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Abstract

This work is devoted to the study of the existence and smoothness of the marginal densities of
the solution of one dimensional backward stochastic differential equations. Under monotonicity
conditions of a function of the coefficients, we obtain that the smoothness properties of the
forward process influencing the backward equation, transfer to the densities of the solution.
Once established these conditions, we apply the result to study the tail behavior of the solution
process.
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1 Introduction

The main focus of this work is to find sufficient conditions to ensure that the first component of the

solution (Y,Z) of a backward stochastic differential equation (BSDE) of the following type

Yt = Γ +
∫ T

t

h(s, Ys, Zs)ds−
∫ T

t

ZsdWs,(1)

with random Γ and h, has a smooth marginal density at each time t ∈ (0, T ).

This is a well known problem in the classical theory of forward SDE’s, but it has not been fully

addressed yet in the case of backward ones. To our knowledge, the only partial study of the weak

differentiability of the solution process Y is to be found in [PP2] and partially in [MZ].

As the main tool in this field is Malliavin calculus, we will deal only with backward equations in a

Brownian environment, since more general formulations would lack the support of such theory. One

exception is the theory of Malliavin calculus for Lévy processes as developed by Picard or Bichteler,

Gravereaux and Jacod. One may as well study the qualitative properties of the fundamental solu-

tion of the associated quasilinear parabolic equation if one studies the properties of the Malliavin

covariance matrix associated with (Γ, Yt, Zt).

When Γ and h are specified as deterministic functions of the solution process of an independent

forward equation, some of the properties of the latter pass on to Y . This type of structure is very
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common for backward equations, particularly in applications in mathematical finance like pricing of

options of various kinds, based on some underlying risky asset.

The main difficulty in the study of the existence and regularity of the density of Y lies in the

possibility of cancelling effects between Γ and h that could eventually generate mass points in the law

of Y (see example 3.3). In particular, this problem appears when analyzing the Malliavin variance

associated with Y . Therefore we have to assume some kind of monotonicity condition of a function

joining the two terms. This is our main condition in all our results (see e.g. conditions (7) and (8)).

This condition is the parallel of the uniform elliptic condition for diffusions. We also obtain a

higher order condition, probably an equivalent of a Hörmander type condition for backward stochas-

tic differential equations. In order to avoid the uniformity in our condition we have also localized

them in space obtaining a somewhat weaker version of uniform ellipticity. This leads to a result of

existence and regularity of the density of Y . To obtain these results it is important to have estimates

on the support (for existence) and lower bound estimates (for regularity) for the process that drives

Γ. Finally, under the conditions that guarantee the smoothness of the marginal densities, we find

the tail behavior of the process Y .

When interpreted from the analytical point of view, our work is related to the regularity prop-

erties of the fundamental solution of a, possibly degenerate, nonlinear parabolic PDE, usually not

obtainable using standard tools. This will be addressed in future publications.

2 Weak Differentiability

As we mentioned before, the main results in this field are found in [PP2]. Here we are going to

summarize as well as adapting them to our needs.

Consider the interval [0, T ] and a complete probability space (Ω,F , P ) on which a standard

one dimensional Brownian motion W is defined; {Ft}t∈[0,T ] denotes the filtration generated by W ,

augmented with the P−null sets and made right continuous. Since all the results in the paper rely

heavily on Malliavin calculus, we want to introduce very briefly some of its terminology.

We denote by C∞b (Rn) the set of C∞ bounded functions f from Rn to R, with bounded derivatives

of all orders. If S is the class of real random variables F that can be represented as f(Wt1 , . . . , Wtn)

for some n ∈ IN, t1, . . . , tn ∈ [0, T ] and f ∈ C∞b (Rn), we can complete this space under the Sobolev

norm ‖·‖1,p given by

‖F ‖p
1,p= E(|F |p) + E

(
(
∫ T

0

|DsF |2ds)
p
2

)
,

where D is defined as DsF =
n∑

i=1

∂f

∂xi
(Wt1 , . . . , Wtn)1[0,ti](s), obtaining a Banach space, usually

indicated with ID1,p. Analogously, we can construct the space IDk,p by completing S under the
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Sobolev norm

‖F ‖p
k,p= E(|F |p) +

k∑

i=1

E
[
(
∫ T

0

. . .

∫ T

0

|Di
si...s1

F |2ds1 . . . dsi)
p
2

]
,

where Di
si...s1

F = Dsi . . . Ds1F . Finally, we denote ID∞ =
⋂

p≥1

⋂

k≥1

IDk,p.

We indicate the adjoint of the closable unbounded operator

D : ID1,2 ⊆ L2(Ω) −→ L2([0, T ]× Ω)

by δT
0 and it is called the Skorohod integral. The domain of δT

0 is the set of all processes u in

L2([0, T ]× Ω) such that
∣∣∣∣∣E

(∫ T

0

DtFutdt

)∣∣∣∣∣ ≤ C ‖F ‖2 ∀ F ∈ S,

for some constant C possibly depending on u.

If u ∈ Dom(δT
0 ), then δT

0 (u) is the square integrable random variable determined by the duality

relation

E(δT
0 (u)F ) = E(

∫ T

0

DtFutdt) ∀ F ∈ ID1,2.

We remark that the above construction can be carried through for any fixed time interval [s, S], in

the space L2([s, S]× Ω).

Finally, for a one dimensional random variable F we denote its Malliavin variance by

γF =
∫ T

0

(DsF )2 ds.

