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Abstract

In these notes we review through simple examples recent results on models for insider trading
based on the theory of enlargement of filtrations and on anticipating calculus. In particular,
we concentrate on the case of strong type of insiders. That is, insiders that have additional
information in the a.s. sense. We explain how to treat the utility maximization problem for
insiders in order to obtain models where the utility is finite. In the anticipating framework, we
introduce models where the signal of the insider can not be revealed to the small trader even
though the insider has an effect on the price (large trader effect).
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1 Introduction
These notes are result of a short course delivered as part of a “cours de formation pour la recherche”
at CREST during november-december of 2004. The goal of these lectures were to introduce young
researchers and Ph D students to this area of research. I have decided to keep the spirit of the
lectures in these notes although some of the concepts and results may seem to be repetitive through
the text or may be well known to the advanced researcher.

The format throughout the text uses examples with concrete answers, in order to give the basic
ideas behind the general results and the proofs, rather than the full generality and (sometimes non-
trivial) technicalities that can be seen in the research papers mentioned in the references. We do
this on the risk of becoming overly trivial but hopefully very clear in what the goals and the used
techniques are.

These notes do not assume any previous knowledge of mathematical finance and they are largely
self-contained. They do assume knowledge of basic stochastic calculus. In particular, I have decided
to introduce discrete time models as an approximation of their continuous counterparts for two
reasons: The first is to introduce various concepts through their discrete time counterparts. Most
importantly, the second reason is to introduce the anticipating type models where the discrete
counterpart becomes essential to understand the meaning and the difficulties in this setup.

These notes are designed to be read in two levels. The objective of the main line and first level
of discussion is to give a brief overview of the theory. In a second level, we give more details and
properties trough exercises which may assume more knowledge of stochastic calculus. Most of them
are solved at the end of this survey. While I do not considered all of them to be trivial, I think they
are useful for the person that wants to deepen his/her knowledge about this area of study. Still,
part of the material appears here for the first time.

∗This research was partially supported with grants BFM 2003-03324 and BFM 2003-04294.
Keywords: Asymmetric markets, utility maximization, enlargement of filtrations.
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I have not tried my outmost to add historical notes or to put rightful due to each statement
appearing in the text and probably many references may be missing. I apologize for all historical
imprecisions and my ignorance in the exposition.

I would like to thank Nizar Touzi for inviting me to deliver these lectures and for his trust in my
completing these notes. Also thanks to all the people who participated in the course with interesting
comments, remarks and questions. In particular to Monique Jeanblanc for her careful review of a
previous version of these notes.

This article deals with the modelling of financial markets where agents may have different infor-
mation. That is, agents observe the same prices but their filtration may differ due to some extra
information that has been obtained in some other fashion. In such a setting the natural mathematical
question is what are the basic process properties when such change of filtration takes place.

This will take us naturally to the enlargement of filtration problem: That is, does a Wiener
process remain a semimartingale in a larger filtration than the one generated by the process itself?
In general, the answer to this question is negative but Jacod’s theorem will tell us some cases when
the answer is affirmative. The restriction of this theorem is that the only information allowed is the
one given by a single random variable. So one of the goals of the present lectures is to try to show
a possible route leading to the introduction of flows of information as possible differences between
agents.

Another issue that we want to treat is that from the financial modelling point of view, there
are insiders of two types. The first, called unlawful insiders are the agents that trade using the
information they possess without any risk. In our theory these insiders will become infinitely rich.
This situation corresponds to the typical application of Jacod’s theorem.

The second, are insiders which try to hide the fact that they possess this perfect information or
either their information does have some risks and therefore our search will be for models where utility
is finite. We will try to concentrate on this type of insiders. Nevertheless not only for historical but
rather for educational reasons we will have to review the theory of unlawful insiders.

We will first introduce the logarithmic utility optimization problem for the classical investor (the
so called Merton problem), then we will introduce a first example of insider which knows exactly
the price at the end of a time interval. This example is a first example of insider where the agent
will make an infinite amount of money and there is arbitrage in the model.

Then we will give various alternatives in order to obtain finite utilities in models based on the
Wiener process. Next we will show that without these modifications the optimal logarithmic utility
of the insider is finite in the case of markets with jumps. This effect is due to the high risk imbedded
in such models.

Next we will move into the study of insiders as large traders which will need in a natural manner
the introduction of anticipating integrals. In particular, we will use the notion of forward integrals
as defined by Russo-Vallois. With these models we will show that there is the possibility that the
insider influences the prices but still the price information does not reveal its information to the
traders.

2 The small investor problem
We will mainly consider the one dimensional setting to simplify the notation unless stated otherwise.
The set-up will be the same for the discrete and continuous time cases. For this, we start considering
a one dimensional Wiener process W = {W (t), 0 ≤ t ≤ T} and a compound Poisson process
Z(t) =

∑N(t)
i=0 Xi where N is a simple Poisson process with intensity λ and Xi, i = 1, ... are i.i.d.

r.v.’s with density function f such that E(eX) < ∞. These processes are defined on a complete
probability space (Ω,F , P ). We denote by (Ft)t∈[0,T ] the natural filtration generated by the Wiener
and the compound Poisson process and the sets of P -measure zero.

Suppose that {S(t); t ∈ [0, T ]} is a positive stochastic process defined on (Ω,F , P ). This process
models the stock price. In the discrete time setting we suppose that trading only takes place at
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discrete times 0 = t0 < ... < tn = T . Then the model for the price will be

log(S(ti+1)/S(ti)) = µ(ti)(ti+1 − ti) + σ(ti)(W (ti+1)−W (ti)) + (Z(ti+1)− Z(ti)) (1)

where µ(t) and σ(t) > c > 0 are two (Ft)t∈[0,T ]-adapted cádlág bounded processes.
The small agent who has as information at time t all the Ft-measurable r.v.’s makes his investment

decisions based on these r.v.’s. Another agent, called the insider, observes the same process S but
he/she holds as information a bigger filtration G than the small agent (that is, G ⊇ F). Both
investors are price takers. That is, none of them can change the value of S by using his/her trading
strategies.

Nevertheless, insiders are usually large traders as they can change the price dynamics with his/her
trades. This is another aspect of this area of research which is of interest. We neglect this aspect in
the first part of our exposition (for more on this, see Section 11)

We start giving a brief exposition of the classical Merton problem for the small investor. That
is, what is the optimal portfolio policy that a small investor should choose in order to maximize
his/her utility.

Suppose that the small investor starts with a wealth of V0 units of money and chooses a F-
adapted policy p(t) = (p0(t), p1(t)), where p0(t) denotes the money invested at his/her bank account
at time t that gives an interest rate of r, and p1(t) denotes the number of shares held at time t.
Suppose that we only allow trading at time points {0 = t0 < t1 < ... < tn = T}. That is, p is a step
process

p(t) =
n−1∑

i=0

p(ti)1(ti,ti+1](t)

An investment policy p is allowed for this investor, besides other technical conditions to be established
later, if it is self-financing. That is, if the investor can change p(ti) to p(ti+1) by using the proceedings
of selling all his assets. Therefore, the self-financing condition is p0(t0) + p1(t0)S(t0) = V0 and for
i = 0, ..., n− 2

p0(ti+1) + p1(ti+1)S(ti+1) = p0(ti)er(ti+1−ti) + p1(ti)S(ti+1). (2)

That is, every sequence of possible vectors p(ti); i = 0, ..., n − 1 have to satisfy the above n − 1
equations. In fact with these restrictions the investor has only the freedom to choose p1(ti), i =
0, ..., n − 1. All the other variables p0(ti), i = 0, ..., n − 1 are determined by the self financing
equations (2). In fact, we have the following result which is easy to prove.

Lemma 1 Given an initial wealth V0, then for every sequence of real values p1(ti), i = 0, ..., n− 1
there exists a unique sequence of values p0(ti), i = 0, ..., n − 1, such that the vectors p(ti) for
i = 0, ..., n− 1 form a self-financing policy.

Now we can define the wealth of the investor as V̄ (t) ≡ V n(t) = p0(t) + p1(t)S(t) where p0(t) =
p0(ti)er(t−ti) for ti ≤ t < ti+1. With this condition one can rewrite the wealth as the sum of
earnings/losses for each interval [ti, ti+1]. That is, if the initial wealth of the small investor is V0

then

V̄ (ti) = V0 +
i−1∑

j=0

(
V̄ (tj+1)− V̄ (tj)

)
(3)

= V0 +
i−1∑

j=0

(
p0(tj)

(
er(tj+1−tj) − 1

)
+ p1(tj) (S(tj+1)− S(tj))

)

= V̄ (ti−1) + p0(ti−1)
(
er(ti−ti−1) − 1

)
+ p1(ti−1) (S(ti)− S(ti−1))

Note that the above formula is valid without any assumption on the model for S. The next restriction
we will impose on the actions of the investor is that we will not allow uncovered losses (sometimes
called the no-borrowing condition or tameness condition when written in a more general form). That
is, p should satisfy that V̄ (t) ≥ 0 for all t ∈ [0, T ].
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Exercise 2 Suppose that the support of the law of S(t) is (0,∞) for all t ∈ [0, T ]. Prove that
V̄ (t) ≥ 0 for all t ∈ [0, T ] if and only if p0(t) ≥ 0 and p1(t) ≥ 0 for all t ∈ [0, T ].

This exercise proves that the no-borrowing restriction is quite strong for markets with transac-
tions in discrete time. Nevertheless this will not be so in continuous time.

Now we have to discuss if there is the possibility for the small trader to make money without
any risk. For this, we define discounted wealth process V̂ (ti) = e−rti V̄ (ti), i = 0, ..., n and the
discounted stock price process Ŝ(t) = e−rtS(t).

Definition 3 We say that there is the possibility of arbitrage for the small trader is there exists a
policy p = (p0, p1) such that P (V̂ (T ) ≥ V0) = 1 and P (V̂ (T ) > V0) > 0.

So far we have not made any use of the particular form of S. Now we will use equation (1) to
prove that there is no possibility for arbitrage.

Proposition 4 There is no possibility of arbitrage for the small trader in the space of admissible
strategies

A(T ) = {p(t) =
n−1∑

i=0

p(ti)1(ti ≤ t < ti+1); adapted E [|p0(ti)|+ |p1(ti)|] < ∞, i = 0, ..., n− 1}.

Proof. First note that for p ∈ A(T ), we have that E
∣∣∣V̂ (ti)

∣∣∣ < ∞ for all i = 1, ..., n. Given that

(W (ti+1)−W (ti))n−1
i=0 is a Gaussian vector we can perform the following change of measure

dQ

dP
= exp

(
−

n−1∑

i=0

2θ(ti)(W (ti+1)−W (ti)) + θ(ti)2(ti+1 − ti)
2

)
.

with
θ(ti) = σ(ti)−1

(
µ(ti)− r + λ(E(eX)− 1)

)
.

With this change we have that V̂ is a discrete time martingale in (Ω,F , Q). That is,

EQ[ V̂ (ti+1)
/
Fti ] = V̂ (ti).

In fact,

EQ[ V̂ (ti+1)
/
Fti ] = V̂ (ti)

(
1 + π(ti)

(
EQ

[
Ŝ(ti+1)
Ŝ(ti)

/
Fti

]
− 1

))
.

Furthermore using the change of variables theorem and the moment function for a Gaussian r.v.
and a compound Poisson r.v. we have that

EQ

[
Ŝ(ti+1)
Ŝ(ti)

/
Fti

]

= E

[
exp

(
−σ(ti)2(ti+1 − ti)

2
+ σ(ti)(W̃ (ti+1)− W̃ (ti))− λ(E(eX)− 1)(ti+1 − t1) + Z(ti+1)− Z(ti)

)]

= 1.

Here W̃ denotes a new Gaussian r.v. obtained after the change of variables.
Therefore e−rT EQ[V̄ (T )] = EQ[V̂ (tn)] = e−rT V0. Therefore arbitrage is not possible because

otherwise we will have that EQ(V̄ (T )) > V0e
rT .

The above proof is just a discrete version of a similar proposition in continuous time. In fact, we
propose the following alternative proof.
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Exercise 5 Write the limit of the above measure Q as the partition size max{ti+1−ti; i = 0, ..., n−1}
goes to zero. Use Girsanov’s theorem to find the equation satisfied by log(Ŝ(t)). Prove that Ŝ is a
martingale under this measure.

Exercise 6 Write an argument using stopping times to prove the above proposition without the
assumption E [|p0(ti)|+ |p1(ti)|] < ∞, i = 0, ..., n− 1.

Exercise 7 Show that the change of measure used in the proof of Proposition 4 is not unique.

Define T0 = inf{t ∈ [0, T ]; V̄ (t) = 0}. Then V̄ (s) = 0 for all s ≥ T0. Suppose that V̄ (s) > 0
for s ≤ ti−1 then we introduce the change of variables π(t) = p1(t)S(t)

V̄ (t)
for t ≤ ti−1. The variable π

represents the fraction of wealth invested in stocks. 1− π represents the proportion invested in the
bank account. Negative values of π are in general interpreted as loans of shares to the investor to
be invested in the bank account.

This reduction of variables means that the investor can choose the values of π(ti) for i = 0, ..., n−1
so as to maximize his wealth. With these changes of variables one has that

V̄ (ti) = V̄ (ti−1)
(

1 + (1− π(ti−1))
(
er(ti−ti−1) − 1

)
+ π(ti−1)

(
S(ti)

S(ti−1)
− 1

))
. (4)

Therefore the no-borrowing condition takes the form

π(ti−1)
(

S(ti)
S(ti−1)

− er(ti−ti−1)

)
≥ −er(ti−ti−1).

One has trivially that if π(t) ∈ [0, 1] for all t ∈ [0, T ] (no borrowing of stocks or from the bank is
allowed. Try to link this with Exercise 2) then the no-borrowing condition is always satisfied.

Equation (4) leads to a linear difference equation that can be solved by induction. One obtains
that

V̄ (ti) = V0

i−1∏

j=0

(
1 + (1− π(tj))

(
er(tj+1−tj) − 1

)
+ π(tj)

(
S(tj+1)
S(tj)

− 1
))

.

V̂ satisfies the following linear difference equation which can also be solved by induction:

V̂ (ti) = V0 +
i−1∑

j=0

V̂ (tj)π(tj)

(
Ŝ(tj+1)
Ŝ(tj)

− 1

)
(5)

V̂ (ti) = V0

i−1∏

j=0

(
1 + π(tj)

(
Ŝ(tj+1)
Ŝ(tj)

− 1

))
.

We will now take limits in the above arguments and in the same way as it is done in any
introductory course on stochastic calculus, one obtains the Itô stochastic integral and the above
arguments about the non-existence of arbitrage can be carried out similarly.

In fact, one has that S is a semimartingale and that if we consider π to be a predictable process
then one can consider the limit of the equation (5). We obtain the wealth equation for continuous
time trading (we will return to this issue in sections 9 and 12). This gives

V̂ (t) = V0 +
∫ t

0

π(s−)V̂ (s−)
Ŝ(s−)

dŜ(s). (6)

Note that there is a slight abuse of notation as we are using the same notation for the approximative
wealth in equation (5) but it should be clear from the context if we are talking about the discrete
time approximation or the continuous one above.

Exercise 8 Prove that the limit of the sequence V̂ is the solution of the above linear equations under
enough conditions on S and π.
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This is a linear equation in V which can be explicitly solved. In the case that S has jumps
the next calculation is a bit different (see Section 9). For this reason and to compute explicitly an
optimal portfolio we take a particular continuous model for the stock price S. In what follows we
further simplify our model and assume that the stock price is the geometric Brownian motion given
by

S(t) = S(0) exp
((∫ t

0

µ(s)− 1
2
σ2(s)

)
ds +

∫ t

0

σ(s)dWs

)

where µ is the mean rate of return and σ ≥ c > 0 is the volatility of the stock price which are
uniformly bounded and adapted to the filtration generated by the Wiener process completed with
respected to P . The process S also satisfies the linear equation

S(t) = S(0) +
∫ t

0

µ(s)S(s)ds +
∫ t

0

σ(s)S(s)dW (s).

In such a case, equation (5) becomes

V̂ (t) = V0 +
∫ t

0

V̂ (s)(µ(s)− r)π(s)ds +
∫ t

0

σ(s)π(s)V̂ (s)dW (s). (7)

This stochastic linear equation has an explicit solution given by

V̂ (t) = V0 exp
(∫ t

0

(
(µ(s)− r)π(s)− 1

2
σ2(s)π(s)2

)
ds +

∫ t

0

σ(s)π(s)dW (s)
)

. (8)

Note that the restriction on the policy π ∈ [0, 1] has disappeared. For any value of π, Vt > 0 for
any t ∈ [0, T ]. This will be further explained in section 9.

The small investor desires to optimize his/her portfolio policy by considering the problem

max
π∈F

E
[
log(V̂ (t))

]
(9)

where the logarithmic function is used as a utility function. This particular utility function is used
because the calculations to follow will become explicit. Note the inverse relationship between the
logarithmic and the exponential function in (8) and (9). In what follows π ∈ F is a shorthand for π
is F-predictable process.

Other utility functions can also be used (see Exercise 12). Also note that if in the discrete time
model we had T0 < t with positive probability then the E(log(V̂ (t)) is defined as −∞ therefore not
giving the optimal value (Exercise: propose a portfolio with bigger value than −∞ and compute its
expected utility explicitly.). We now give an informal argument to obtain the optimal portfolio. A
formal approach is given in the exercises.

