unstable and does not work well (unlessvariance
reduction methods are applied (e.g. see [30], [28] and [12]), because of the appearance
of a double-Skorohod integral for the Malliavin weight. Compared with the classical
method, the Malliavin-Thalmaier formula (5.1) works better since it does not involve
double Skorohod integral. But the density approximation exhibited unexpectedpeaks,
which are due to the unstable behavior of∂

∂xi
Qd. This instability also appears when

the density estimation is magnified locally. To improve these instability, we use the
approximation formula (5.2). In fact, this approximation although slightly biased in
comparison with the Malliavin-Thalmaier formula (5.1), behaves smoothly. For more
details and graphs, see Kohatsu-Higa and Yasuda [33].

5.2 Heston Model

In this section, we provide some simulation results for the Heston model [24];

dSt = µStdt +
√

vtStdW
(1)
t ,

dvt = −γ(vt − θ)dt + κ
√

vtdW
(2)
t ,

whereµ, γ, θ, κ are constants withγθ ≥ κ2

2 (see Lamberton, Lapeyre [35]) and

W
(1)
t , W

(2)
t are standard Brownian motions withE[W

(1)
t W

(2)
t ] = ρt.

We introduce a new standard Brownian motionZ, which is independent ofW (2)
t

andW
(1)
t = ρW

(2)
t +

√

1 − ρ2Zt. We also change variables. SetXt := ln(St/S0)−µt
andut := avt. Then from It̂o’s formula, we have the following dynamics;

dXt = − ut

2a
dt +

√

ut

a

{

ρdW
(2)
t +

√

1 − ρ2dZt

}

,

dut = −γ(ut − aθ)dt +
√

aκ
√

utdW
(2)
t .

(5.3)

As the exact value of the joint density value of(Xt, ut) is unknown, we estimate the
value by using the Malliavin-Thalmaier formula, the approximated version and the
finite difference algorithm applied to the Kolmogorov equation.

SetF := (F1, F2) := (Xt, ut) for fixed t > 0. First we give the Malliavin-Thalmaier
formula for this model. Forx = (x1, x2) ∈ R

2, we have

pF (x) =
1

2π
E

[

2
∑

i=1

Fi − xi

|F − x|2 H(i)(F ; 1)

]

, (5.4)
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where

H(1)(F ; 1) :=

√
a

√

1 − ρ2t

∫ t

0

1√
us

dZs,

H(2)(F ; 1) :=
1

t
{A − B} ,

A :=
1√

aκe(t)

∫ t

0

e(s)√
us

dW (2)
s +

1

2e(t)

∫ t

0

e(s)

us

ds +
aκ2

8e(t)

∫ t

0

s
e(s)

u2
s

ds −
√

aκ

4e(t)

∫ t

0

s
e(s)

u
3
2
s

dW (2)
s ,

B :=
ρ

κ
√

a(1 − ρ2)e(t)

∫ t

0

e(s)√
us

dZs −
1

2
√

a(1 − ρ2)e(t)

∫ t

0

e(r)

∫ r

0

1√
us

dZsdr

+
ρ

2
√

1 − ρ2e(t)

∫ t

0

e(r)√
ur

∫ r

0

1√
us

dZsdW (2)
r +

1

2e(t)

∫ t

0

e(r)√
ur

∫ r

0

1√
us

dZsdZr,

e(t) := exp

(

−γt − aκ2

8

∫ t

0

1

ur

dr +

√
aκ

2

∫ t

0

1√
ur

dW (2)
r

)

.

And our approximation is given as follows;

ph
F (x) =

1

2π
E

[

2
∑

i=1

Fi − xi

|F − x|2h
H(i)(F ; 1)

]

. (5.5)

All the stochastic integrals appearing in the above formulas are approximated using
the corresponding Riemmann sums. This obviously introduces a further error ofap-
proximation in the above formulas. We will compare the above approximation values
with the following deterministic method.

Finite Difference method applied to the associated Kolmogorov equation

Next we give the corresponding forward Kolmogorov equation of the model (5.3);

∂pt

∂t
= γpt+γ(u−aθ)

∂pt

∂u
+

u

2a

∂pt

∂x
+ρκu

∂2pt

∂x∂u
+ρκ

∂pt

∂x
+

u

2a

∂2pt

∂x2
+

aκ2u

2

∂2pt

∂u2
+aκ2 ∂pt

∂u
.

(5.6)
The initial condition is the Dirac delta function;

p0(x, u) = δ0(x)δ0(u − u0).