To find the optimal portfolio solving the Merton problem (9) we note that if E
∫ t

0
π(s)2ds < ∞

then

E
[
log(V̂ (t))

]
= log(V0) + E

[∫ t

0

(
(µ(s)− r)π(s)− 1

2
σ2(s)π(s)2

)
ds +

∫ t

0

σ(s)π(s)dW (s)
]

= log(V0) + E

[∫ t

0

(
(µ(s)− r)π(s)− 1

2
σ2(s)π(s)2

)
ds

]
,

as E
[∫ t

0
σ(s)π(s)dW (s)

]
= 0. This expression says that the utility of the portfolio π is determined

by the value of fs(π) = (µ(s)−r)π− 1
2σ2(s)π2. This is a strictly concave function with domain π ∈ R.

Therefore its maximum value is obtained by differentiation. That is, f ′s(π) = (µ(s)−r)−σ2(s)π = 0
and therefore the maximum value is given by π∗(s) = µ(s)−r

σ2(s) . That is, the solution of Merton’s
problem says that the small investor has to keep the Sharpe ratio of his investments in stocks
constant through the life of his investment.
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Exercise 9 Compute the maximum utility given by the optimal portfolio π∗(s) = µ(s)−r
σ2(s) and write

the explicit expression in the case that µ and σ are constants.

Exercise 10 Prove that within the class A(t) = {π : π is F-adapted, E
[∫ t

0
π(s)2ds

]
< ∞} the

portfolio π(s) = µ(s)−r
σ2(s) is the optimal portfolio for the problem maxπ∈AE log(V̂ (t)).

Exercise 11 (Cont.): Prove that the above portfolio is also optimal in the class {π : π is F-adapted,∫ t

0
π(s)2ds < ∞ a.s. and E

[
log(V̂ (t))

]
< ∞}.

Exercise 12 Use Girsanov’s theorem to find the optimal portfolio for the problem maxπ∈Aθ
E

[
V̂ (t)θ

]

for θ ∈ (0, 1). Show that the problem has no finite solution if θ /∈ (0, 1). Define the set Aθ.

An issue that is important to discuss before continuing with the optimization problem for the
insider is the issue of arbitrage: Can the investor make money without risking any loss?

Definition 13 We say that there is arbitrage in the market if there exists a self-financing portfolio
π with P (V̂ (T ) ≥ V0) = 1 and P (V̂ (T ) > V0) > 0.

A well known related theorem is

Theorem 14 If there exists a measure Q ∼ P such that under Q, Ŝ is a martingale then there is
no arbitrage for self-financing portfolios π satisfying

∫ T

0
(π(s)V (s))2ds < ∞ a.s..

Exercise 15 Prove that the assumption of the previous theorem is satisfied with

dQ

dP
= exp

(
−1

2

∫ t

0

(
µ(s)− r

σ(s)

)2

−
∫ t

0

µ(s)− r

σ(s)
dW (s)

)
.

Now we start to consider the same utility maximization problem but for the insider agent.

3 The portfolio problem for the insider. A toy example
To simplify our discussion suppose that the insider has as additional information the value of a
random variable I = S(T ) ∈ FT . This is equivalent to knowing WT . This example is a ”toy”
example because it is hard to think of a real example where an insider knows exactly the value
of S(T ). Nevertheless this example will give us basic information that will be important in what
follows.

Exercise 16 (Lévy’s Theorem) Let M be a continuous local martingale in a filtration F such that
〈M〉t = t. Then M is an F-Wiener process. Hint: Use Itô’s formula to prove that

E [ exp (iθ(Mt −Ms))/Fs] = exp
(
−θ2(t− s)

2

)
.

Therefore the increment Mt −Ms is conditionally independent of Fs and is a N(0, t − s) random
variable.

The natural filtration for the insider is Gt = Ft∨σ(I) (the smallest filtration satisfying the usual
conditions which contains F and σ(I)).

Exercise 17 Prove that Gt = ∩ε≥0σ (Ft+ε ∪ σ(I)) .

In general, it is necessary to take the above intersection as the following simple example shows.
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Exercise 18 (Barlow-Perkins, also proposed in Williams [46], page 48) Let Yi be iid Bernoulli r.v.’s
with values {−1, 1}. Define Xn =

∏n
i=0 Yi define A = σ(Yi; i ≥ 1), Bn = σ(Xr; r > n). Prove that

Y0 ∈ Bn ∨ σ(A) for all n but Y0 is independent of (∩Bn) ∨ σ(A).

Under the enlarged filtration G the process W is no longer a Wiener process but still a continuous
semimartingale. Therefore we are interested in computing the semimartingale decomposition of
W = M + A where M is a G-local martingale and A is a G adapted process of bounded variation.
As the quadratic variation is still 〈W 〉Gt = t then, by Lévy’s theorem M will be a G Wiener process.

We denote by Pt the regular conditional probability measure of X = W (T ) with respect to Ft.
That is, Pt(dx) = P (W (T ) ∈ dx/Ft). Explicitly in our case

dPt(x) = pT−t(Wt, x)dx =
1√

2π(T − t)
exp

(
− (x−W (t))2

2(T − t)

)
dx

Theorem 19 The semimartingale decomposition of W in G is given by

W (t) = Ŵ (t) +
∫ t

0

W (T )−W (u)
T − u

du (10)

where Ŵ is a Wiener process in the initially enlarged filtration G in the interval [0, T ].

Proof. We compute E([W (t)−W (s)/Gs] for t ∈ [0, T ) and t > s. The objective is to obtain
an expression of bounded variation which will become the compensator of the process W in the
enlarged filtration.

Alternatively we will compute for a measurable bounded function f and a Fs measurable r.v.
hs,

E [(W (t)−W (s))f(W (T ))hs] = E

[
(W (t)−W (s))

∫
f(x)dPt(x)hs

]

= E

[
(W (t)−W (s))

∫
f(x)pT−t(Wt, x)dxhs

]
.

Applying Itô’s formula to (W (u)−W (s))pT−u(Wu, x), u ∈ [s, t] and using that pT−t solves the heat
equation ∂tpT−t(y, x) + 1

2∂2
ypT−t(y, x) = 0, we have

E [(W (t)−W (s))f(W (T ))hs]

= E

[∫
f(x)

(∫ t

s

pT−u(Wu, x) + (W (u)−W (s))∂ypT−u(W (u), x)dW (u)

+
∫ t

s

∂ypT−u(W (u), x)du

)
dxhs

]

= E

[∫
f(x)

∫ t

s

∂ypT−u(W (u), x)dudxhs

]

= E

[∫ t

s

∫
f(x)∂ylog(pT−u(W (u), x))pT−u(W (u), x)dxduhs

]

= E

[
f(W (T ))

∫ t

s

∂ylog(pT−u(W (u),W (T )))duhs

]
.

Therefore by a density argument, one has

E

[
W (t)−W (s)−

∫ t

s

∂ylog(pT−u(W (u), W (T )))du

/
Gs

]
= 0.

As ∂ylog(pT−u(W (u),W (T ))) = W (T )−W (u)
T−u ∈ Gu then Ŵ (t) = W (t) − ∫ t

0
W (T )−W (u)

T−u du is a G-
continuous martingale with 〈Ŵ 〉t = 〈W 〉t = t and therefore by Lévy’s theorem one has that Ŵ is
a G-Wiener process in [0, T ). We then define Ŵ (T ) = limt→T Ŵ (t) and all above properties follow
for the closed interval [0, T ] as E

[∫ T

0

∣∣∣W (T )−W (u)
T−u

∣∣∣ du
]

< ∞.
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Exercise 20 Prove that E
[∫ T

0

∣∣∣W (T )−W (u)
T−u

∣∣∣
r

du
]

< ∞ if and only if r ∈ [0, 2) while E
[∣∣∣

∫ T

0
W (T )−W (u)

T−u du
∣∣∣
r]

<

∞ for all r ≥ 0.

The methodology shown in Theorem 19 can be generalized much further in various directions.
Some of them are shown in the following exercises.

Exercise 21 Prove that {Ŵ (t); t ∈ [0, T ]} and W (T ) are independent random variables.

Exercise 22 (Föllmer-Imkeller, [15]) Prove that there exists a measure Q ∼ P such that, under Q,
W (t) and W (T ) are independent.

Exercise 23 (Harnesses) For s ≤ a < b ≤ T , prove that

E

[
Wa −Wb

a− b

/
Gs

]
=

WT −Ws

T − s
.

Exercise 24 Find the semimartingale decomposition of the Wiener process if I =
∫ T

0
h(r)Wrdr for

a deterministic function h ∈ L2[0, T ]. Impose conditions on h so that the semimartingale decompo-
sition in the enlarged filtration is integrable.

Exercise 25 Suppose that I = X(T ) where X(·) is the solution of the stochastic differential equation

X(t) = x0 +
∫ t

0

b(X(s))ds +
∫ t

0

σ(X(s))dW (s).

Here b and σ : R→R are smooth functions. Then X is a Markov process. Furthermore suppose that
the transition density pt(y, x) exists, is smooth and satisfies the parabolic partial differential equation
and the inequalities

∂tpt(y, x) = b(y)∂ypt(y, x) +
1
2
σ(y)2∂2

xpt(y, x) (11)

ct−a exp

(
−|x− y|2

ct

)
≤ pt(x, y) ≤ Ct−a exp

(
−|x− y|2

Ct

)

|∂xpt(x, y)| ≤ Ct−a exp

(
−|x− y|2

Ct

)

for t ∈ (0, T ], a, c, C > 0 and x, y ∈ R. Prove that Ŵ (t) = W (t) − ∫ t

0
∂xlog(pT−u(X(u), X(T )))du

is a (Gt)t∈[0,T )-Wiener process. Give conditions to obtain a Wiener process in [0, T ]. If you know
Malliavin Calculus: ∂xlog(p(u, x, y)) is called the logarithmic derivative of the density.

Exercise 26 (Ankirchner) Let I = |W (T )|. Prove that the compensator in this case is given by
∫ t

0

W (s)
(
− 1

T − s
+

|W (T )|
|W (s)|(T − s)

tanh
( |W (s)W (T )|

T − s

))
ds.

Exercise 27 Solve equation (10) in W (t) to obtain that for t < T

WT −Wt

T − t
=

WT

T
−

∫ t

0

1
T − r

dŴr.

Following the above theorem we have that the evolution of the stock price for the insider is

S(t) = S(0) exp
((∫ t

0

µ(s)− 1
2
σ2(s)

)
ds +

∫ t

0

σ(s)Ŵ (s) +
∫ t

0

σ(u)
WT −Wu

T − u
du

)
.
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Note that the values of S observed by both the small investor and the insider are the same. Given
that the insider has some extra information about the driving process, this information should give
him/her an advantage that can be expressed through the amount of money that he can make using
this extra information. To quantify this mathematically, let π = {π(s); 0 ≤ s ≤ T} be an G-adapted
process that denotes, as before, the proportion of the total wealth that the insider invests in stocks.
Then the discounted wealth process V̂ satisfies the equation (7). The solution of this linear equation
is

V̂ (t) = V0 exp
(∫ t

0

(
(µ(s)− r + σ(s)

WT −Ws

T − s
)π(s)− 1

2
σ2(s)π(s)2

)
ds +

∫ t

0

σ(s)π(s)dŴ (s)
)

.

Now we compute the average utility to obtain that (using that E
[∫ t

0
σ(s)π(s)dŴ (s)

]
= 0)

E
[
log(V̂ (t))

]
= log(V0) +

∫ t

0

E

[(
µ(s)− r + σ(s)

WT −Ws

T − s

)
π(s)− 1

2
σ2(s)π(s)2

]
ds.

where π is G-adapted. As before, it is enough to find the maximum of the function within the
expectation. In the case of the insider agent we have to maximize

fs(π) =
(

µ(s)− r + σ(s)
WT −Ws

T − s

)
π − 1

2
σ2(s)π2.

Note that this function is concave and the optimum is given for

π̂(s) =
1

σ2(s)

(
µ(s)− r + σ(s)

WT −Ws

T − s

)
.

The maximum utility is

E
[
log(V̂ ∗(t))

]
= log(V0) +

∫ t

0

E

[
1

2σ2(s)

(
µ(s)− r + σ(s)

WT −Ws

T − s

)2
]

ds (12)

= log(V0) +
∫ t

0

E

[
(µ(s)− r)2

2σ2(s)

]
ds +

1
2

log
(

T

T − t

)
. (13)

Exercise 28 Formalize the above argument defining explicitly the class I of admissible strategies
and prove that the optimal portfolio is the one found in the previous informal calculation.

The difference in utility between the insider and the small agent is 1
2 log

(
T−t
T

)
which does not

depend on the parameters µ or σ. This is easily explained by the fact that the information that the
insider possesses does not depend on these parameters. In more complex models this is not expected
although a clear example is not available yet (see Example 45). This result also shows that the
additional information of the insider provides him/her with an infinite wealth as t → T . This is due
to the fact that the insider can make use of his information in all the oscillations around the value
of S(T ). Therefore this market with a small agent and an insider allows for arbitrage in the interval
[0, T ]. This is natural, given the good quality of the extra information.

For any time interval [0, t], t < T , it is also clear that the underlying model for the insider
becomes a geometric Wiener process with random drift. Therefore all the classical mathematical
financial theory applies. For example, option prices (which are the same as Black Scholes prices),
hedging strategies, equilibrium theory, portfolio choice theory, etc.

Exercise 29 Find an explicit arbitrage strategy for the portfolio of the insider in [0, T ].

This model in the time interval [0, T ] corresponds to insider trading in the sense of an agent
holding information which is prohibited by law. This point of view may be somewhat interesting if
one is interested in detecting this type of insiders.
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Instead, we are interested in obtaining models where insiders have finite utility. In fact most
insiders are lawful actors in financial markets. So in these notes we will rather discuss how to
modify these models so as to obtain finite utilities for insiders. This line will be developed in future
sections. First, we will study the mathematical theory around these developments which are based
on enlargement of filtrations. Before that, let us propose some exercises.

Exercise 30 Find the optimal strategy for the insider for the utility function U(x) = xθ for θ ∈
(0, 1).

Note that if one knows the value of WT then W becomes a Brownian bridge.

Exercise 31 Use an alternative expression for the Brownian bridge (e.g. see page 300 in Protter’s
book) to obtain the result (12). That is, the process X defined as

X(t) = a

(
1− t

T

)
+ b

t

T
+ (T − t)

∫ t

0

1
T − s

dB(s)

is a Brownian bridge starting from X0 = a and ending at X(T ) = b for t = T. Compare this Exercise
with Exercise 27 and point out what is the difference with the present approach?

Exercise 32 Compute the optimal logarithmic utility for the insider in the interval [0, t] conditioned
on the value of S(T ) = x for t < T .

Exercise 33 Define uF (t, V0) and uG(t, V0) the optimal logarithmic utility (in [0, t]) of the small
investor and the insider respectively. Obviously as G is a filtration bigger than F we have that
ut,F (x) ≤ ut,G(x). Define the fair price of the information I = W (T ) as the real number ρt(V0, I)

such that uF (t, V0) = uG(t, V0− ρt(V0, I)). Prove that ρt(V0, I) = V0

(
1−

√
1− t

T

)
. The fair price

of information is a fraction that corresponds to how much less money we need in order to make the
same amount of wealth as the small trader. Note that ρT (V0, I) = V0 which reflects the fact that
there is arbitrage at time T .

Generalizing the previous example leads us to the theory of initial enlargement of filtration and
in particular to Jacod’s theorem.

4 Jacod’s Theorem
As before, let I be a FT = σ(W (s); s ≤ T ) adapted random variable and let Pt(dx) denote the
regular conditional probability of I with respect to Ft. Define Gt as the smallest filtration that
includes Ft and σ(I) i.e. G = F∨σ(I).

Theorem 34 If there exists a deterministic measure η(dx) such that Pt(dx) << η(dx), then W is
a G-semimartingale.

Exercise 35 Use the ideas given in Theorem 19 to give an sketch of the proof of the above theorem
if we further assume that E

[∫ t

0
|α(u)| du

]
< ∞ to show that

W (t) = Ŵ (t) +
∫ t

0

α(u)du

is a G-Wiener process, where

α(u) =
d

du

〈
W, dP·(I)

dη

〉
u

dPu(I)
dη

.
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In fact, it is better to try to generalize the above result without using the reference measure
η. This will become clear later. Before doing the generalization we want to introduce a further
example:

Exercise 36 Given a filtration G ⊇ F . Assume that W is a semimartingale in G and that its
decomposition is given by

Wt = Ŵt +
∫ t

0

αudu

with E
[∫ t

0
|αu|2 du

]
< +∞ a.s. for all t < T . Prove that the optimal portfolio is π̂(s) = µ(s)−r

σ2(s) + αs

σ(s)

and the additional utility of the insider in the interval [0, t] is given by 1
2

∫ t

0
E

[
α2

u

]
du.

We also remark that Jacod’s Theorem as stated in [26] is in the semimartingale framework and
with slightly less stringent conditions.

5 An approach using the integration by parts formula
Jacod’s Theorem (see Jacod, [26]) is the basic tool to characterize when a semimartingale keeps this
property in a enlarged filtration and what its new decomposition is. Another way to approach this
problem is using the integration by parts formula of Malliavin calculus. We show this in the next
theorem as a way of illustration. For this reason we do not give full details in this section.

We denote by D the stochastic derivative and by δb
a the Skorohod integral from a to b, the dual

operator of D in L2([a, b] × Ω). For a general introduction to Malliavin calculus and the notation
used here, see Nualart [37]. Now, we define a general integration by parts formula.

Definition 37 Let (I, Y ) be a random vector, measurable with respect to FT , such that there exists
a random variable Hu,T (I, Y ) ∈ L2(Ω) with the property that for any f ∈ C1

b and A ∈ Fu it satisfies
that

E [f ′(I)Y 1A] = E [f(I)Hu,T (I, Y )1A] .

Then we say that there is an integration by parts formula (ibp) for (I, Y ) in [u, T ] and Hu,T is the
weight associated with the ibp for (I, Y ) in [u, T ].