When we compute the approximative solution to equation (5.6), we use the following
explicit scheme;

P k+1
i,j − P k

i,j

∆t
=γP k

i,j +
(uj

2a
+ ρκ

) P k
i+1,j − P k

i−1,j

2∆x
+
(

γ(uj − aθ) + aκ2
) P k

i,j+1 − P k
i,j−1

2∆u

+
uj

2a

P k
i+1,j − 2P k

i,j + P k
i−1,j

(∆x)2
+ ρκuj

P k
i,j+1 + P k

i−1,j − P k
i−1,j+1 − P k

i,j

∆x∆u

+
aκ2uj

2

P k
i,j+1 − 2P k

i,j + P k
i,j−1

(∆u)2
, (5.7)
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whereP k
i,j := ptk

(xi, uj |u0) and∆t,∆x,∆u > 0. In order to achieve a stable sim-
ulation (positivity of the density) in the negative correlation case, we use the forward
difference method w.r.t.x and the backward difference method w.r.t.u for the term
∂2pt

∂x∂u
1. The stability property also requires some particular relation between the pa-

rameters, that is, assume that (i).∆x = ∆u is small enough, (ii). (∆x)2

uj(1+aκ2+ρκ) ≥ ∆t

under a restrictionc1 ≤ uj ≤ c2, (iii). 1
2a

≥ −ρκ, (iv). aκ ≥ −2ρ. 2

Kernel density estimation method

We compare the density value to the kernel density method. Here we use the Gaussian
kernel and all bandwidth sizes are the same. That is, forF := (F1, · · · , Fd) andx =
(x1, ..., xd) ∈ R

d,

pF (x) ≈ 1

N

N
∑

j=1

1

hd

d
∏

i=1

1√
2π

exp

(

− (F
(j)
i − xi)

2

2h2

)

, (5.8)

whereF
(j)
i , i = 1, ..., d, j = 1, ..., N is a sequence of r.v.’s, copies ofFi.

To use (5.8), we have to decide how to choose the bandwidth size. To introduce
this optimal choice and the calculations of constants as in Section 4, we consider the
general case of KDE. LetK : R → R+ be a function with

∫

R
xaK(x)dx = 0 for

a = 1, 3. And for x = (x1, ..., xd) ∈ R
d, set

ph
KDE(x) := E

[

1

hd

d
∏

i=1

K

(

Fi − xi

h

)

]

.

Then we have the following central limit theorem for kernel density estimations.

Proposition 5.2 Seth = (C2

N
)

1
d+4 andn = ⌊ C

h2 ⌋, whereC is a positive constant. Let
Z be a random variable with standard normal distribution. Then we have

n





1

N

N
∑

j=1

1

hd

d
∏

i=1

K

(

F
(j)
i − xi

h

)

− pF (x)



 =⇒
√

Ċx

2 Z − Ċx

1 C,

whereF
(j)
i , i = 1, ..., d, j = 1, 2, ... are an i.i.d. random variable ofFi.

In fact, from Scott [48], we have that the bias error is

pF (x) − ph
KDE(x) = −h2 1

2

∫

R

z2K(z)dz

d
∑

i=1

∂2pF (x)

∂x2
i

+ O
(

h4
)

=: Ċx

1 h2 + O
(

h4
)

.

1 When the correlation is positive, we have to use another approximation to achieve stability.
2 If we use other approximation or consider a caseρ ≥ 0, these relations vary.
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And also we obtain theL2-error;

E





{

1

hd

d
∏

i=1

K

(

Fi − xi

h

)

− ph
KDE(x)

}2


 =
1

hd
pF (x)

d
∏

i=1

∫

R

K(zi)
2dzi + O

(

1

hd−1

)

=: Ċx

2

1

hd
+ O

(

1

hd−1

)

.

Finally, we obtain an optimal bandwidth size from a calculation like in Section 4.
Then we obtain the following asymptotic optimal size of the bandwidth

h =

(

dĊx

2

4N(Ċx

1 )2

)
1

d+4

. (5.9)

And we can calculate the constantsĊx

1 , Ċx

2 through a pilot simulation as explained in
Section 4.2 and following Proposition 5.2.

Using a KDE method on the Laplacian of the Poisson kernel

We also can estimate the density function through the Laplacian of the Poisson kernel.
That is, forx̂ ∈ R

d,

pF (x̂) = E [δ0 (F − x̂)] = E

[

d
∑

i=1

∂2

∂x2
i

Q (F − x̂)

]

. (5.10)

If we simulate (5.10) directly, it is clear that the simulation will return either zero or an
error.