Theorem 38 Let I be a random variable such that there is an ibp for (I,DuI) in [u, T ]. Then W
is a semimartingale in the enlarged filtration {Fs ∨ σ(I); s ≤ T} and

Wt = Ŵt +
∫ t

0

E [Hu,T (I, DuI)/Fu ∨ σ(I)] du

where Ŵ is a Wiener process in the enlarged filtration.

Proof. First, we compute E [Wt/Fs ∨ σ(I)]. For this consider for a regular bounded function f
and A ∈ Fs

E [(Wt −Ws)f(I)1A] = E

[∫ t

s

Duf(I)du1A

]

=
∫ t

s

E [f ′(I)DuI1A] du

=
∫ t

s

E [f(I)Hu,T (I,DuI)1A] du

= E

[
f(I)

∫ t

s

E [Hu,T (I,DuI)/Fu ∨ σ(I)] du1A

]
.
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In conclusion we have that

E([Wt/Fs ∨ σ(I)] = Ws +
∫ t

s

E [Hu,T (I, DuI)/Fu ∨ σ(I)] du.

This means that W is a semimartingale in the filtration {Fs ∨ σ(I); s ≤ T} and one concludes that
its martingale part has to be a Wiener process due to the Lévy characterization theorem.

Under certain conditions we have that the standard ibp formula is satisfied if there exists a
process h such that DuIh(·)R T

u
DvIh(v)dv

∈ Dom(δT
u ) and then

Hu,T (I, DuI) =
∫ T

u

DuIh(s)∫ T

u
DvIh(v)dv

dWs.

This is the formula of integration by parts using h as a localization function. The usual integra-
tion by parts formula is obtained using h = DI which leads to the Malliavin covariance matrix,∫ T

u
(DuI)2du, in the denominator of the above Skorohod integral. In such a case, if I ∈ D2,8 and

E

[(∫ T

u
(DuI)2du

)−8
]

< ∞ then the ibp formula is satisfied for (X,DuX).

Exercise 39 Obtain Theorem 10 as a consequence of the previous Theorem.

6 Weak information approach

It is clear that we have the following probability decomposition that represents the Brownian bridge

P (W ∈ A) =
∫

P (W ∈ A/ W (T ) = x)PW (T )(dx).

That is, under the law P (W ∈ ·/ W (T ) = x), W is described by a Brownian bridge. Fabrice
Baudoin (see [5]) used this property to construct a ”Brownian bridge” where the law of the final
random variable is any measure ν ∼ PW (T ). That is we define

P ν(W ∈ A) =
∫

P (W ∈ A/ W (T ) = x)ν(dx).

We denote by Eν the expectation with respect to P ν . To obtain the analogue of Theorem 19 in this
setting, we compute the Radon Nikodym derivative dP ν

dP

∣∣
Ft
. Let ht be an Ft-measurable random

variable, then

Eν [ht] = E

[
dν

dPW (T )
(W (T ))ht

]
= E

[
E

[
dν

dPW (T )
(W (T ))

/
Ft

]
ht

]
.

Therefore
dP ν

dP

∣∣∣∣
Ft

= E

[
dν

dPW (T )
(W (T ))

/
Ft

]
.

Furthermore using the same technique as in Theorem 19, we have

Theorem 40 W (t) = Ŵ (t) +
∫ t

0
α(u)du where Ŵ is a Wiener process in (Ω, (Ft)t∈[0,T ] , P

ν) and

α(u) = E

[
W (T )−Wu

T − u

dν

dPW (T )
(W (T ))

/
Fu

]
E

[
dν

dPW (T )
(W (T ))

/
Fu

]−1

13



Proof. As before we need to compute Eν [W (t)−W (s)/Fs]. Instead we compute for hs a Fs

measurable random variable

Eν [(W (t)−W (s)) hs]

= E

[
dν

dPW (T )
(W (T )) (W (t)−W (s))hs

]

= E

[
dν

dPW (T )
(W (T ))

∫ t

s

W (T )−W (u)
T − u

duhs

]

= Eν

[∫ t

s

W (T )−W (u)
T − u

duhs

]

= Eν

[∫ t

s

Eν

[
W (T )−W (u)

T − u

/
Fu

]
duhs

]
.

= Eν

[∫ t

s

E

[
W (T )−W (u)

T − u

dν

dPW (T )
(W (T ))

/
Fu

]
E

[
dν

dPW (T )
(W (T ))

/
Fu

]−1

duhs

]
.

where the last equality follows directly if we consider

Eν

[
E

[
W (T )−W (u)

T − u

dν

dPW (T )
(W (T ))

/
Fu

]
E

[
dν

dPW (T )
(W (T ))

/
Fu

]−1

hu

]

= E

[
dν

dPW (T )
(W (T ))E

[
W (T )−W (u)

T − u

dν

dPW (T )
(W (T ))

/
Fu

]
E

[
dν

dPW (T )
(W (T ))

/
Fu

]−1

hu

]

= E

[
E

[
W (T )−W (u)

T − u

dν

dPW (T )
(W (T ))

/
Fu

]
hu

]

= E

[
W (T )−W (u)

T − u

dν

dPW (T )
(W (T ))hu

]

= Eν

[
W (T )−W (u)

T − u
hu

]
.

The rest of the argument follows as in Theorem 19.
Other cases where ν is not equivalent to the Lebesgue measure can also be treated on a case by

case basis. The idea remains the same. The application of this result is also clear. The insider has
the information that the law of the final random variable W (T ) is ν. Then this restriction means
that the insider ”knows” the final law of the process W (T ) while the small investor thinks it is a
Wiener process.

Exercise 41 Find the optimal portfolio and the maximal logarithmic utility of the insider if the law
ν is given by a N(µ, σ2). Find out if the utility is finite in such a case.

Exercise 42 Suppose that

Eν

[(
∂

∂x
log

(
dν

dPW (T )

))2

(W (T ))

]
< ∞.

Prove that the optimal logarithmic utility for the insider possessing the information that the law of
W (T ) is ν, is finite. Prove that the measure ν given by a N(µ, σ2) satisfies the above condition.

7 The entropy characterization of additional information
Here we introduce the characterization of additional utility of the insider in the interval [0, t] as
the expectation of the entropy of the conditional measure of W (T ) with respect to Ft obtained in
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Amendiger et. al. [2]. To make things simpler suppose that Pt ∼ P I and that pt(x) = dPt

dP I (x) > 0
a.s. (for more on this, see Jacod [26], Lemma 1.8 and Corollary 1.11).

By the Itô representation theorem we further have that there exists an adapted process {αt(x); t ∈
[0, T )} such that

pt(x) = 1 +
∫ t

0

αs(x)dWs.

Theorem 43 Assume that E
∫ t

0

(
αs

ps
(I)

)2

ds < ∞ for all t ∈ [0, T ). Then the additional logarithmic
utility of the insider in the interval [0, t] is E[log pt(I)].

Proof. We compute the compensator of W in G. As before, we have for a measurable bounded
function f and an Fs measurable random variable hs that

E [(W (t)−W (s))f(I)hs] = E

[
(W (t)−W (s))

∫
f(x)pt(x)dP I(x)hs

]

= E

[∫ t

s

∫
αθ(x)f(x)dP I(x)dθhs

]

= E

[∫ t

s

∫
αθ

pθ
(x)f(x)dPθ(x)dθhs

]

= E

[∫ t

s

αθ

pθ
(I)dθf(I)hs

]

Therefore W (t) = Ŵ (t) +
∫ t

0
αs

ps
(I)ds where Ŵ is a G Wiener process. Then by exercise 36 we have

that the additional logarithmic utility of the insider in the interval [0, t] is 1
2E

[∫ t

0

(
αs

ps
(I)

)2

ds

]
.

Furthermore, applying Itô’s formula to log(pt(x)), we have

E [log pt(I)] =
1
2
E

[∫ t

0

(
αs

ps
(I)

)2

ds

]
.

The quantity E [log pt(I)] = E
[∫

pt(x) log pt(x)dP I(x)
]
. That is, the gain of the insider is the

expectation of the conditional entropy of the random variable I.

Exercise 44 In the case µ = r, apply the same reasoning as above to prove that the optimal loga-
rithmic utility of a weak insider in the sense of Baudoin is given by

E

[(
dν

dPW (T )
log

dν

dPW (T )

)
(W (T ))

]
.

Prove that this is not the case if µ 6= r.

8 Finite utilities for insiders.

8.1 Finite number of trades.
In stock markets there are heterogenous agents with different types of information which coexist in
equilibrium. In this sense the example in section 3 does not correspond too well to the reality of the
coexistence of insiders and small investors. Nevertheless, if one is interested in detecting unlawful
insiders then the toy example in section 3 describes this situation.

Our goal in the sections to follow is to describe ways of modifying the toy example in section 3
in order that the insider attains a finite optimal utility. The most important reason why the insider
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does not achieve infinite utility in reality is that the information about S(T ) is better for the insider
than for the small agent but not an almost sure type of information.

That is, we will consider a model where there is a deformation of information of the insider. We
will treat this in the next section (also see the weak information approach in [6]).

In this section, we discuss what happens when the insider is allowed to trade only a fixed number
of times up to the date T . Suppose without loss of generality that the times where transactions are
allowed are 0 = t0 < t1 < ... < tn−1. Then, using the formulae for wealth from section 2, we have
that

E [log(VT )] = log(V0) +
n−1∑

j=0

∫ tj+1

tj

E

[(
µ− r + σ

WT −Ws

T − s

)
π(tj)− 1

2
σ2π(tj)2

]
ds.

Now note that the decisions of the insider can only be based on his/her information at that time.
That is, π(tj) ∈ Gtj . Therefore, we have to maximize

n−1∑

j=0

∫ tj+1

tj

E

[(
µ− r + σE

(
WT −Ws

T − s

/
Gtj

))
π(tj)− 1

2
σ2π(tj)2

]
ds.

As (see exercise 23)

E

[
WT −Ws

T − s

/
Gtj

]
=

WT −Wtj

T − tj
.

Therefore the function to maximize is

fs(π) =
(

µ(s)− r + σ(s)
WT −Wtj

T − tj

)
π − 1

2
σ2(s)π2.

As before the optimal portfolio value is π̂(s) = µ(s)−r
σ2(s) +

WT−Wtj

σ(s)(T−tj)
and the optimal logarithmic utility

is

log(V0) + E

[∫ t

0

µ(s)− r

2σ2(s)
ds

]
+

n−1∑

j=0

(tj+1 − tj)
2 (T − tj)

.

This quantity is finite as long as tn−1 < T . In fact this quantity tends to infinity as tn−1 → T ,
therefore this proposed solution is only partial but it also reflects the fact that one possible way to
model insiders with finite utility is to allow them to trade only at a finite number of times.

If we want to insist on continuous trades then a possibility is to model the information of the
insider in a different fashion. This will be done in the next section. Before this, we give the following
interesting exercise.

Exercise 45 Consider the bidimensional model

Si(t) = Si(0) exp
((

µi − σ2
i

2

)
t + σiW

i(t)
)

where (W 1,W 2) is a bidimensional Wiener process with correlation EW 1(t)W 2(t) = ρt. Suppose
that the insider has as information Gt = Ft ∨ σ(W 1(T )), but that there is a restriction on trading
only in the second asset. Find the optimal portfolio with logarithmic utility for the insider. Do the
same if the information in the market is only given by F2

t = σ(W 2(s); s ≤ t).

There are various other simple options to try to limit the behavior of the insider in order to make
its utility finite.

Exercise 46 Find the optimal portfolio and the maximal logarithmic utility of the insider if we
introduce the restriction π ∈ [0, 1] (no borrowing from the bank or stocks allowed) and prove that the
utility is finite in this case.

Exercise 47 Use Exercise 24 to prove that in the case I =
∫ T

0
h(s)W (s)ds, then the optimal loga-

rithmic utility of the insider in the interval [0, T ] is ∞. Although this example does not correspond
exactly to the average of the stock price, it does show that the utility will also be infinite if the insider
has an information on the form of an average.
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8.2 Towards a dynamic model for insider information

Another possibility to obtain finite utilities for the insider is to model the additional information
of the insider as I = f(S(T )) where f is not a bijection. This alternative modelling has also its
weak points. The most important being that the information of the insider does not improve as t
approaches T .

Exercise 48 Use Theorem 43 to prove that the optimal logarithmic utility for the insider in the
following cases is finite.
1. I = 1(W (T ) ≥ a) for a > 0.
2. I = W (T ) + ε where ε is a N(0, 1) r.v. independent of W .

This exercise shows a model which is closer to reality. The information held by the insider is
blurred by an additional noise. Nevertheless, this noise does not disappear even when t = T . This
problem also appears in the weak information approach of F. Baudoin. This is a problem related
with the fact that we are doing an initial enlargement of filtration. That is, the filtration is enlarged
only once at time t = 0.

In relation with this problem we have recently proposed a model of additional information of
the type I(t) = WT + W ′((T − t)θ) where W ′ is a Wiener process independent of W (see [10]).
This model contains a deformation of information through time. This is equivalent to say that the
information of the insider is S(T ) exp

(
σW ′((T − t)θ)

)
. That is, the blurring is done at logarithmic

scale. The filtration, denoted by G, is the smallest filtration that satisfies the usual conditions and
that includes Ft ∨ σ(I(s); s ≤ t).

Theorem 49 Let I(t) = WT + W ′((T − t)θ) and Gt = Ft ∨ σ (I(s); s ≤ t). Then {W (t); t ∈ [0, T ]}
is a semimartingale in the enlarged filtration G and the decomposition is given by

Wt = Ŵt +
∫ t

0

I(s)−W (s)
T − s + (T − s)θ

ds

where {Ŵ (t); t ∈ [0, T ]} is a G - Wiener process.

Proof. We try a slight variant of the proofs given before. Consider for s ≤ u ≤ t

E [Wt −Wu| Gs]

= E
[
Wt −Wu| Fs ∨ σ(I(s)−Ws,W

′((T − s)θ)−W ′((T − v)θ); v ≤ s
]

= E [Wt −Wu| I(s)−Ws]

=
t− u

T − s + (T − s)θ
(I(s)−Ws)

where we have used the independence of Wt −Wu, Fs and σ(W ′((T − s)θ) −W ′((T − v)θ); v ≤ s)
and that conditional expectation of E(X/Y ) = cov(X,Y )

V ar(Y ) Y for a mean zero Gaussian random vector
(X, Y ). Similarly,

E
[
W ′((T − u)θ)

∣∣ I(s)−Ws

]
=

(T − u)θ

T − s + (T − s)θ
(I(s)−Ws) .

Then

E

[
Wt −Wu −

∫ t

u

I(r)−W (r)
T − r + (T − r)θ

dr

∣∣∣∣Gs

]
= 0.
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Exercise 50 Prove that if I(s) = WT + W ′((T − s)θ) , then

E [Wt −Wu| I(s)−Ws] =
t− u

T − s + (T − s)θ
(I(s)−Ws)

using the time homogeneity property of the Wiener process. Prove that this result is also valid for
Lévy processes with finite mean.

As before we can also compute the insider’s optimal utility which gives

E
[
log(V̂ ∗(t))

]
= log(x) +

∫ t

0

E

[
1

2σ2(s)

(
µ(s)− r + σ(s)

I(s)−Ws

T − s + (T − s)θ

)2
]

ds

= log(x) +
∫ t

0

E

[
(µ(s)− r)2

2σ2(s)

]
ds +

1
2

∫ t

0

1
T − s + (T − s)θ

ds.

This shows that for θ < 1, the utility for this model is finite. In fact, one can even prove that there
is absence of arbitrage therefore answering our previous question regarding the coexistence between
the insider and the small investor in the same model for the time interval [0, T ].

Exercise 51 Prove that the fair price of the flow of information characterized by {I(t); t ∈ [0, T ]}
(see Exercise 33) is given by

p(t, T, I) = V0

(
1− exp

(
−1

2

∫ t

0

1
T − s + (T − s)θ

ds

))
.

Note that this quantity is not V0 for t = T and θ ∈ (0, 1). This result can be interpreted as the fact
that the fair price for the insider’s information is less than the wealth of all the other market agents
which is the case in example 33.

The semimartingale decomposition for W in the enlarged filtration obtained here is a result of a
projection formula. In fact, we have the following result from Corcuera et. al [10]:

Theorem 52 Let I be an FT -measurable random variable and assume that there exists an F∨σ(I)-
progressively measurable process α = {αt, t ∈ [0, T )} locally in L1, such that Wt−

∫ t

0
αsds, t ∈ [0, T )

is an F ∨ σ(I)-Wiener process with
∫ T

0
|αu| du < +∞ a.s., then Wt −

∫ t

0
E [αs|Gs] ds, t ∈ [0, T )

is an G-Wiener process and the additional utility of the insider in the interval [0, t] is given by
1
2

∫ t

0
E

[
E [αs|Gs]

2
]
du.

Proof. Since W ′ is independent of FT , then Ŵt = Wt −
∫ t

0
αsds is a J -Wiener process, with

J = (Ft ∨ σ(I) ∨ σ(W ′
s, s ≤ t))t∈[0,T ). We have that E

[
Ŵt|Gt

]
= Wt−

∫ t

0
E [αs|Gs] ds, where we can

consider an G-progressively measurable version of E (αs|Gs) , s ∈ [0, T ) (see Dellacherie and Meyer
(1980), page 113), and this will be an G-martingale. In fact, for 0 ≤ s < t < T

E
[
E

[
Ŵt|Gt

]
|Gs

]
= E

[
Ŵt|Gs

]
= E

[
E

[
Ŵt|Js

]
|Gs

]
= E

[
Ŵs|Gs

]
.

Finally, one concludes using Lévy’s characterization theorem.
This idea of adding a vanishing independent Wiener process is useful not only in the example

treated in Section 2, but in general in any situation where the semimartingale decomposition of W
in the enlarged filtration has an information drift which degenerates at some point.

Nevertheless one awkward point still remains: The optimal portfolios of the insider are highly
oscillating. That is, π(s) = µ − r + σ I(s)−Ws

T−s+(T−s)θ is the optimal portfolio of the insider and
lim sups→T π(s) = +∞ and lim infs→T π(s) = −∞. We will see in the next section that one way to
solve this problem is to consider riskier markets. That is, markets with jumps.
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9 Insiders in markets with jumps
So far all the examples of insider trading have considered Z ≡ 0. This on one side is because the
Wiener process has has an explicit density.

In fact, even if this is not the case some explicit compensator can be calculated. For example,
if Z is a Lévy process with finite expectation we have the following theorem. A Lévy process is a
càdlàg stochastically continuous stochastic process with independent stationary increments. Basic
examples of Lévy process are the Wiener process and the compounded Poisson process introduced
in Section 2. Furthermore for any Lévy process we have through the Lévy-Khintchine representation
that

E
[
eiθZT

]
= eTψ(θ)

ψ(θ) = iθb− σ2θ2

2
+

∫ +∞

−∞

(
eiθx − 1− 1 (|x| ≤ 1) iθx

)
ν(dx)

where
∫ +∞
−∞

(
|x|2 ∧ 1

)
ν(dx) < ∞.

Theorem 53 Let Z be a Lévy process with E |ZT | < ∞. If F denotes the filtration generated by Z
and Gt = Ft ∨ σ(ZT ) then

Zt = Ẑt +
∫ t

0

ZT − Zs

T − s
ds

for t ≤ T where Ẑ is a G-integrable martingale.

Proof. First note that E |ZT | < ∞ is equivalent to
∫
|x|≥1

|x| ν(dx) < ∞ (see Proposition 25.4
page 159 in [44]). Consider for a Fs-measurable bounded random variable hs the quantity

E
[
(Zt − Zs)eiθZT hs

]
=

∂

∂µ2
E

[
eiµ1(ZT−Zt)+iµ2(Zt−Zs)eiθZT hs

]∣∣∣∣
µ1=µ2=0

=
∂

∂µ2
e(T−t)ψ(µ1+θ)+(t−s)ψ(µ2+θ)

∣∣∣∣
µ1=µ2=0

E
[
eiθZshs

]

= (t− s)ψ′(θ)E
[
eiθZshs

]
.

From here it follows that

E [(Zt − Zs)f(ZT )hs] =
t− s

T − s
E ((ZT − Zs)f(ZT )hs) .

From this equality one obtains using Fubini’s theorem that

E

[
(Zt − Zs −

∫ t

s

ZT − Zu

T − u
du)f(ZT )hs

]
= 0

The integrability property follows directly from the definition of Ẑ.

Exercise 54 (Mansuy-Yor) Define Fs,t = Fs∨σ(Zu;u ≥ t). Under the same conditions of Theorem
53, prove that for v ≤ s ≤ t ≤ u, one has

E

[
Zu − Zv

u− v

/
Fs,t

]
=

Zt − Zs

t− s
.

Exercise 55 (P. Tankov) Prove that in the case that Z is a simple Poisson process, then 〈Z〉Gt =∫ t

0
ZT−Zu

T−u du. Guess the extension of this result for square integrable Lévy process
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Consider a pure jump case in order to simplify calculations. Let us suppose that we are given
two independent simple Poisson processes N+ and N− which count two types of jumps. One of
size a+ = a ∈ (0, ln 2) and the other of size a− = ln (2− ea) < 0. The size of the jumps is not
very important except that one has to be positive and the other negative. This particular choice
simplifies the calculations. Furthermore suppose that the rates of jumps for each type is λ+ and
λ− respectively. Then, we take the model S(t) = S0 exp(µt + Nt) where Nt = a+N+

t + a−N−
t . As

explained in Section 2, the approximative wealth process for transaction at time tj , j = 0, ..., i− 1 is

V (ti) = V0

i−1∏

j=0

(
1 + (1− π(tj))

(
er(tj+1−tj) − 1

)
+

π(tj)
S(tj)

(S(tj+1)− S(tj))
)

.

Then

log(V (ti))

= log(V0) +
i−1∑

j=0

log
(
1 + (1− π(tj))

(
er(tj+1−tj) − 1

)
+ π(tj)

(
eµ(tj+1−tj)+(Ntj+1−Ntj ) − 1

))
.

Given that
(
er(tj+1−tj) − 1

) ≈ r(tj+1 − tj), eµ(tj+1−tj) − 1 ≈ µ(tj+1 − tj) and

log


1 +

π(tj)
(
e(Ntj+1−Ntj ) − 1

)

1 + (1− π(tj))
(
er(tj+1−tj) − 1

)
+ π(tj)

(
eµ(tj+1−tj) − 1

)
e(Ntj+1−Ntj )




≈ log
(
1 + π(tj)

(
e(Ntj+1−Ntj ) − 1

))
,

we have that

log(V (ti)) ≈ log(V0) +
i−1∑

j=0

{
(1− π(tj))r(tj+1 − tj) + e(Ntj+1−Ntj )π(tj)µ(tj+1 − tj)

}

+
i−1∑

j=0

log
(
1 + π(tj)

(
e(Ntj+1−Ntj ) − 1

))
.

For a càdlàg process π such that π(s) ∈ (−(ea − 1), ea − 1), this converges to

log(Vt) = log(V0) +
∫ t

0

((1− π(s))r + π(s)µ) ds +
∑

s≤t

log(1 + π(s−)(e∆N(s) − 1)).

This is a simple form of Itô’s formula for jump processes (for a general formulation, see [21] Theorem
5.1, page 66). As ∆N(s) ∈ {a+, a−} we have that the logarithmic utility becomes

E(log(V̂t))

= log(V0) + E

∫ t

0

(µ− r)π(s)ds + E
∑

s≤t

log(1 + π(s−)(e∆N(s) − 1))

= log(V0) + E

∫ t

0

(µ− r)π(s)ds +
+∑

i=−
λiE

∫ t

0

log(1 + π(s)(eai − 1))ds.

Exercise 56 Use an approximation argument to prove that for any càdlàg process π such that the
expectations are finite we have that

E


∑

s≤t

log(1 + π(s−)(e∆N(s) − 1))


 =

λ+E

[∫ t

0

log(1 + π(s)(ea − 1))ds

]
+ λ−E

[∫ t

0

log(1 + π(s)(1− ea))ds

]
.

Use Itô’s formula for jump processes to derive this result.
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As before the solution to the portfolio optimization for the small agent (i.e. non-insider) is
obtained by analyzing the function

f(π) = (µ− r)π +
∫

R
log (1 + (ex − 1)π)F (dx)

where F (dx) = δa+(dx)λ+ + δa−(dx)λ− and π ∈ (− 1
ea−1 , 1

ea−1 ). The function f is a strictly concave
function with respect to π and the first order condition f ′(π) = 0 gives

µ− r + λ+ (ea − 1)
1 + (ea − 1)π

+ λ−
(1− ea)

1 + (1− ea)π
= 0.

This equation reduces to a quadratic equation with two solutions. Let

π+ = −λ+ + λ−

2(µ− r)
+

√(
λ+ + λ−

2(µ− r)

)2

+
λ+ − λ−

(µ− r)(ea − 1)
+

1
(ea − 1)2

.

and π− be the other solution. Then the restriction, 1
ea−1 > π > − 1

ea−1 , determines the optimal
portfolio, denoted by π∗, as

π∗ =





π+ if µ > r
λ+−λ−
λ++λ− (ea − 1)−1 if µ = r

π− if µ < r

The optimal logarithmic utility is finite (as the portfolio values are bounded) and given by

log(V0) +
((

µ− r)π∗ + λ+ log(1 + (ea − 1)π∗) + λ− log(1 + (1− ea)π∗)
))

T.

Note that this result is valid as long as λ+ > 0 and λ− > 0.

Exercise 57 If λ− = 0 prove that the optimal logarithmic utility is infinite if µ ≥ r. What happens
if µ < r?

The comparison with the Merton problem (see Section 2 and Figure 1) is as follows: While in
the continuous model the ratio of investment on the stock grows linearly with the difference between
the appreciation rate and the interest rate, in the jump model such growth is limited by the possible
jump size in the opposite direction which may make our portfolio not admissible (that is, we may
lose all our investment) with positive probability.

An interesting consequence of this analysis is that in models with bounded jump sizes the bor-
rowing/loaning of shares/money is limited according to how big are jumps. Therefore models where
the Lévy measure has unbounded support restrict π ∈ [0, 1].

This characteristic implies that models with jumps are high risk models. In fact, this will lead
to the insider to behave cautiously even if he/she has as information the final price of the asset.

That is, define the insider problem as one where the additional information is of the form I =
N(T ) and Gt = Ft ∨ σ(I). Using Theorem 53, we have that

Nt −
∫ t

0

NT −Ns

T − s
ds = N̂t

is a G-martingale. Nevertheless this will not be enough to compute the logarithmic utility. In fact,
we will further enlarge the filtration to Ht = Ft ∨ σ(N+

T , N−
T ).

Exercise 58 Prove that Ht=Gt if it does not exist a ∈ (0, ln 2) such that k1a + k2 ln (2− ea) = 0
for a pair of integers k1 and k2.
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Figure 1: The Merton’s line and the optimal portfolio for markets with jumps in the case λ− > λ+

Working in the filtration H we have that

N i
t −

∫ t

0

N i
T −N i

s

T − s
ds = N̂ i

t

where N̂ i is a H-martingale for i = +,−. Then following our previous calculations, we have that the
logarithmic utility for the insider can be computed similarly. In fact we have the following result.

Exercise 59 Prove that the utility for the insider is given by

E
[
log(V̂t)

]
(14)

= log(V0) + E

[∫ t

0

(µ− r)π(s)ds

]
+

+∑

i=−
E

[∫ t

0

log(1 + π(s)(eai − 1))
N i

T −N i
s

T − s
ds

]

= log(V0) + E

[∫ t

0

(µ− r)π(s)ds

]
+

+∑

i=−
E

[∫ t

0

log(1 + π(s)(eai − 1))Bi(s)ds

]
, (15)

where Bi(s) = E
[

Ni
T−Ni

s

T−s

/
Gs

]
. Note that the rates λi are replaced by the random rates Bi(s).

In general, Bi(s) is positive unless we are in the case described in Exercise 58. In that case, the
insider can “count”the jumps and Bi(s) becomes zero after the last jump before T .
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As before our objective function is

fs(π) = (µ− r)π +
+∑

i=−
log(1 + π(eai − 1))Bi(s)

for

π ∈





(−(ea − 1)−1, (ea − 1)−1) if Bi(s) > 0 for i = −, +
(−(ea − 1)−1, +∞) if B+(s) > 0 and B−(s) = 0
(−∞, (ea − 1)−1) if B−(s) > 0 and B+(s) = 0

(−∞,+∞) if B+(s) = 0 and B−(s) = 0.

The function fs is strictly concave in the first three cases and linear in the last.
CASE I: Bi(s) > 0 for i = −, + for all s ∈ [0, T ]. In this case the optimal solution is obtained as

the solution of f ′s(π) = 0 which gives for µ 6= r

π̂± = −B+ + B−
2(µ− r)

±
√(

B+ + B−
2(µ− r)

)2

+
B+ −B−

(µ− r)(ea − 1)
+

1
(ea − 1)2

. (16)

As before, the right solutions for the optimal problem are determined with the restriction 1
ea−1 >

π∗(s) > − 1
ea−1

π̂∗(s) =





π̂+(s) if µ > r
B+−B−
B++B−

(s)(ea − 1)−1 if µ = r

π̂−(s) if µ < r

In particular, we have the following result:

Theorem 60 If π is a bounded G-adapted portfolio with 1
ea−1 > π(s) > − 1

ea−1 and P{ω; B+(s) > 0
and B−(s) > 0 for all s ∈ [0, T ]} = 1. Then the utility associated with π is finite.

Proof. In fact, from (14) using that log(1 + π(s)(eai − 1)) ≤ π(s)(eai − 1) we obtain that

E

[∫ t

0

log(1 + π(s)(eai − 1))Bi(s)ds

]
≤ E

[∫ t

0

π(s)(eai − 1)Bi(s)ds

]

≤ C(ai)E
[∫ t

0

∣∣∣∣
N i

T −N i
s

T − s

∣∣∣∣ ds

]

≤ C(ai)λit < +∞.

CASE II(a): In the case that λ × P{(s, ω); B+(s) > 0 and B−(s) = 0} > 0 and µ ≥ r we have
that as limπ↓+∞ fs(π) = +∞ then the maximal utility will be infinite.

CASE II(b): If µ < r and λ×P{(s, ω); B+(s) = 0} = 0 then π∗(s) = −(ea−1)−1−(µ−r)−1B−(s)
and utility is finite.

Exercise 61 Prove something similar for the case λ × P{(s, ω); B+(s) = 0 and B−(s) > 0} > 0
with µ < r. Also for the case λ × P{(s, ω); B+(s) = 0 and B−(s) = 0} > 0 prove that the optimal
value for f(π) is infinite. Do an analysis as in Case II, for the case that λ×P{(s, ω); Bi(s) = 0} > 0
for i = +,−.

The situation most typical in financial markets should be that portfolios are bounded a.s. and
the logarithmic utility of the G-investor will be finite.

In summary we have proven that the fact that utility is finite or not depends on whether B+or
B− are zero or not. To study this problem as we have already seen in exercise 58 is a matter of
obtaining an algebraic characterization of the jump structure.
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We divide the study in two cases:
Case 1: Assume that there exists k1, k2 ∈ N such that k1a + k2 ln (2− ea) = 0 then for any
x ∈ Na + N ln(2 − ea), B+(s) > 0 and B−(s) > 0 conditioned on NT = x. Therefore portfolios are
bounded and by a similar reasoning as in Theorem 60 maximal logarithmic utility is finite. The
existence of a such that there exists k1, k2 ∈ N with k1a + k2 ln (2− ea) = 0 is assured by the
continuity of the function h(a) = −a−1 ln(2− ea) for a ∈ (0, ln(2)).
Case 2: On the contrary, if there are no k1, k2 ∈ N such that k1a + k2 ln (2− ea) = 0 then
P (B+(s) = 0 for some subinterval of [0, T ]) > 0 and P (B−(s) = 0 for some subinterval of [0, T ]) > 0.
In fact, there is always a time when given the value of N(T ) there can be no more both positive
and negative jumps but only jumps of one type. Both probabilities being positive assures that the
logarithmic utility of the G-investor will be infinite.

Exercise 62 Assume that there exists k1, k2 ∈ N such that k1a + k2 ln (2− ea) = 0, prove that the
optimal conditional logarithmic utility of the insider in [0, T ] is finite.

Exercise 63 Prove that if the insider knows N+(T ) and N−(T ) then the insider achieves infinite
utility.

Exercise 64 Prove that if we add a Wiener process to a Poisson process with positive jumps then
there is a case where the utility is infinite.

10 Enlargement of filtrations for random times

10.1 Jacod’s Theorem for random times
Now we start to describe a general set-up that will become useful later when we treat another case of
insider information: That is, the case of positive random variables which we will also called random
times. In particular note that, for a simple Poisson process with parameter λ1 > 0, and letting Tn

denote the time of the n-th jump, we have that

P (Tn ≥ x/Ft) = 1{x ≤ Tn ≤ t}+ 1{Tn > t}
∫ ∞

(x−t)∨0

λ1 (λ1u)n−1−Nt e−λ1u

(n− 1−Nt)!
du (17)

P (Tn ≥ x) =
∫ ∞

x

λ1 (λ1u)n−1
e−λ1u

(n− 1)!
du.

Here the filtration Ft is the one generated by the Poisson process N . Therefore the conditional
law of the random variable Tn (P (Tn ≥ x/Ft)) is not absolutely continuous with respect to a fixed
measure (P (Tn ≥ x)) but to a random one. This case can not be handled by Jacod’s Theorem
as stated. Note that, in this case, Nt does not have a density. In the financial application, this
corresponds to the insider that knows the time of the n-th jump of the stock price of size bigger
than a certain number (see example 10.2), which is a rough example of market timers. To achieve
some generality we work in a semimartingale environment.

Let Z = {Zt, 0 ≤ t ≤ T} be a d dimensional semimartingale defined on a complete probability
space (Ω,F , P ). Here, (Ft)t∈[0,T ] ≡

(FZ
t

)
t∈[0,T ]

is the filtration generated by the process Z. We will
assume through this Section unless stated otherwise that Z satisfies

sup
t∈[0,T ]

E [|Zt|] < ∞. (18)

From now on, G denotes the smallest filtration including F and σ(I).
For each t ∈ [0, T ], we denote by Pt(ω, dx) a regular version of the conditional law of a random

variable τ given the σ-field Ft, abbreviating it by Pt(dx) if its nature as a measure is emphasized.
We can choose this version in such a way that the following conditions are satisfied:
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1. For every Borel set B on Rd, {Pt(B), t ∈ [0, T ]} is an (Ft)t∈[0,T ]-progressively measurable
process.

2. For every (t, ω) ∈ [0, T ]× Ω, Pt(ω, dx) is a probability measure on Rd.

3. For any bounded and (Ft)t∈[0,T ]-adapted process h : Ω× [0, T ] → R and for any bounded and
measurable function f : Rd → R, we have

E

[
f(τ)

∫ T

0

htdt

]
= E

[∫ T

0

∫

Rd

f(x)Pt(dx)htdt

]
.

First, we consider a setup for initial enlargement of filtrations. That is, Gt = Ft ∨ σ(τ). In
most situations when a random time is considered, one does not have that the measure P

(1)
t << Pt.

Nevertheless, this is mostly due to the possible point measure at time τ . Therefore we consider
a version of Jacod’s theorem which excludes this point. Let Pt(dx) be the regular conditional
probability of τ given Ft.