Therefore we introduce the following approximation of (5.10); forh > 0,

ph
Poi (x̂) := E

[

d
∑

i=1

∂2

∂x2
i

Qh
d (F − x̂)

]

. (5.11)

We give a central limit theorem for (5.11).

Proposition 5.3 SetN = ⌊ C2

h
d+4
2 (ln 1

h
)2
⌋ andn = ⌊ C

h ln 1
h

⌋, whereC is a positive con-

stant. LetF (j), j ∈ N be an i.i.d. random variable ofF andZ be a random variable
with the standard normal distribution. Then ash → 0, we have

n





1

N

N
∑

j=1

d
∑

i=1

∂2

∂x2
i

Qh
d

(

F (j) − x̂

)

− pF (x̂)



 =⇒
√

Ĉx̂

3 Z − Ĉx̂

1 C.

The proof uses the following error estimations. First, the bias error is

pF (x̂) − ph
Poi (x̂) = Ĉx̂

1 h ln
1

h
+ Ĉx̂

2 h + o(h),
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whereĈx̂

1 andĈx̂

2 are some constants defined asCx̂

1 andCx̂

2 in the Malliavin-Thalmaier
formula respectively. Next, theL2-error;

E





{

d
∑

i=1

∂2

∂x2
i

Qh
d (F − x̂) − pF (x̂)

}2


 =
1

h
d
2

Ĉx̂

3 + o

(

1

h
d
2

)

,

whereĈx̂

3 is some positive constant.
As before, we obtain the following optimal bandwidth

h =







dĈx̂

3

4N
(

Ĉx̂

1

)2







2
d+4

. (5.12)

And we can calculate the constantsĈx̂

1 , Ĉx̂

3 through a pilot simulation as Section 4.2
and Proposition 5.3.

Numerical results

Now we give a survey of the simulation results on the model (5.3). We use the follow-
ing parameters;

parameter value

initial log stock price S0 100

(initial volatility)2 v0 0.1

scale parameter a 3

expected return µ 0.1

speed of mean reversion γ 2

long term mean θ 0.1

volatility of volatility process κ 0.2

maturity t 1

We estimate the density value at(x, u) = (0, 0.3) (the initial point). We simulate two
cases, the correlationρ = −0.1, −0.8, through five methods, the Malliavin-Thalmaier
formula, the approximated Malliavin-Thalmaier formula, the finite difference method
applied to the Kolmogorov equation (onlyρ = −0.1), the Gaussian kernel density esti-
mation and the Laplacian of the Poisson kernel method. Then their density estimation
and variances appear in Figures 5.1 and 5.2.

In Figure 5.1, we have computed two different approximations of the Kolmogorov
equation. That is,(∆x,∆u) = (0.02, 0.02) for “PDE 1” and(∆x,∆u) = (0.01, 0.01)
for “PDE 2”. These results depend heavily on the approximation of the initial condition
(the Dirac function), In order to achieve a stable simulation (positivity of the density),
we need to restrict the region ofu. Then the calculation looses small mass on the
boundary of the region. Hence our results depend on these conditions. As inthe case
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Method Bias error ρ = −0.1 ρ = −0.8

MT formula Cx̂

1 h ln
1

h
+ Cx̂

2 h + o(h) Cx̂

1 = 97.2983 Cx̂

1 = 273.0708762

KDE Ċx

1 h2 + O(h4) Ċx

1 = 30258018 Ċx

1 = 9209822.1

Poisson Ĉx̂

1 h ln
1

h
+ Ĉx̂

2 h + o(h) Ĉx̂

1 = 195.2020997 Ĉx̂

1 = 274.6290929

Table 5.1 Bias error and constants computed using pilot simulations for the Heston
model

Method L2-error ρ = −0.1 ρ = −0.8

MT formula
Cx̂

3 ln
1

h
+ O(1) (d = 2)

Cx̂

4

1

h
d
2
−1

(d ≥ 3)
Cx̂

3 = 42.741 Cx̂

3 = 159.642

KDE Ċx

2

1

hd
+ O(

1

hd−1
) Ċx

2 = 372966 Ċx

2 = 92540.7

Poisson Ĉx̂

3

1

h
d
2

+ o(
1

h
d
2

) Ĉx̂

3 = 0.555882 Ĉx̂

3 = 0.598472

Table 5.2 L2-error and constants computed using pilot simulations for the Heston
model