Definition 65 We say that a random time τ belongs to the class L∗, denoted by τ ∈ L∗, if there
exists random kernels P

(i)
t (ω, dx), i = 1, 2 such that

1. For every Borel set B in the positive real line, {P (i)
t (B), t ∈ [0, T )} is an (Ft)t∈[0,T )-progressively

measurable process.

2. For every (t, ω) ∈ [0, T )× Ω, P
(i)
t (ω, dx) is a signed measure on the real line.

3. For every t ∈ [0, T ), E
[∫ t

0

∣∣∣P (i)
u

∣∣∣ du
]

< ∞.

4. For any bounded and (Ft)t∈[0,T ]-adapted process h : Ω × [0, T ] → R, for any bounded and
measurable function f : [0,∞] → R, and for every t ∈ [0, T ), we have

E [f(τ)1(τ < s) (Zt − Zs) hs] = E

[∫ t

s

∫ s

0

f(x)P (1)
u (dx)duhs

]
,

E [f(τ)1(t < τ) (Zt − Zs) hs] = E

[∫ t

s

∫ T

t

f(x)P (2)
u (dx)duhs

]
.

Theorem 66 Suppose that τ is a random time in the class L∗ and Z is a semimartingale satisfying
(18) such that E |∆Z(τ)| < ∞. Assume that for almost all (t, ω), the signed measures P

(i)
t (dx),

i = 1, 2 are absolutely continuous with respect to Pt(dx), and set

α
(i)
t (x) =

dP
(i)
t

dPt
(x).

We can choose a version of α
(i)
t (x) which is P⊗B(R)-measurable, where P denotes the Ft-progressive

σ-field. Define
β(u) = α(1)

u (τ)1(u ≥ τ) + α(2)
u (τ)1(u < τ).

Then Zt −
∫ t

0
β(u)du−∆Z(τ)1(t ≥ τ) is a martingale with respect to the filtration (Gt)t∈[0,T ).

Proof. We choose versions of α
(i)
t (x) which is P ⊗ B(R)-measurable for i = 1, 2. Let h be a

measurable adapted bounded process and f a bounded measurable function on R. Set F = f(τ).
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Then we have

E [(Zt − Zs)F1(t < τ)hs] = E [(Zt − Zs)f(τ)1(t < τ)hs]

= E

[∫ t

s

∫ T

t

f(x)P (2)
u (dx)duhs

]

= E

[∫ t

s

∫ T

t

f(x)α(2)
u (x)Pu(dx)duhs

]

= E

[∫ t

s

f(τ)α(2)
u (τ)du1(t < τ)hs

]

= E

[∫ t

s

α(2)
u (τ)duF1(t < τ)hs

]
.

Similarly, one obtains that

E [(Zt − Zs)F1(τ < s)hs] = E

[∫ t

s

α(1)
u (τ)duF1(τ < s)hs

]
.

To finish the proof we consider the general case. Let π = {t0 < s = t1 < ... < tn−1 = t < tn} be a
partition with |π| = max{tk − tk−1; 1 ≤ k ≤ n}.

E [(Zt − Zs)Fhs]

= E

[(
1(τ ≤ t0)

∫ t

s

α(1)
u (τ)du + 1(tn < τ)

∫ t

s

α(2)
u (τ)du

)
Fhs

]

+
n−2∑

j=1

n−1∑

k=0

E
[
(Ztj+1 − Ztj )F1(tk < τ ≤ tk+1)hs

]
.

Let’s consider the last term
n−2∑

j=1

n−1∑

k=0

E
[
(Ztj+1 − Ztj )F1(tk < τ ≤ tk+1)hs

]

= E
∑

j<k

[
(Ztj+1 − Ztj )F1(tk < τ ≤ tk+1)hs

]

+ E

n−2∑

k=1

[
(Ztk+1 − Ztk

)F1(tk < τ ≤ tk+1)hs

]

+
∑

j>k

E
[
(Ztj+1 − Ztj )F1(tk < τ ≤ tk+1)hs

]
.

Now each term can be rewritten as follows:

E


∑

j<k

(Ztj+1 − Ztj )F1(tk < τ ≤ tk+1)hs




= E


∑

j<k

∫ tj+1

tj

α(2)
u (τ)duF1(tk < τ ≤ tk+1)hs




= E




n−2∑

j=1

∫ tj+1

tj

α(2)
u (τ)duF1(tj+1 < τ ≤ tn)hs




→ E

(∫ t

s

1(u < τ ≤ t)α(2)
u (τ)duFhs

)
,
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n−2∑

k=1

E
[
(Ztk+1 − Ztk

)F1(tk < τ ≤ tk+1)hs

] → E [∆Z(τ)F1(s < τ ≤ t)hs]

and

E


∑

j>k

(Ztj+1 − Ztj
)F1(tk < τ ≤ tk+1)hs




= E


∑

j>k

F1(tk < τ ≤ tk+1)
∫ tj+1

tj

α(1)
u (τ)duhs




= E




n−1∑

j=1

F1(t0 < τ ≤ tj)
∫ tj+1

tj

α(1)
u (τ)duhs




→ E

[∫ t

s

F1(s < τ ≤ u)α(1)
u (τ)duhs

]

as |π| ↓ 0. Therefore Zt−B(t) is a martingale in the filtration (Gt)t∈[0,T ) where B(t) =
∫ t

0
β(u)du+

∆Z(τ)1(t ≥ τ).

10.2 Example of market timers: n-th price jump

Now we consider some simple examples of the above situation. This example treats the situation
where the filtration is enlarged by the time of the n-th jump of positive size. To simplify consider
the case of the model introduced in Section 9 let N be a compound Poisson process with two types
of jumps: Nt = a+N+

t + a−N−
t .

Let Tn be the random time associated with the n-th jump associated with the process N+
t . That

is, Tn = inf{s; N+
s = n}. The random variable Tn is a F stopping time and in this case, we define

Ft = σ(N i
u;u ≤ t, i = −,+) and Gt = Ft ∨ σ(Tn). That is, the insider knows in advance the time at

which the stock will jump positively for the n-th time.

Theorem 67 We have the following decomposition

Nt = N̂t + a−λ−t + a+

∫ t∧Tn

0

N+
Tn− −N+

u

Tn − u
du + a+

(
λ+(t− Tn) + 1

)
1(t ≥ Tn)

where N̂ is a G-martingale (Note that N+
Tn− = n−1 so that

∫ t∧Tn

0

N+
Tn−−N+

u

Tn−u du =
∫ t∧Tn−1

0

N+
Tn−−N+

u

Tn−u du).

Proof. We apply Theorem 66 and we start calculating P
(1)
u :

E [f(Tn)1(Tn < s) (Nt −Ns) hs] = E [f(Tn)1(Tn < s)E [Nt −Ns/Fs] hs]
= λ(t− s)E [f(Tn)1(Tn < s)hs] .

Therefore dP
(1)
u = λdPu. Next we compute

E [f(Tn)1(Tn > t) (Nt −Ns) hs]
= E [E [f(Tn)1(Tn > t)/Ft] (Nt −Ns) hs]

= E

[∫ +∞

0

f(u + t)
λ+ (λ+u)n−1−N+

t e−λ+u

(
n− 1−N+

t

)
!

du (Nt −Ns)hs

]

= a−λ−(t− s)E [f(Tn)1(Tn > t)hs]

+ a+E

[∫ +∞

0

f(u + t)
λ+ (λ+u)n−1−N+

t e−λ+u

(
n− 1−N+

t

)
!

du
(
N+

t −N+
s

)
hs

]
.
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Here we have used the conditional distribution of τ given Ft (see equation (17)) and the independence
of N+ and N−. Now we compute the second expectation on the right hand side above. This gives
using the probability distribution of N+

t −N−
s

E

[∫ +∞

0

f(u + t)
λ+ (λ+u)n−1−N+

t e−λ+u

(
n− 1−N+

t

)
!

du
(
N+

t −N+
s

)
hs

]

=
∞∑

j=1

e−λ+(t−s)(λ+(t− s))j

(j − 1)!
E

[∫ +∞

0

f(u + t)
λ+ (λ+u)n−1−j−N+

s e−λ+u

(
n− 1− j −N+

s

)
!

duhs

]

=
(
λ+

)2 (t− s)E

[∫ +∞

0

f(u + t)
(λ+u)n−2−N+

t e−λ+u

(
n− 2−N+

t

)
!

duhs

]

= (t− s)E

[∫ +∞

0

f(u + t)
N+

Tn− −N+
t

u

λ+ (λ+u)n−1−N+
t e−λ+u

(
n− 1−N+

t

)
!

duhs

]

= (t− s)E

[
N+

Tn− −N+
t

Tn − t
f(Tn)1(Tn > t)hs

]
.

Then, one can verify that

E

[
f(Tn)1(Tn > t)

(
Nt −Ns − a−λ−(t− s)− a+

∫ t

s

N+
Tn− −N+

u

Tn − u
du

)
hs

]
= 0. (19)

Therefore

dP (2)
u = a+

N+
Tn− −N+

u

Tn − u
dPu,

and the conclusion follows from Theorem 66.

Exercise 68 Verify the previous equality (19).

Note that the above Theorem is also valid for λ− = 0 or λ+ = 0To adapt to the fact that Tn

takes values in [0, +∞) we maximize the following utility

max
π∈G

∫ +∞

0

e−rsE
[
log(V̂s)

]
ds.

Following a similar discussion as in the previous example one finds that the optimal portfolio for
s ≤ Tn−1 is given as in the previous example by

π̂∗(s) =





π̂+(s) if µ > r
n−1−N+

s −λ−(Tn−s)

n−1−N+
s +λ−(Tn−s)

(ea − 1)−1 if µ = r

π̂−(s) if µ < r

where π̂±(s) is also the solution of the corresponding quadratic equation (16) with B+(u) =
N+

Tn−−N+
u

Tn−u and B−(u) = λ−.

Exercise 69 Prove that the optimal utility of the insider in the interval [0, Tn−1] is finite for n ≥ 2.

Next for t ∈ (Tn−1, Tn) we have that if µ > r then π̂∗(s) = (ea−1)−1−λ−(µ−r)−1. In contrast,
if µ ≤ r then there is no optimal value and the maximal logarithmic utility is infinite. The optimal
portfolio after Tn of the G-investor and the F-investor coincide. In conclusion if µ > r then the
optimal logarithmic utility of the insider in the interval [0, Tn) is finite if and only if µ > r. Clearly
the analysis of the optimal portfolio and the utility after Tn is like in the beginning of Section 9. In
the interval [0, Tn] there is no optimal portfolio in the case µ > r.

Exercise 70 Provide a careful analysis to prove that the logarithmic utility of the insider is finite
in the interval [0, Tn) if and only if µ > r.
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11 The insider as a large trader
In this chapter we initiate a first glance of the interactions between three distinguished elements
which where somewhat independent in the previous chapters: the stock price, the insider strategy
and the small trader.

First we will start with a study of the effect of the insider’s strategy on the stock price dynamics.
That is, suppose that the insider information is modelled using a filtration G and that the insider’s
strategy, π, is adapted to G. Then we first consider the following discrete model

Sn(ti+1) = Sn(ti) (1 + (µ + bπ(ti)) (ti+1 − ti) + σ (W (ti+1)−W (ti)))

then we have that

Sn(tn) = S0

n−1∏

i=0

(1 + (µ + bπ(ti)) (ti+1 − ti) + σ (W (ti+1)−W (ti)))

= S0 exp

(
n−1∑

i=0

log (1 + (µ + bπ(ti)) (ti+1 − ti) + σ (W (ti+1)−W (ti)))

)

≈ S0 exp

(
n−1∑

i=0

((
µ + bπ(ti)− σ2

2

)
(ti+1 − ti) + σ (W (ti+1)−W (ti))

))
.

Therefore taking limits we have that Sn converges a.s. to

S(t) = S0 exp
(∫ t

0

(
µ + bπ(s)− σ2

2

)
ds + σW (t)

)
.

In order to formalize the idea that S is the solution of a linear stochastic differential equation we
need the notion of the forward integral.

Definition 71 Let φ : [0, T ]×Ω → be a measurable ( non necessarily adapted ) continuous process.
The forward integral of φ with respect W (.) is defined by

T∫

0

φ(t)d−W (t) = lim
n→+∞

n−1∑

i=0

φ(ti)(W (ti+1)−W (ti)), (20)

if the limit exists in L1(Ω) and is independent of the partition sequence taken.

This definition does not coincide exactly with the definition of Russo-Vallois. Under some more
assumptions one can prove that this definition coincides with the original definition of Russo-Vallois.

Now, we can say that the class of admissible portfolios for the large trader are the ones such that
S is the unique solution to the following model for the stock price

S(t) = S(0) +
∫ t

0

(µ + bπ(s))S(s)ds +
∫ t

0

σS(s)d−W (s). (21)

Note that since π is not adapted to the filtration generated by W , F , the usual rules of stochastic
calculus do not apply. In particular, one has the following result

Exercise 72 For f ∈ C1
b ([0, T ]× R) prove that

E
[ T∫

0

f(t,W (T ))d−W (t)
]

= E
[ T∫

0

∂

∂x
f(t,W (T ))dt

]
.

That is, forward integrals do not have expectation zero.
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The situation described above models the fact that the insiders policies have an effect on the
price dynamics. From now on we assume that 0 < b < σ2/2. The condition b > 0 expresses that as
the insider increases his/her portfolio holdings then the price of the stock increases. The condition
b < σ2/2 expresses that the volatility has to be big enough to ”hide” the insider’s behavior.

Now in order to express the wealth process we need to further assume that W is a semimartingale
in G with the decomposition W (t) = Ŵ (t) +

∫ t

0
α(s)ds where α is a G-adapted process and Ŵ is a

G Wiener process. Then we have in the above expression that
∫ t

0

σS(s)dW (s) =
∫ t

0

σS(s)dŴ (s) +
∫ t

0

σS(s)α(s)ds.

As in section 2, one defines the optimal logarithmic utility problem for the insider. In such a case,
we obtain that the logarithmic utility is

E(
[
log(V̂ (t))

]
= log(V0) +

∫ t

0

E

[
π(s)(µ− r + σα(s)) +

(
b− 1

2
σ2

)
π(s)2

]
ds.

As before, one considers the strictly concave function fs(π) = π(µ− r +σα(s))+
(
b− 1

2σ2
)
π2. Note

that here we use that b < σ2/2. Then the optimal portfolio for the insider is π̂(s) = µ−r+σα(s)
σ2−2b and

the optimal logarithmic utility is log(V0) + (µ−r)2t
2(σ2−2b) +

∫ t

0
E

[
σ2α(s)2

2(σ2−2b)

]
ds.

Exercise 73 Consider the case that the large investor is not an insider. That is, the admissible port-
folios are (Ft)t∈[0,T ]−adapted portfolios. Prove that the optimal portfolio in this case is π̂ = µ−r

σ2−2b

and the optimal logarithmic utility is log(V0) + (µ−r)2t
2(σ2−2b) . In this case the model for the underlying

increases its instantaneous return if and only if µ ≥ r.

Note that in the case that b ≥ σ2/2 then the system explodes as the function fs becomes convex.
One first example of application may be the classical case Gt = Ft ∨ σ(W (T )). Nevertheless this
example loses some of its interest because it is clear that σ(W (T )) 6= σ(S(T )). Therefore the
information held by the insider is not clearly interpretable from a financial point of view.

Exercise 74 Prove that σ(S(T )) = σ(
∫ T

0
bα(r)
σ2−2bdr + W (T )).

Clearly the problem we are proposing here is a fixed point problem and related with some type of
equilibrium concept. If the information of the insider is Ft∨σ(S(T )), but the price is also influenced
by the information itself through the portfolio π. In order to solve this situation we will use Example
24 to obtain the following result:

Theorem 75 Suppose that 0 < b < σ2/2 and define the following portfolio for the insider

π̂(t) =
µ− r

σ2 − 2b
+

σ

σ2 − 2b
a(t)A(t)−1

∫ T

t

a(r)dW (r)

a(t) = (T − t)θ

A(t) =
∫ T

t

a(r)2dr

θ = −bσ−2 ∈ (−0.5, 0).

Then the portfolio π̂ is the optimal portfolio for the large investor under model (21) with information
Ft ∨ σ(S(T )).

Proof. First suppose that we are given the portfolio π̂. Then, we have that

log(S(T )/S(0)) =
∫ T

0

(
µ + bπ̂(s)− σ2

2

)
ds + σW (T ).
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Therefore the sigma field generated by S(T ) is the same as the sigma field generated by the random
variable

Y =
bσ

σ2 − 2b

∫ T

0

a(t)A(t)−1

∫ T

t

a(r)dW (r)dt + σW (T )

=
bσ

σ2 − 2b

∫ T

0

a(r)
∫ r

0

a(t)A(t)−1dtdW (r) + σW (T ).

After some calculations, we obtain that

A(t) =
∫ T

t

(T − u)2θdu = (2θ + 1)−1(T − t)2θ+1

∫ r

0

a(t)A(t)−1dt = (2θ + 1)θ−1
(
(T − r)−θ − T−θ

)

Y =
∫ T

0

(
bσ

σ2 − 2b
(2θ + 1)θ−1

(
1− T−θ(T − r)θ

)
+ σ

)
dW (r)

= σT−θ

∫ T

0

(T − r)θdW (r)

Therefore the filtration Ft ∨ σ(Y ) is of the type of Exercise 24 which gives that the compensator is

α(t) = a(t)A(t)−1

∫ T

t

a(r)dW (r).

Note that π̂ is admissible as it is generated through an enlargement of filtrations procedure.

Exercise 76 Prove that σ(S(s); s ≤ t) ∨ σ(S(T )) = Ft ∨ σ(Y ).