Method Optimal size ofh ρ = −0.1 ρ = −0.8

MT formula

(

Cx̂

3

2N(Cx̂

1 )2

)

1
2

(d = 2)

{

d − 2

4N

Cx̂

4

(Cx̂

1 )2

}

2
2+d

(d ≥ 3)

4.75119 × 10−5 3.27177 × 10−5

KDE

(

dĊx

2

4N(Ċx

1 )2

)
1

d+4

0.0024256 0.0028585

Poisson

(

dĈx̂

3

4N(Ĉx̂

1 )2

)
2

d+4

0.000193937 0.000158309

Table 5.3Optimal bandwidthh for the Heston model (d = 2 andN = 106)

Method N = 104 N = 105 N = 106

MT formula 0.406 3.978 39.312

KDE 0.296 2.933 27.456

Poisson 0.312 3.37 28.143

Table 5.4Computation time for the Heston model (in seconds)
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ρ = −0.8, (5.7) does not satisfy the stability conditions, we have not included them in
Figure 5.3.

In Figure 5.1 and 5.3, we give simulation results using the Malliavin-Thalmaier
formula and its approximation with the optimal value forh (using (4.2)). The number
of time steps until maturity is50, that is,∆t = t/50 = 0.02 and the number of the
Monte-Carlo simulation changes from104 to 106. From these graphs, we can say that
the approximative Malliavin-Thalmaier formula 2.1 performs well in comparison to
the other approximative density values (Figure 5.1 and 5.3). In Figures 5.2 and 5.4, we
can see that the variance of the approximated Malliavin-Thalmaier formula is stable
and about a half of the variance of the Malliavin-Thalmaier formula withouth.

Note that even if we use the optimal size of the bandwidthh, the variance of KDE is
comparatively larger than the other methods. Compared with KDE, the Poisson kernel
method works better. To reduceL2-error, the optimal size of the parameterh becomes
slightly big, then we find that the numerical results have somewhat large bias errors in
Figure 5.1 and 5.3.

In Tables 5.1 and 5.2, we give the constant values from the central limit theorems
obtained using pilot simulations. Here we first simulate through each method by using
from h = 0.1 to h = 10−10 andN = 105. The cases in which the value ofC is too
small are removed from further consideration. This gives a narrow range ofh where the
pilot simulation are carried out. For these we useN = 105 andM = 100. The results
of the calculations appear in Tables 5.1 and 5.2. In Table 5.3, we give theoptimal size
of the parameterh for the caseN = 106 by using the constants from Tables 5.1 and
5.2. And we also give the simulation times for each method. In this respect thereis no
big difference among the methods.

5.3 Double Volatility Heston Model

In this section, we consider a3-dimensional case, the double volatility Heston model
[25] which is a special case of [21], given by

dSt = µStdt +
√

vtStdW
(1)
t +

√
utStdW

(2)
t ,

dvt = γ(θ − vt)dt + κ
√

vtdB
(1)
t ,

dut = α(β − ut)dt + τ
√

utdB
(2)
t ,

whereµ, γ, θ, κ, α, β, τ are constants withγθ ≥ κ2

2 andαβ ≥ τ2

2 , andW
(1)
t ,W

(2)
t , B

(1)
t , B

(2)
t

are standard Brownian motions withE[W
(1)
t B

(1)
t ] = ρ1t andE[W

(2)
t B

(2)
t ] = ρ2t (−1 ≤

ρ1, ρ2 ≤ 1) and others are independent of each other.
Then we introduce Brownian motionsZ(1)

t andZ
(2)
t ,

W
(1)
t = ρ1B

(1)
t +

√

1 − ρ2
1Z

(1)
t , and W

(2)
t = ρ2B

(2)
t +

√

1 − ρ2
2Z

(2)
t .

whereB(1)
⊔

Z(1), B(2)
⊔

Z(2) andZ(1)
⊔

Z(2) where
⊔

stands for independence of
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processes. And setXt := ln(St/S0) − µt, Vt := a1vt andUt := a2ut. Then we have

dXt = −1

2

(

Vt

a1
+

Ut

a2

)

dt +
ρ1√
a1

√

VtdB
(1)
t +

√

1 − ρ2
1

a1

√

VtdZ
(1)
t

+
ρ2√
a2

√

UtdB
(2)
t +

√

1 − ρ2
2√

a2

√

UtdZ
(2)
t ,

dVt = γ (a1θ − Vt) dt +
√

a1κ
√

VtdB
(1)
t ,

dUt = α (a2β − Ut) dt +
√

a2τ
√

UtdB
(2)
t .

(5.13)

Through usual calculations for weightsH(i)(Xt, Vt, Ut; 1) ,i = 1, 2, 3, we obtain the
Malliavin-Thalmaier formula. Although the weights are too long to write here (See
Kohatsu-Higa and Yasuda [34]) the computational complexity is the same as in the
previous example. Then we compare the density value and variance through some
methods as the Heston model.

Numerical results

We use the following parameters;

Parameter Notation Value

Correlation (ρ1, ρ2) (0.2,−0.15)

Scale parameters (a1, a2) (1, 1)

Speed of mean-reversion (γ, α) (2, 1.5)

Long term mean (θ, β) (0.2, 0.15)

Volatility of volatility process (κ, τ) (0.2, 0.15)

Initial value of volatility process (V0, U0) (0.2, 0.15)

Initial value of log-price X0 0

Maturity t 1

Time step size ∆t 1/200 = 0.005

The density estimates are carried at the point(x, v, u) = (0, 0.2, 0.15) (the initial point).
From Figure 5.5, we arrive at conclusions similar to those related to the Heston

model case. The KDE method has a large bias and variance even if we usethe optimal
bandwidth size. The bias error of the Poisson kernel method is larger than thecorre-
sponding biases of the Malliavin-Thalmaier formula without and withh. Variance of
the approximated Malliavin-Thalmaier formula with the optimalh is much smaller than
the variances of the other methods. We can easily find that the Malliavin-Thalmaier
formula (withouth) have some singular values in Figure 5.6. But the approximated
version is stable and has smaller variance.

Expressions of the Malliavin weights are similar to ones of the Heston model. But
computation time is longer than the Heston case, since a problem appears whenone
performs the simulation of the two volatiltiy processes (the CIR model), for which we
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need a precise approximation. The time step size∆t = 0.005 is smaller than the Heston
case. Therefore this issue has to be taken into account in the final result.

6 Conclusions and further comments

In this article we have only concentrated on the integration by parts formula in the
setting of Wiener spaces and we have compared the kernel density methodswith in-
tegration by parts methods. In [18], an interesting mixed approach is introduced, al-
though some of the results do not seem encouraging it may lead to new ideas for new
simulation methods.

There is also another tendency to obtain the infinite dimensional integration by parts
formula as a limit of finite dimensional integration by parts. This is the point of view
of [15] which also shows that there are various other integration by parts formulae that
can be obtained beside the classical ones. This approach can also be used theoretically
as shown in [5] and [53]. This has also lead to interesting results in the jump driven
stochastic differential equations.

There is an increasing literature dealing with the integration by parts formula in the
setting of Ĺevy driven stochastic differential equations. In the early 90’s this became a
hot topic of research leading to articles and books (see the references, [11], [13],[40],
[45], [46], [14], [51] and [52] ). There are various approaches that lead to different
integration by parts formula depending which variable one uses to base the integration
by parts. Some use the jump distribution, other the jump times and other are basedin
other variables. There is not a unified approach as in the Wiener case. In most cases, as
in the case of the Wiener space, the interest is in proving the existence and smoothness
of densities for solutions of stochastic differential equations with jumps.

There is another approach centered in the chaos decompositions. See for example,
[37], [36]. This approach leads to a definition of derivative but its consequences for
densities of random variables have been largely ignored. Also, in this setting, itbe-
comes hard to verify that the solution of stochastic differential equations with jumps
are differentiable.

In the past few years various authors have studied the application of this methodol-
ogy in finance and insurance. Leading to similar studies of greeks in Finance. See, e.g.
[6], [8], [16], [43], [19] and [27].

Another issue that has raised recent interest is the application of the asymptotic
expansion theory developed by S. Watanabe on Wiener space (see [56], [41], [42]) and
recently extended to the Poisson space case. These formulas found an application in
statistics in the form of Berry-Essen type expansions (see [54] or [50]). In Finance
this has lead to approximative formulas for option pricing. In particular, there has
been a recent development of expansion formulas using greeks (see [9] and [10]). This
formulas seem to have an application in the calibration problem. Although we still
seem far from solving this difficult problem from the practical point of view.

Partial approaches that do not seem to lead to a clear expansion but give approxi-
mative formulas can be found in [1], [2] and[3]. We also remark that there are various
other competitive approaches using partial differential equations or a combination of
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probabilistic arguments and analytic ones. For this, see eg. [4], [26] and [44].
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