One natural question after this calculation is what the small investor can do in this situation?
One should then note that the small investor does not have access to π̂ or to the filtration G. That
is, the small investor may try to do his ”best” possible model with the data he/she possesses which
is Ht = σ(S(s); s ≤ t) = σ

(∫ s

0
bα(r)
σ2−2bdr + W (s); s ≤ t

)
⊆ G. Then the model that the small insider

will use is

S(t) = S0 +
∫ t

0

E [µ + bπ̂(s)/Hs] S(s)ds +
∫ t

0

σS(s)dW̃ (s) (22)

where W̃ is a Wiener process on H (here we are assuming that H can support a Wiener process).
In this situation the small investor will use as optimal portfolio

π̃∗(s) =
µ− r

σ2
+

b

σ2
E [ π̂(s)/Hs]

=
(µ− r) (σ2 − b)

σ2(σ2 − 2b)
+

b

σ(σ2 − 2b)
E [α(s)/Hs] ,

and the optimal logarithmic utility in [0, t] the small trader expects to gain with model (22) is

A = log(V0) +
(µ− r)2(σ2 − b)2

2σ2 (σ2 − 2b)2
t +

b2

2 (σ2 − 2b)2

∫ t

0

E
[
E [α(s)/Hs]

2
]
ds.

Nevertheless as the actual model for S is the one in (21) we have that the actual utility of the small
investor is

A +
b

σ2 − 2b

∫ t

0

E
[
E [α(s)/Hs]

2
]
ds.
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The interpretation of this result is the following: If you make more money than what you expect
with your adapted model, it may be because there is a large investor exerting an influence on the
price of the market. This may look at bit odd but in fact the risk of the small trader is also bigger
than he/she thinks it is.

Obviously, if the small trader is able to guess the model of the large trader his expected loga-
rithmic utility will further increase (but always finite) and the optimal portfolio will be

π∗(t) = π̃∗(s) + σ−1E [α(s)/Hs]

One of the remaining problems with this model is that it still explodes when the logarithmic
utility for the insider/large trader is considered in the interval [0, T ]. Nevertheless, the problem can
also be solved using the techniques explained in Section 8.

For this reason, we study some simpler models to try to understand better the structure of the
enlargement of filtrations approach within this model. Somewhat this is the goal of the next section.
Before that we make a remark.

Remark 77 We have assumed that the filtration H is rich enough to support a Wiener process W̃ .
In fact, one can prove that if there exists an optimal portfolio π̃∗ for the small trader leading to a
finite utility, then this is the case and furthermore the drift of the model is

E [µ + bπ̂(s)/Hs] = σ2π̃∗(s) + r.

That is, the projection of the anticipating large trader insider model into the filtration given by the
price gives as result that the optimization problem for the small trader is the Merton problem.

12 Continuous stream of information
In the particular case where Gt = Ft ∨ σ(W (T )), the optimal portfolio for the insider is a function
of W (T )−W (t)

σ(T−t) (similarly for Theorem 75, the optimal portfolio is anticipating). Roughly speaking,
the above model allows to introduce the anticipation through the drift of the sde defining the stock
price model. Therefore one way to introduce a continuous information in the market is by taking a
drift that depends on the variables representing his/her additional information.

To look at a concrete “toy” example (think of various reasons why this is a toy example) consider
for δ > T fixed

S(t) = S(0) +
∫ t

0

(µ + bW (s + δ)) S(s)ds +
∫ t

0

σS(s)d−W (s). (23)

In this model, the insider has an effect on the drift of the diffusion through information that is
δ units of time in the future. This continuous deformation of information may be used to model
streams of information rather than one single piece of information. In this case, it is difficult to see
what is the information held by the insider but his/her effect on the market is known.

Exercise 78 Prove that W is not a semimartingale on the filtration (Ft+δ)t∈[0,T ] .

In such a situation we are interested in looking at the optimal policy of the small investor. That
is, the small investor filtration is Ht = σ(Ss; s ≤ t). The above stochastic integral can be treated as
in the previous section and this gives as solution

S(t) = S(0) exp

((
µ− 1

2
σ2

)
t + b

∫ t+δ

δ

W (s)ds + σW (t)

)
.

Therefore Ht = σ
(
b
∫ s+δ

δ
W (r)dr + σW (s); s ≤ t

)
.
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We now describe the wealth process for a strategy π such that E
∫ T

0
π2(s)ds < ∞ through the

discrete time argument, as in (4) (recall also a similar argument in Section 9), to obtain that

log(V (ti))≈log(V0) +
i−1∑

j=0

((
(1− π(tj))r + π(tj)

(
µ− 1

2
σ2

))
(tj+1 − tj) + π(tj)b

∫ tj+1+δ

tj+δ

W (s)ds

)

+
i−1∑

j=0

log (1 + π(tj) (exp (σ (W (tj+1)−W (tj)))− 1))

As before the first integral will converge to the Lebesgue integral. For the second, we will have to
make assumptions on π to obtain the convergence as this sum will tend to an anticipating stochastic
integral (that is, there may be correlations between π(tj) and the increments (W (tj+1)−W (tj))).
To see this consider the Taylor expansion approximation of the last term above

i−1∑

j=0

(
π(tj) (σ (W (tj+1)−W (tj))) +

1
2
π(tj) (1− π(tj)) σ2 (W (tj+1)−W (tj))

2

)
.

Now we suppose that
∑i−1

j=0 (π(tj) (W (tj+1)−W (tj))) converges in L1 to an integrable random
variable denoted by

∫ t

0
π(s)dW (s). Note in particular that the expectation of this random variable

is not necessarily zero as there may be covariances between π(tj) and (W (tj+1)−W (tj)). Also
suppose that

∑i−1
j=0

(
1
2π(tj) (1− π(tj))σ2

(
(W (tj+1)−W (tj))

2 − (tj+1 − tj)
))

converges in L1 to
zero. We will later show that the optimal portfolios proposed satisfy this condition. With these
assumptions, we have that the limit of the logarithmic wealth process can be written as

J(t, π) := E
[
log(V̂ (t))

]
(24)

= log(V0) + E

[∫ t

0

(
π(s)(µ− r + bW (s + δ))− 1

2
σ2π(s)2

)
ds

]
+ σE

[∫ t

0

π(s)d−W (s)
]

.

(25)

Here d−W (s) denotes the forward stochastic integral of Russo-Vallois.
The previous discussion can be carried out in full generality without going through the above

approximative argument (see Kohatsu-Sulem) but we have preferred the above approach as to con-
vince the reader that the concept of forward integral is natural for the above financial problem and
that it is not an artificial mathematical construct.

For the rest of the discussion suppose that the optimization problem maxπ J(t, π) has a solution.
Then we apply a variational argument to J to obtain for anyH adapted process v so that the forward
integral of this process exists. Then the first order condition is

∂J(t, π∗ + εv)
∂ε

∣∣∣∣
ε=0

= E

[∫ t

0

(
v(s)(µ− r + bW (s + δ))− σ2π∗(s)v(s)

)
ds

]
+σE

[∫ t

0

v(s)d−W (s)
]

= 0

(26)
Note that the second order condition is satisfied (J is a concave functional). Now we consider
v(s) = X1(s ≥ θ) for θ ≤ t fixed and X an Hθ measurable random variable which is forward
integrable. Then we have that

E

[
X

(∫ t

θ

(
(µ− r + bW (s + δ))− σ2π∗(s)

)
ds + σ (W (t)−W (θ))

)]
= 0.

This gives that

E

[∫ t

θ

(
(µ− r + bW (s + δ))− σ2π∗(s)

)
ds + σ (W (t)−W (θ))

/
Hθ

]
= 0. (27)
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Therefore this also proves that E (W (t)−W (θ)/Hθ) is differentiable in t and furthermore that

π∗(θ) =
µ− r

σ2
+

b

σ2
E (W (θ + δ)/Hθ) +

1
σ

lim
t→θ

E

[
W (t)−W (θ)

t− θ

/
Hθ

]
.

We are then reduced to the computation of E [W (s)/Ht] for s ≥ t.

Lemma 79 Define Y (t) = b
∫ t+δ

δ
W (r)dr + σW (t). Then for δ ≥ T

lim
s↓t

E

[
W (s)−W (t)

s− t

/
Ht

]
= bM

∫ t

0

g(t, u)dY (u).

E [W (t + δ)/Ht] = (b(t + δ) + δ)M
∫ t

0

g(t, u)dY (u)

where M ≡ Mt = σ−1b
(
(bδ + 2σ)

(
e

2bt
σ − 1

)
+ σ

(
e

2bt
σ + 1

))−1

and g(t, u) = e
b
σ (2t−u) + e

b
σ u.

Proof. First note that Y is a Gaussian process. Therefore E [W (s)/Ht] =
∫ t

0
h(s, t, u)dY (u)

for a deterministic function h. To compute h we compute the covariances between W (s) and the
stochastic integral and Y (v) for some v ≤ t ≤ s. First

E [W (s)Y (v)] = bsv + σ(s ∧ v). (28)

Also

E

[∫ t

0

h(s, t, u)dY (u)Y (v)
]

= b2

∫ t

0

∫ u

0

h(s, t, θ1)(θ1 ∧ θ2 + δ)dθ2dθ1 (29)

+ 2bσv

∫ t

0

h(s, t, θ)dθ + σ2

∫ u

0

h(s, t, θ)dθ. (30)

Therefore the above two expressions have to be equal. After differentiation of the equality wrt v ≤ t
three times, we obtain

−b2h(s, t, u) + σ2 ∂2h

∂u2
(s, t, u) = 0.

Solving this differential equation gives

h(s, t, u) = C1(s, t)e−
b
σ u + C2(s, t)e

b
σ u. (31)

Next one verifies that for the following constants, equations (28) and (29) coincide.

C2(s, t) = σ−1b(bs + δ)
(
(bδ + 2σ)

(
e

2bt
σ − 1

)
+ σ

(
σe

2bt
σ + 1

))−1

C1(s, t) = e
2bt
σ C2(s, t).

Therefore, we have that

E

(
W (s)−W (t)

s− t

/
Ht

)
=

∫ t

0

h(s, t, u)− h(t, t, u)
s− t

dY (u).

Then the result follows.
Now that we have a proposed solution one can prove that the pertinent hypotheses are all

satisfied.
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Lemma 80 The portfolio π∗ defined by

π∗(t) =
µ− r

σ2
+ bM

(
σ +

b(t + δ) + δ

σ2

) ∫ t

0

g(t, u)dY (u).

satisfies that E
∫ T

0
π∗(s)2ds < ∞ and the vector




i−1∑

j=0

(π(tj) (W (tj+1)−W (tj))) ,

i−1∑

j=0

(
1
2
π(tj) (1− π(tj)) σ2

(
(W (tj+1)−W (tj))

2 − (tj+1 − tj)
))



converges in L1 to a random variable (X, 0) with

E [X] = b

∫ t

0

(t− u)g(t, u)du.

Proof. Proving that E
∫ T

0
π∗(s)2ds < ∞ is easy. We only give the sketch of the proof of the

L1-convergence. It is just a matter of separating conveniently the covariance structure between π∗

and the Wiener increments. That is,

∫ tj

0

g(tj , u)dY (u) (W (tj+1)−W (tj))

= b

∫ tj

0

g(tj , u) ((W (u + δ)−W (tj+1)) + (W (tj+1)−W (tj)) + W (tj)) du (W (tj+1)−W (tj))

+ σ

∫ tj

0

g(tj , u)dW (u) (W (tj+1)−W (tj)) .

The sum (for j = 0, ..., n− 1) of each of the four terms in the above sum converge in L2. The first to
a backward integral, the second to the quadratic variation and the last two to an adapted integrand.
In fact, the L2-limit is

b

∫ T

0

∫ t

0

g(t, u)(W (u + δ)−W (t))dud−W (t) + b

∫ T

0

∫ t

0

g(t, u)dudt

+ b

∫ T

0

∫ t

0

g(t, u)duW (t)dW (t) + σ

∫ T

0

∫ t

0

g(t, u)dW (u)dW (t).

Except for the second term all the integrals above have expectation zero. The terms in the second
component of the vector are similarly treated (although long to write!). This second term shows
that in general expectations of forward integrals are not zero and that in fact their expectations are
a result of “trace”terms.

Theorem 81 Define the class of admissible portfolios as

A =

{
π;H-adapted, E

∫ T

0

π(s)2ds < ∞ and E

∣∣∣∣∣
∫ T

0

π(s)d−W (s)

∣∣∣∣∣ < ∞
}

.

Then the optimal portfolio for the logarithmic utility is given by

π∗(t) =
µ− r

σ2
+ bM

(
σ +

b(t + δ) + δ

σ2

) ∫ t

0

g(t, u)dY (u)

and the optimal utility is finite and given by

J(t, π∗) = log(V0) +
σ2

2
E

[∫ t

0

π∗(s)2ds

]

.
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Proof. First one has that the functional

E

(∫ t

0

(
π(s)(µ− r + bW (s + δ))− 1

2
σ2π(s)2

)
ds + σ

∫ t

0

π(s)d−W (s)
)

is strictly concave. As π∗ satisfies the first order condition then a standard argument leads to the
optimality of π∗. The utility associated with π∗ is finite due to the previous Lemma. To evaluate
the utility we use again (26) with v = π∗ which gives

E

[∫ t

0

(
π∗(s)(µ− r + bW (s + δ))− σ2π∗(s)2

)
ds

]
+ σE

[∫ t

0

π∗(s)d−W (s)
]

= 0.

This replaced in the expression for the logarithmic utility (24) gives the result.

Exercise 82 Prove the convergence part of Lemma 80 using Malliavin Calculus techniques (in par-
ticular the duality principle). Hint: Use formula (1.12) in page 130 in Nualart [38].

Exercise 83 Prove as in the end of Section 11 that if the small trader makes an inference of his
best model in the H filtration then his expected utility with this model will be smaller than the utility
obtained through the ”actual” market driving model (23). That is, the model that the small trader
proposes is

dS̃(t) = E [µ + bW (t + δ)/Ht] S̃(t)dt + σS̃(t)dWH(t)

where WH is a Wiener process in H (supposing this exists). Find the portfolio π̃∗ that optimizes the
logarithmic utility J̃(t, π) = E

[
log

(
Ṽ π(T )

)]
where Ṽ π denotes the discounted wealth process using

the price process S̃. Prove that J̃(t, π̃∗) ≤ J(t, π̃∗).

A more general situation with other examples is studied in [32]. The case δ ≤ T can also be
studied although explicit expressions are difficult to write. There is an important issue that we
have not addressed so far: the existence of arbitrage. In fact, given that in principle we are not
in a standard set-up one does not know if Girsanov’s theorem can be applied and therefore the
non-existence of arbitrage is an interesting issue. In fact, W is not adapted to H and therefore this
setup can not be considered as an enlargement of filtration approach.

Theorem 84 If the logarithmic utility is finite then there is no arbitrage.

Proof. We have that the filtration H is generated by the process Y . Now we compute the
semimartingale decomposition of the process Y. That is,

E [Y (t)− Y (s)/Hs] = b

(∫ t+δ

t

∫ s

0

h(r, s, u)dY (u)dr −
∫ s+δ

s

∫ s

0

h(r, s, u)dY (u)dr

)

+ σ

∫ s

0

(h(t, s, u)− h(s, s, u)) dY (u) =: A(t)

where h is given in (31). It is not difficult to prove that A is differentiable and therefore this gives
the semimartingale decomposition of the process Y. For this, define

B(t) =
∫ t

0

∫ r

0

h(r + δ, r, u)dY (u)dr −
∫ t

0

∫ r

0

h(r, r, u)dY (u)dr + σ

∫ t

0

∫ r

0

D1h(r, r, u)dY (u)dr.

Here D1 denotes the derivative with respect to the first variable in h. In fact, Y −B is a continuousH-
martingale. To prove this is enough to prove that given a sequence of partitions s = t0 < ... < tn = t
whose norm is tending to zero, we have that

lim
n→∞

E

[
n−1∑

i=0

E [Y (ti+1)− Y (ti)−B(ti+1) + B(ti)/Hti ]Hs

]
= 0.
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Furthermore 〈Y −B〉t = tσ2. Therefore by Lévy’s characterization theorem (see Example 16) we
have that there exists a H- Wiener process WH such that Y −A = σWH. Therefore the price process
becomes

S(t) = S(0) exp
((

µ− 1
2
σ2

)
t + A(t) + σWH(t)

)
.

Therefore the classical theory of no-arbitrage applies.
This proof may lead to the misconception that the above explicit calculations are not necessary

because everything becomes a consequence of the previous theorem. In general, this is not so when
the calculations are not so explicit. In fact, we have the following exercise.

Exercise 85 Prove, without using the explicit optimal portfolio, that if there is an optimal portfolio
leading to a finite logarithmic utility that satisfies (27) then there is no arbitrage. Hint: follow the
same structure of proof as above without the explicit calculations.

Exercise 86 For µ ≥ r prove that

E

∫ T

0

π∗(s)2ds ≤ E

(∫ T

0

π∗(s)d−W (s)

)2

.

Interpret this result as a risk issue of the small trader in an insider influenced model. Link this risk
with the existence of the ”trace” terms as explained at the end of the proof of Lemma 80.

Exercise 87 Set δ = T/2. Using the ideas of Girsanov’s theorem in an anticipating setting to prove
that the model

dS(t) = (µ + bW (t + δ))S(t) + σS(t)d−W (t)

does not allow for arbitrage strategies for the small trader in the interval [0, T ], who uses the filtration
Ht = σ(S(s); s ≤ t), inside a certain class of portfolio strategies.
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13 Solutions and hints to the proposed exercises
Solution of Exercise 2. Suppose by contradiction that p1(ti) < 0 for some i = 0, ..., n − 1.

Then P (V (ti) + p1(ti)S(t) + p0(ti) < 0 for some t ∈ [ti, ti+1]) > 0.
Solution of Exercise 5. Define the measure

dR

dP
= exp

(
−

∫ t

0

θ(s)dW (s)− 1
2

∫ t

0

θ(s)2ds

)
,
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where θ(s) = σ(s)−1
(
µ(s)− r + λ(E(eX)− 1)

)
. Under R the dynamics of Ŝ are given by

d log(Ŝ)(t) = −1
2
σ2(t)dt + σ(t)dW̃ (t)− λ(E(eX)− 1)dt + dZ(t),

where W̃ denotes a Wiener process on the space (Ω,F , R). As before, consider for s < t

ER

[
Ŝ(t)

/
Fs

]

= Ŝ(s)ER

[
exp

(
−1

2

∫ t

s

σ2(u)du +
∫ t

s

σ(u)dW̃ (u)− λ(E(eX)− 1)(t− s) + Z(t)− Z(s)
/
Fs

)]

= Ŝ(s).

Here we have used Itô’s formula for jump type processes.
Solution of Exercise 6. For n ∈ N, define the stopping time Tn = inf{ti; |p0(ti)|∧|p1(ti)| > n}.

Then E[|p0(ti ∧Tn)|+ |p1(ti ∧ Tn)|] ≤ n. Therefore the argument in the proof can applied to obtain
that V̂ is a discrete time martingale.

EQ

[
V̂ (ti+1 ∧ Tn)

/
Fti

]
= V̂ (ti ∧ Tn)).

As before one obtains that EQ[V̂ (Tn)] = V0. Then the contradiction follows after an application of
Fatou’s lemma. In fact, V̂ is a supermartingale.

Solution of Exercise 7. In fact, one can also perform a change of measure on the compound
Poisson process. Suppose that X has a density given by f and let g be another density such that f/g
is well defined. Then the Girsanov’s theorem in this setting can be applied to obtain the following
equation in θ, λ1 and g:

µ− r − σ(s)θ(s) + λ1

(∫
exg(x)dx− 1

)
= 0

Obviously this equation has an infinite number of solutions except for trivial cases (such as λ = 0).
Then the change of measure is given by

dR

dP
= exp

(
−

∫ t

0

θ(s)2ds−
∫ t

0

θ(s)dW (s)
)

exp (−(λ− λ1)t + log(λ/λ1)N(t))
N(t)∏

i=1

f

g
(Xi)

Solution of Exercise 8.We give the idea of the solution. First, we define η(t) = sup{ti; ti ≤ t}
and write equation (5) in differential form as

V̂ n(t) = V0 +
∫ t

0

π(η(s))V̂ n(η(s))
Ŝ(η(s))

dŜ(s). (32)

V̂ n is a continuous time extension of V̂ defined in equation (5). The idea of the proof is to take the
difference between equations (6) and (32) taking into account that

∫ t

0

u(s−)
Ŝ(s−)

dŜ(s) =
∫ t

0

u(s−)
(

µ(s−)− r − 1
2
σ2(s−)

)
ds +

∫ t

0

u(s−)σ(s−)dW (s)

+
∑

s≤t

u(s−)
(
e∆Z(s) − 1

)
.

Here ∆Z(s) = Z(s)− Z(s−). It has to be proven that the last sum above is well defined. The final
estimates are carried through L2(Ω,F , P ) estimates of the differences assuming that π is integrable
enough. The general case is carried out through a classical stopping time argument.
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Solution of Exercise 9. Evaluating π∗ in the logarithmic utility we have

E
[
log(V̂ ∗(t))

]
= log(V0) + E

[∫ t

0

(µ(s)− r)2

σ2(s)
ds

]
.

Here V̂ ∗ denotes the wealth associated with the optimal portfolio π∗.
Solution of Exercise 10. Let π ∈ A(t) then the stochastic integral

∫ ·
0
σ(s)π(s)dW (s) is well

defined and using Itô’s formula we have due to the strict concavity of fs that

E
[
log(V̂ (t))

]
= log(V0) + E

(∫ t

0

(
(µ(s)− r)π(s)− 1

2
σ2(s)π(s)2

)
ds

)

≤ E
[
log(V̂ ∗(t))

]
.

Solution of Exercise 11. Consider the stopping time τn = inf{t ≥ 0;
∫ t

0
π(s)2ds ≤ n} then as

before
∫ ·∧τn

0
π(s)dW (s) is well defined and is a martingale. Therefore as before

E
[
log(V̂ (t ∧ τn))

]
≤ E

[
log(V̂ ∗(t ∧ τn))

]
≤ E

[
log(V̂ ∗(t))

]
< ∞.

By taking limits the result follows.
Solution of Exercise 12. Define the class

Aθ(t) = {π : π is F − adapted,

∫ t

0

π(s)2ds < ∞ a.s. and EV̂ (t)θ < ∞}.

As before consider τn = inf{r ≥ 0;
∫ r

0
π(s)2ds ≤ n} First note that for any portfolio π we have that

E
[
V̂ (t ∧ τn)θ

]
= V θ

0 E

[
exp

(∫ t∧τn

0

θ

(
(µ(s)− r)π(s)− 1

2
σ2(s)π(s)2

)
ds + θ

∫ t∧τn

0

σ(s)π(s)dW (s)
)]

.

= V θ
0 EQ

[
exp

(
θ

∫ t∧τn

0

(
(µ(s)− r)π(s)− 1

2
(1− θ)σ(s)2π(s)2

)
ds

)]

where
dQn

dP
= exp

(
−1

2

∫ t∧τn

0

σ2(s)θ2π(s)2ds + θ

∫ t∧τn

0

σ(s)π(s)dW (s)
)

.

As before the function fs(π) = θ(µ(s) − r)π − 1
2θ(1 − θ)σ2(s)π2 is a strictly concave function for

θ ∈ (0, 1) and its maximal value is attained by π∗ = (µ(s)−r)
(1−θ)σ2(s) . Then EV̂ (t ∧ τn)θ ≤ EV̂ ∗(t ∧ τn)θ

where

E
[
V̂ ∗(t ∧ τn)θ

]
= V θ

0 EQn

[
exp

(∫ t∧τn

0

(θ − 1/2) (µ(s)− r)2

2(1− θ)σ2(s)

)]

≤ V θ
0 EQn

[
exp

(∫ t

0

|θ − 1/2| (µ(s)− r)2

2(1− θ)σ2(s)
ds

)]
.

We can therefore take limits to obtain that π∗ is the optimal portfolio. The optimal wealth is then
given by E

[
V̂ ∗(t)θ

]
= V θ

0 exp
(

θ(µ−r)2

2(1−θ)σ2 t
)
in the case that µ and σ are constant.

Solution of Exercise 16. Applying the Itô’s formula to exp (iθ(Mt −Ms)) we obtain

exp (iθ(Mt −Ms)) = 1 +
∫ t

s

iθ exp (iθ(Mu −Ms)) dMu − θ2

2

∫ t

s

exp (iθ(Mu −Ms)) du.

Taking conditional expectations we obtain

E [ exp (iθ(Mt −Ms))/Fs] = 1− θ2

2

∫ t

s

E [ exp (iθ(Mu −Ms))/Fs] du.
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Solving this equation we obtain the result.
Solution of Exercise 17. First we have that Ft+ε ∪ σ(I) ⊇ Ft ∪ σ(I) for all ε > 0 therefore

Ft ∨ σ(I) ⊂ ∩ε≥0σ (Ft+ε ∪ σ(I)).
Solution of Exercise 20. It is enough to note first that E [|W (T )−W (u)|r] = (T − u)r/2Cr

where Cr =
∫∞
0

√
2
π xre−

x2
2 dx. Therefore if r ∈ [0, 2)

E

[∫ T

0

∣∣∣∣
W (T )−W (u)

T − u

∣∣∣∣
r

du

]
= Cr

∫ T

0

(T − u)−r/2du =
Cr

1− r/2
T 1−r/2.

If r ≥ 2 then the above integral diverges and if r < 0 then the expectation is infinite.
For the second part we use Hölder inequality with r a positive integer to obtain that

E

[∣∣∣∣∣
∫ T

0

W (T )−W (u)
T − u

du

∣∣∣∣∣

r]
≤ Cr

∫

[0,T ]r

r∏

i=1

(T − ui)−1/2dui < ∞.

Solution of Exercise 21. As Ŵ is a GWiener process and G0 = σ(W (T )) then the independence
follows.

Solution of Exercise 22. Define the measure
dQ

dP
=

dP0

dPt
,

then for two measurable bounded functions f and g

EQ [f(W (t))g(W (T ))] = E

[
f(W (t))

∫
g(x)

dP0

dPt
(x)dPt(x)

]

= E [f(W (t))]E([g(W (T ))] .

Taking g a constant one obtains that EQ [f(W (t))] = E [f(W (t))] and similarly for g. From here
the conclusion follows.

Solution of Exercise 23. The above property called the harness property is closely tied with
the enlargement of filtrations for Lévy processes. For more on this see [12] and [35]. To prove this
property we consider

WT −Wb = ŴT − Ŵb +
∫ T

b

WT −Wu

T − u
du.

Taking conditional expectations we obtain the equation

d

db
E [WT −Wb/Gs] = −E [WT −Wb/Gs]

T − b
,

on [s, T ] with initial condition E (WT −Ws/Gs) = WT −Ws. The solution is

E [WT −Wb/Gs] =
WT −Ws

T − s
(T − b).

To finish, one only needs to note that

E [Wa −Wb/Gs] =
∫ a

b

E [WT −Wu/Gs]
T − u

du.

From here the formula follows.
Solution of Exercise 24. By the integration by parts formula, we have that I =

∫ T

0
h(r)Wrdr =∫ T

0
a(r)dWr, where we denote a(t) =

∫ T

t
h(s)ds. Then we have for A(t) =

∫ T

t
a(r)2dr

dPt(x)
dx

=

√
1

2πA(t)
exp


−

(
x− ∫ t

0
a(r)dWr

)2

2A(t)


 .
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Applying the same sequence of ideas as before we have that

E [(W (t)−W (s))f(I)hs] = E

[∫ t

s

∫ T

u
a(r)dWr

A(u)
a(u)duf(I)hs

]
.

Therefore as the process
∫ T

· a(r)dWr is G adapted we finally have that

Wt = Ŵt +
∫ t

0

∫ T

u
a(r)dWr

A(u)
a(u)du

where Ŵ is a G Wiener process in [0, T ). In order to prove that the definition is valid in the closed
interval we have

E




∫ T

0

∣∣∣
∫ T

u
a(r)dWr

∣∣∣
A(u)

|a(u)| du


 =

√
2
π

∫ T

0

|a(u)|√
A(u)

du < ∞.

Therefore the needed condition is
∫ T

0
|a(u)|√

A(u)
du < ∞. For example, if h(r) = (T −r)θ with θ > −1/2,

this condition is satisfied.
Solution of Exercise 25. As in the proof of Theorem 19 consider

E [(W (t)−W (s))f(X(T ))hs] = E

[
(W (t)−W (s))

∫
f(x)dPt(x)hs

]

= E

[
(W (t)−W (s))

∫
f(x)pT−t(Xt, x)dxhs

]
.

Applying Itô’s formula to (W (t)−W (s))pT−t(Wt, x) in the interval [s, t], and using that pT−t solves
the parabolic equation (11), we have

E [(W (t)−W (s))f(X(T ))hs]

= E

[∫
f(x)

∫ t

s

∂ypT−u(X(u), x)dudxhs

]

= E

[∫ t

s

∫
f(x)∂y log(pT−u(X(u), x))pu(X(u), x)dxduhs

]

= E

[
f(W (T ))

∫ t

s

∂y log(pT−u(X(u), X(T )))duhs

]
.

Therefore by a density argument, one has

E

[
W (t)−W (s)−

∫ t

s

∂y log(pT−u(X(u), X(T )))du

/
Gs

]
= 0.

As ∂y log(pT−u(X(u), X(T ))) ∈ Gu then Ŵ (t) = W (t) − ∫ t

0
∂y log(pT−u(X(u), X(T ))du is a G-

continuous martingale with 〈Ŵ 〉t = 〈W 〉t = t and therefore by Lévy’s theorem one has that Ŵ is
a G-Wiener process in [0, T ). We then define Ŵ (T ) = limt→T Ŵ (t) and all above properties follow
for the closed interval [0, T ] as E

[∫ T

0
|∂y log(pT−u(X(u), X(T ))| du

]
< ∞

Solution of Exercise 28. To simplify the notation define αs = WT−Ws

T−s . Define I = {π : π is
G-adapted, ∫ t

0
π(s)2

(
α2

s + 1
)
ds < ∞ a.s. and E[log(V̂ (t))] < ∞}. Then, as before, we define the G
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stopping times τn = inf{t ≥ 0;
∫ t

0
π(s)2ds ≤ n}. First note that for any portfolio π we have that

E
[
log

(
V̂ (t ∧ τn)

)]

= log V0 + E

[(∫ t∧τn

0

(
(µ(s)− r + σ(s)αs)π(s)− 1

2
σ2(s)π(s)2

)
ds +

∫ t∧τn

0

σ(s)π(s)dŴ (s)
)]

.

≤ log V0 + E

[∫ t∧τn

0

(
(µ(s)− r + σ(s)αs)π̂(s)− 1

2
σ2(s)π̂(s)2

)
ds

]

= log V0 + E

[∫ t∧τn

0

(µ(s)− r + σ(s)αs)2

2σ2(s)
ds

]

≤ log V0 + E

[∫ t

0

(µ(s)− r)2

2σ2(s)
ds

]
+ E

[∫ t

0

α2
s

2
ds

]

= log V0 + E

[∫ t

0

(µ(s)− r)2

2σ2(s)
ds

]
+

1
2

log
(

T − t

T

)
.

From here the result follows.
Solution of Exercise 30. We consider the maximization of E(V (t)θ) for t < T . As in Exercise

12, we have

Aθ(t) = {π : π is G − adapted,

∫ t

0

π(s)2ds < ∞,
∫ t

0

|π(s)α(s)| ds < ∞ and EV̂ (t)θ < ∞}.

As before, consider τn = inf{r ≥ 0;
∫ r

0
π(s)2ds +

∫ r

0
|π(s)α(s)| ds ≤ n} First note that for any

portfolio π we have that

E
[
V̂ (t ∧ τn)θ

]
= V α

0 EQn

[
exp

(
θ

∫ t∧τn

0

(
(µ(s)− r + σ(s)α(s))π(s)− 1

2
(1− θ)σ2(s)π(s)2

)
ds

)]

where
dQn

dP
= exp

(
−1

2

∫ t∧τn

0

σ2(s)θ2π(s)2ds + θ

∫ t∧τn

0

σ(s)π(s)dŴ (s)
)

.

The function fs(π) = θ(µ(s)− r + σ(s)α(s))π − 1
2θ(1− θ)σ2(s)π2 is a strictly concave function for

θ ∈ (0, 1) and its optimum portfolio process is given by π∗(s) = µ(s)−r+σ(s)α(s)
(1−θ)σ2(s) .

Solution of Exercise 32. Considering S(T ) = x is equivalent to W (T ) = σ−1 (log(x/S0)− µT ).
Therefore without loss of generality we consider W (T ) = x. Repeating the same calculations as
before we have that the conditional expectation of the logarithmic wealth is

E
[
log(V̂ (t))

/
W (T ) = x

]

= log(V0) +
∫ t

0

E

[(
µ(s)− r + σ(s)

x−Ws

T − s

)
π(s)− 1

2
σ2(s)π(s)2

/
W (T ) = x

]
ds.

The optimal portfolio is also π̂(s) = 1
σ2(s)

(
µ(s)− r + σ(s)x−Ws

T−s

)
. The optimal portfolio value is

log(V0)+E

[∫ t

0

(µ(s)− r)2

2σ2(s)
ds

]
+

∫ t

0

E

[
(µ(s)− r)

x−Ws

σ(s) (T − s)
+

1
2

(
x−Ws

T − s

)2
/

W (T ) = x

]
ds.

Using conditional expectation of Gaussian random vectors we have that E [W (T )−Ws/ W (T )] =
W (T )(T − s)/T and E

[
(W (T )−Ws)

2
/

W (T )
]

= (T − s)s/T + (W (T )(T − s)/T )2. Therefore the
optimal utility is

log(V0) + E

[∫ t

0

(µ(s)− r)2

2σ2(s)
+

x (µ(s)− r)
σ(s)T

ds

]
+

x2t

2T 2
− t

2T
+

1
2

log
(

T

T − t

)
.
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Solution of Exercise 33. The equation uF (t, V0) = uG(t, V0 − ρt(V0, I)) can be rewritten as

log(V0) = log (V0 − ρt(V0, I)) +
1
2

log
(

T

T − t

)
.

Therefore

V0

(
1−

√
T − t

T

)
= ρt(V0, I).

Note that as t → T then the value of the information I for the insider is V0 as he can perform
arbitrage. That is, the insider will be willing to exchange his/her information only if offered all the
money of the other market players is transferred to him/her.

Solution of Exercise 35.

E [(W (t)−W (s))f(I)hs] = E

[
(W (t)−W (s))

∫
f(x)

dPt

dη
(x)dη(x)hs

]

= E

[∫ t

s

∫
f(x)

d

du

〈
W,

dP·
dη

(x)
〉

u

dη(x)duhs

]

= E

[∫ t

s

∫
f(x)β(u, x)dPu(x)duhs

]
,

where β(u, I) = α(u).
Solution of Exercise 36. First we use the same arguments as before to obtain that

E
[
log(V̂ (t))

]
= log(V0) + E

[∫ t

0

(
(µ(s)− r + σ(s)αs)π(s)− 1

2
σ2(s)π(s)2

)
ds

]
.

The optimal value of the strictly concave function fs(π) = (µ(s)−r+σ(s)αs)π− 1
2σ2(s)π2 is π̂(s) =

µ(s)−r
σ2(s) + αs

σ(s) . Next, we note that E(αs) = 0 which follows from the semimartingale decomposition.
That is, we have that for any Fs measurable r.v. hs

0 = E[(Wt −Ws)hs] = E[(Ŵt − Ŵs)hs] +
∫ t

s

E[hsαu]du.

Therefore E [α(s)/Fs] = 0. Now we compute the optimal utility as

E
[
log(V̂ (t))

]
= log(V0) + E

[∫ t

0

(
1

2σ2(s)
(µ(s)− r + σ(s)αs)2

)
ds

]
,

and the result follows.
Solution of Exercise 41. The compensator is given by

α(u) =
W (u)(σ2 − T ) + µT

(σ2 − T )(u) + T 2
.

The optimal logarithmic utility in the interval [0, T ] is finite. Note that in this approach the knowl-
edge of the insider given by µ and σ2 are always constant throughout the interval [0, T ]. Compare
with Section 8.2.

Solution of Exercise 42. Note that the numerator of the compensator is given by

∫
x

T − u

dν

dPW (T )
(x + W (u))

exp
(
− x2

2(T−u)

)
√

2π(T − u)
dx.

45



Integrating by parts with respect to x and taking in consideration that the denominator normalizes
the measure, we have that

Eν
[
α(u)2

] ≤ Eν

[(
∂

∂x
log

(
dν

dPW (T )

))2

(W (T ))

]
.

Solution of Exercise 45. First, we compute the compensator of W 2 in the enlarged filtration:

E
[(

W 2(t)−W 2(s)
)
f(W 1(T ))hs

]

= E

[∫ t

s

E

[
W 2(T )−W 2(u)

T − u

/
W 1(T )−W 1(u)

]
duf(W 1(T ))hs

]
.

Since E
(
W 2(T )−W 2(u)

/
W 1(T )−W 1(u)

)
= ρ

(
W 1(T )−W 1(u)

)
, repeating the same sequel of

calculations as in Exercise 28, the optimal portfolio is

π̂(s) =
1

σ2(s)

(
µ(s)− r + σ(s)ρ

W 1
T −W 1

s

T − s

)
.

The expected logarithmic utility in [0, T ] is infinite for any ρ > 0.
In the second case the calculation is similar, except that the compensator will be

E

[
W 2(T )−W 2(u)

T − u

/
F2

u ∨ σ
(
W 1(T )

)]
= ρ

W 1(T )− ρW 2(u)
T − ρ2u

.

Therefore

π̂(s) =
1

σ2(s)

(
µ(s)− r + σ(s)ρ

W 1(T )− ρW 2(s)
T − ρ2s

)

and the optimal logarithmic utility is finite and given by

log(V0) + E

[∫ t

0

(µ(s)− r)2

2σ2(s)
ds

]
− ρ2 log

(
1− ρ2

)
.

The first model corresponds to two correlated assets where the insider has information about the
first but he/she is restricted to trade only on the second asset while observing the evolution of the
first. In the second model the insider has related information about the first asset which is not
traded in the market (for example, the volatility of the asset).

Solution of Exercise 46. The argument is the same as in Section 3. In fact the optimal
solution is just the projection on the interval [0, 1] of the solution without constraints.

Solution of Exercise 47. Following the result of exercise 24 and 36 we have to compute

E




∫ T

0

(∫ T

u
a(r)dWr

A(u)
a(u)

)2

du


 = − [log(A(u))]T0 = +∞.

Solution of Exercise 48. For case 1 we use Theorem 43. Due to this theorem we have that
the extra utility of the insider is given by E[log pT (I)]. First we have that

pt(x) =
P (W (T ) ≥ a/Ft)

P (W (T ) ≥ a)
1(x = 1) +

P (W (T ) < a/Ft)
P (W (T ) < a)

1(x = 0).

Therefore

E[log pt(I)]
= E [P (W (T ) ≥ a/Ft) log (P (W (T ) ≥ a/Ft))]
+ E [P (W (T ) < a/Ft) log (P (W (T ) < a/Ft))]
− (P (W (T ) ≥ a) log (P (W (T ) ≥ a)) + P (W (T ) < a) log (P (W (T ) < a))) .
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In particular

E[log pT (I)] = − (P (W (T ) ≥ a) log (P (W (T ) ≥ a)) + P (W (T ) < a) log (P (W (T ) < a)))

which is obviously finite. For the second case, we obtain that

P I
t (dx) =

e−
(x−Wt)

2

2(T−t+1)

√
2π(T − t + 1)

dx.

Applying Jacod’s theorem (see Theorem 34) with η(dx) = dx we have that

Wt = Ŵt +
∫ t

0

WT + ε−Wu

T − t + 1
du

and the optimal logarithmic utility is given by

log(V0) + E

[∫ T

0

(µ(s)− r)2

2σ2(s)
ds

]
+ log

(
T + 1

T − t + 1

)
.

Note that this is finite even for t = T but in this model Gt gives always the same deformed informa-
tion, W (T ) + ε, to the insider even when t is close to T .

Solution of Exercise 50. We leave the first part to the reader. Suppose that Z and Z ′ are
two Lévy processes with the same characteristics. Then we want to compute for X(s) = Z(T ) +
Z ′((T − s)θ) the quantity

E
[
(Zt − Zu) f(ZT − Zs + Z ′((T − s)θ))

]
.

Due to the independence of the increments and the invariance of the law of the increments (which
only depend on the size of the interval) we have that if s < t < u < T with t− u = T−s

2 then

2E
[
(Zt − Zu) f(ZT − Zs + Z ′((T − s)θ))

]
= E

[
(ZT − Zs) f(ZT − Zs + Z ′((T − s)θ))

]
.

Then by continuity of the expectation in the time variables we have that

E
[
(Zt − Zu) f(ZT − Zs + Z ′((T − s)θ))

]
=

t− u

T − s
E

[
(ZT − Zs) f(ZT − Zs + Z ′((T − s)θ))

]
.

A similar argument also gives that

E
[
(Zt − Zu) f(ZT − Zs + Z ′((T − s)θ))

]

=
t− u

T − s + (T − s)θ
E

[(
ZT − Zs + Z ′((T − s)θ))

)
f(ZT − Zs + Z ′((T − s)θ))

]
.

From here the result follows.
Solution of Exercise 54. First note that Fs,T = Fs∨σ(Zr; r ≥ T ) = Fs∨σ(ZT )∨σ(ZT−Zt; r ≥

t), where the last sigma algebra is independent of the other two. Therefore we have using Theorem
53 that

E [Zt − Zs/Fs ∨ σ(ZT )] = E
[
Ẑt − Ẑs

/
Fs ∨ σ(ZT )

]
+

∫ t

s

E [ZT − Zu/Fs ∨ σ(ZT )]
T − u

du.

Then setting φ(t) = E [Zt − Zs/Fs ∨ σ(ZT )], we have that the following ordinary differential equa-
tion is satisfied

φ(t) =
∫ t

s

ZT − Zs

T − u
du−

∫ t

s

φ(u)
T − u

du,

whose unique solution is

E [Zt − Zs/Fs ∨ σ(ZT )] =
ZT − Zs

T − s
(t− s).
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Therefore
E

[
Zt − Zs

t− s

/
Fs,T

]
=

ZT − Zs

T − s
.

Furthermore for u ∈ (s, t)

E

[
Zt − Zu

t− u

/
Fs,T

]
= E

[
E

[
Zt − Zu

t− u

/
Fu,T

]/
Fs,T

]

= E

[
ZT − Zu

T − u

/
Fs,T

]

=
ZT − Zs

T − u
+ E

[
Zs − Zu

T − u

/
Fs,T

]

=
ZT − Zs

T − s
.

Solution of Exercise 55. First prove that for s < t1 < t2 < t

E
[
(Zt2 − Zt1)

2
/
Gs

]
= E

[
(Zt2 − Zt1)

2
/

ZT − Zs

]

= (ZT − Zs) (ZT − Zs − 1)
(

t2 − t1
T − s

)2

+ (ZT − Zs)
t2 − t1
T − s

.

Consider for the partition s = t0 < t1 < ... < tn = t then the quantity

E

[
n−1∑

i=0

{(
Zti+1 − Zti

)2 − ZT − Zti

T − ti
(ti+1 − ti)

}/
Gs

]

= E

[
n−1∑

i=0

(ZT − Zti) (ZT − Zti − 1)
(

ti+1 − ti
T − ti

)2
/

Gs

]

goes to zero a.s. and therefore taking limits with respect to the norm of the partition we have that

E

[
[Z]t − [Z]s −

∫ t

s

ZT − Zu

T − u
du

/
Gs

]
= 0.

From here the result follows. Similarly be taking approximations of pure jump Lévy processes one
can also prove that

E

[
[Z]t − [Z]s −

∫ t

s

[Z]T − [Z]u
T − u

du

/
Gs

]
= 0.

A similar calculation also leads to the fact that the formula is valid for general square integrable
Lévy processes.

Solution of Exercise 57. If there are only positive jumps and µ− r ≥ 0 then there is arbitrage
and in fact any investment on the underlying will provide a positive return. On the contrary if
µ− r < 0 then the function f becomes

f(π) = (µ− r)π + λ+ log (1 + (ea − 1)π) .

This strictly concave function has its optimum at π∗ = − 1
ea−1 − λ+

µ−r and the optimal logarithmic
utility is

log(V0)−
(

λ+ +
µ− r

ea − 1
− λ+ log

(
−λ+ (ea − 1)

µ− r

))
T

Solution of Exercise 58. Let x such that P (N(T ) = x) > 0, then there exists a unique
pair (l1, l2) of natural numbers such that l1a + l2 ln (2− ea) = x. Then N(T ) = x implies that
N+(T ) = l1 and N−(T ) = l2 and therefore the two filtrations coincide.
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Solution of Exercise 62. It is enough to note that the conditional logarithmic utility can be
written as

E
[
log(V̂t)

/
N(T )

]

= log(V0) + E

[∫ t

0

(µ− r)π(s)ds

/
N(T )

]
+

+∑

i=−
E

[∫ t

0

log(1 + π(s)(eai − 1))Bi(s)ds

/
N(T )

]
.

Solution of Exercise 63. In such a case, we have that Bi(s) = Ni(T )−Ni(s)
T−s then an arbitrage

is to wait until Bi(s) = 0 and invest all resources in the asset if i = − or borrow the asset if i = +.
Solution of Exercise 64. Try the following portfolio:

πs = θ(a
W (T )−W (s)

T − s
+ b

NT −Ns

T − s
) ∨ 0.

Find a set of constants a and b such that the utility is infinite.
Solution of Exercise 68. We only give the main idea of the solution. First obtain that on the

set 1(Tn > t) we have that

E

[
N+

t

Tn − t
− N+

s

Tn − s

/
Gs

]
=

(n− 1)(t− s)
(Tn − t)(Tn − s)

.

Finally prove that
N+

Tn−−N+
u

Tn−u is a Gu martingale on Tn > u to conclude.
Solution of Exercise 69. This exercise follows as in the proof of Theorem 60 and at the end

is necessary to compute the joint law of (Tn−1, Tn) to prove that E(
∫ +∞
0

1(Tn−1>u)
Tn−u du) < ∞. In fact,

in the interval [0, Tn−1] we will have that the wealth is smaller than

log(V0) + λ− log(2)E
[∫ ∞

0

1(s < Tn−1)ds

]
+ log(2)E

[∫ ∞

0

1(s < Tn−1)
n− 1−N+

s

Tn − s
ds

]
.

The last expectation above is bounded by

∫

t1<...<tn

e−λ+tn1(tn−1 > s)
tn − s

(
λ+

)n
dt1...dtn =

(
λ+

)n
∫ ∞

s

e−λ+tn
(
tn−1
n − sn−1

)

(n− 1)! (tn − s)
dtn < ∞.

Solution of Exercise 70. The analysis in the interval [Tn−1, Tn) follows as in Case II(b)
analyzed previously. For µ ≤ r is enough to note that there is a positive probability that there
is going to be a negative jump in the interval [Tn−1, Tn) which gives an infinite utility. It is also
interesting that in the case that the interval goes beyond Tn then there is no optimum for the
problem in the case µ > r.

Solution of Exercise 72. Note that

E [f(t,W (T ))(W (ti+1)−W (ti))] = (ti+1 − ti)E
[

∂

∂x
f(t,W (T ))

]
.

Solution of Exercise 76. Find the solution of equation (21) as explicitly as possible and prove
that it generates the same filtration as the one generated by Y − σ(T − t)θ

∫ s

0
(T − r)θdW (r), s ≤ t

and conclude.
Solution of Exercise 78. Consider the definition of semimartingale as given in Protter page

52. If W is a (Ft+δ)-semimartingale, then for any partition whose norm tends to zero and always
smaller than δ, consider the process

H(t) =
n−1∑

i=0

(W (ti+1)−W (ti))1(ti,ti+1](t).
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This process is then (Ft+δ)-adapted and converges uniformly to zero but its stochastic integral
converges to the quadratic variation of W leading to a contradiction.

Solution of Exercise 83. The model proposed by the small trader is an adapted model with
random drift. Therefore the analysis to obtain the optimal portfolio for the logarithmic utility follows
the same lines as in Section 2. The optimal porfolio is given by

π̃∗(t) =
µ− r

σ2
+

bE [W (t + δ)/Ht]
σ2

.

This gives

J̃(t, π̃∗) = log(V0) +
1

2σ2
E

[∫ t

0

(µ− r + bE [W (s + δ)/Hs])
2
ds

]
,

while

J(t, π̃∗) = J̃(t, π̃∗) + σE

[∫ t

0

π̃∗(s)d−W (s)
]

.

Finally as in Exercise 72, one proves that

E

[∫ t

0

π̃∗(s)d−W (s)
]

=
∫ t

0

Ds+π̃∗(s)ds,

where

Ds+π̃∗(s) = bM

(
σ +

b(s + δ) + δ

σ2

) ∫ t

t−δ

bg(t, u)du ≥ 0.

For more details on the notation Ds+ see Kohatsu-Sulem.
Solution of Exercise 85. As in the proof of the Theorem 84 H is generated by Y . Using

equation (27) we have that

E [Y (t)− Y (s)/Hs] = σ2E

[∫ t

s

π∗(s)ds

/
Hs

]
− (µ− r)(t− s).

Define B(t) = σ2
∫ t

0
π∗(s)ds− (µ− r)t and finish the proof as in the proof of the Theorem 84.

Solution of Exercise 86. The solution of this exercise is long and requires some knowledge of
anticipating calculus. The main steps are as follows. First rewrite

∫ T

0

π∗(s)d−W (s) =
∫ T

0

φ1(t)dW (t) +
∫ T

0

φ2(t)d−W (t),

for some specific stochastic processes φ1 and φ2 where φ1 is adapted and φ2 is adapted to the
backward filtration. The notation d− denotes the backward Itô integral. Then prove that

E

[∫ T

0

φ1(t)dW (t)
∫ T

0

φ2(t)d−W (t)

]
= E

[∫ T

0

φ1(t)φ2(t)dt +
∫ T

0

∫ s

0

Dsφ2(u)Duφ1(s)duds

]

and that the expectation of the last term above is strictly positive for µ ≥ r.
Solution of Exercise 86. We only sketch the solution: In this case note that for the small

trader we will have that

Ht = σ(S(s); s ≤ t) = σ(
∫ s

0

bW (θ + δ)dθ + σW (s); s ≤ t)

We will now deduce an anticipating Girsanov’s theorem that will allow us to apply it to the above
model.
For this, set I(t) = µ + bW (t + δ). As the portfolios of the small trader have to be adapted to H,
let us suppose that

π(ti) = π(
j−1∑

k=0

I(tk)∆ + σW (tj), j ≤ i− 1)

I(tj) = I(tj ,W (ti+1)−W (ti); i = 0, ..., n− 1)
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where tj+1 − tj = ∆ = T/n. Now consider the following expression

EQn
n−1∑

j=0

{π(tj)I(tj)∆ + σπ(tj)(W (tj+1)−W (tj))}

=
∫

R2n

n−1∑

j=0

π(tj) {I(tj)∆ + σzj}
exp

(
− |z|2

2∆

)

(2π∆)n/2

dQn

dP
dz,

where
dQn

dP
= exp

(
−

n−1∑

i=0

ziσ
−1I(ti)∆ +

(
σ−1I(ti)∆

)2

2∆

)
.

Now we will perform the following change of variables for j = 0, ..., n− 1

wi = σ−1I(ti)∆ + zi.

To compute the inverse of the jacobian Jn =
(

∂wi

∂zj

)
, we need to compute

∂wi

∂zj
= σ−1 ∂I(ti)

∂zj
∆ + Iij .

Now we consider the particular case that I(t) = µ + bW (t + δ) with fixed δ = T/2. Then we can
rewrite

∂wi

∂zj
= σ−1bI(tj+1 ≤ ti + δ)∆ + Iij .

After some heavy algebraic manipulation with the jacobian matrix J one finds that

det(Jn) =



1 + σ−1b

j0∑

j=0

(
1 +

σ−1b∆j

σ−1b∆ + 1

)−1

∆





(
1 + σ−1b∆(j0 + 2)

)
,

if b > 0 then the above quantity is strictly positive and the change of variables is allowed. Therefore
we have that

EQn




n−1∑

j=0

{π(tj)I(tj)∆ + σπ(tj)(W (tj+1)−W (tj))}



= EQn




n−1∑

j=0

{
π(tj)(Ŵ (tj+1)− Ŵ (tj))

}

 det(Jn)−1,

where Ŵ (tk) = W (tk) +
∑j=k−1

j=0 I(tj)σ−1∆ is a Wiener process in the filtration H . Therefore by
taking limits we have that there exists an equivalent martingale measure therefore not allowing for
arbitrage.
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