The Malliavin variance plays a key role when one wants to determine the existence and the smooth-

ness of the densities of the solutions of stochastic differential equations. Following [N1] (Proposition

2.1.1, page 78), for any random variable F ∈ ID1,p
loc for some p > 1, if γF is a. s. non-zero, then the

law of F is absolutely continuous with respect to Lebesgue measure and the density of any one di-

mensional F ∈ ID1,2 with γ−1
F DF ∈ Dom(δT

0 ) is given by f(x) = E
(
1{F > x}δT

0 (γ−1
F DF )

)
. Besides

we will use the fact that if F ∈ ID∞ and |γ−1
F | ∈ ⋂

p>1 Lp then F has an infinitely differentiable

density (see [N1], Corollary 2.1.2).

When considering smoothness of densities, one generalizes the above concepts using the integra-

tion by parts formula repeatedly. That is, (see [N2]) we say that the random variable F ∈ ID∞ is

non-degenerate if γ−1
F ∈ ∩p>1L

p and in such a case we have that for any f ∈ C∞p and F, G ∈ ID∞,

the following integration by parts formula holds

E(f (m)(F )G) = E(f(F )Am(F, G)) for m ≥ 1, where

Am(F,G) = A(F, Am−1(F, G)), A1(F,G) = A(F, G) = δT
0 (Gγ−1

F D.F ).
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Moreover (see [N2], page 41), for any p > 1 there exist indices p1, p2, p3, α1, α2, depending on m and

p and a constant C = C(m, p, p1, p2, p3) such that

‖Am(F, G)‖p≤ C ‖γ−1
F ‖α1

p1
‖F ‖α2

m+1,p2
‖G‖m,p3 , with

1
p1

+
1
p2

+
1
p3

=
1
p
,

where by ‖·‖d,b we mean the Sobolev norm.

In particular, one can state the following slight generalization of Corollary 3.2.1 in [N2] combined

with Lemma 2.3.1 in [N1].

Proposition 2.1 Let F ∈ ID∞. Then for any ρ > 0, there exists p ≡ p(ρ) such that if γ−1
F ∈ Lp

and consequently F has a density which is differentiable up to order ρ. Furthermore for any p > 1

there exist β ≡ β(p) and ε0 > 0 such that if

P (γF ≤ ε) ≤ εβ , for all ε ≤ ε0

then γ−1
F ∈ Lp.

The existence and smoothness of densities of the solution of (1) is necessarily influenced by Γ

and h. Since in most of the theory and applications of BSDE’s, those are deterministic functions of

an extra process X, solution of a forward equation, we decide to adopt this formulation. Namely,

let us consider for s ≥ t and x ∈ R

Xt,x
s = x +

∫ s

t

b(u,Xt,x
u )du +

∫ s

t

σ(u,Xt,x
u )dWu(2)

Y t,x
s = g(Xt,x

T ) +
∫ T

s

h(u, Xt,x
u , Y t,x

u , Zt,x
u )du−

∫ T

s

Zt,x
u dWu, where(3)

(i) b, σ : [0, T ]× R −→ R are continuously differentiable in space for any fixed t, with |bx(t, x)| ≤
kb, |σx(t, x)| ≤ kσ for some kb, kσ > 0 for all x. Besides b(t, 0), σ(t, 0) are bounded functions

of t.

(ii) g : R −→ R is uniformly Lipschitz with constant kg > 0;

(iii) h : [0, T ]× R3 −→ R is such that for any x1, x2, y1, y2, z1, z2 ∈ R,

|h(s, x1, y1, z1)− h(s, x2, y2, z2)| ≤ kx|x1 − x2|+ ky|y1 − y2|+ kz|z1 − z2|

for some kx, ky, kz > 0, uniformly in s. Besides
∫ T

0
|h(s, 0, 0, 0)|2ds < ∞.

In the following, if x = x0 is the initial point of (2) at time 0, we will write Θt = Θ0,x0
t for

Θ = X, Y, Z. From well known results ([N1], Section 2.2, page 99), we have that

Theorem 2.1 : Under (i), there exists a unique continuous solution of (2), such that

E( sup
0≤t≤T

|Xt|p) ≤ C,
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for any p ≥ 2, where C is a constant depending only on kb ∨ kσ, T, p and x. Moreover Xt ∈ ID1,∞

and the following representation holds

DrXt = ζtζ
−1
r σ(r,Xr), for r ≤ t, DrXt = 0 for r > t,

where ζ
(t,x)
s is the derivative of the flow Xt,x

s , s ≥ t (with the usual notation ζ = ζ0,x0).

The integrability and weak differentiability properties of the forward equation actually transfer

to the backward one. The proof of the following theorems is the same as in [PP2], hence we refer

the reader to their work, but we point out that considering coefficients with no regularity in time

does not affect their proofs.

Theorem 2.2 : Under the hypotheses (i)-(iii), there exists a pair of progressively measurable, R2-

valued process (Y, Z) solution of (3), such that for any p ≥ 1

E( sup
0≤t≤T

|Yt|p)
1
p < ∞, E




(∫ T

0

|Zs|2ds

) p
2

 < ∞.

Moreover if we assume that g and h are differentiable in space in their respective arguments, then

Y, Z ∈ L2([0, T ]; ID1,p) for any p ≥ 2 and a version of {DrYt, DrZt, r ∈ [0, T ]} is given by: DrYt =

DrZt = 0 for any r > t and for any fixed r, {DrYt, DrZt, r ≤ t ≤ T} is the unique solution of the

BSDE

(4) DrYt = g′(XT )DrXT +
∫ T

t

H(s,DrXs, DrYs, DrZs)ds−
∫ T

t

DrZsdWs,

where H(ω, s, u, y, z) = hx(s,Xs,Ys,Zs)u + hy(s,Xs,Ys,Zs)y + hz(s,Xs, Ys, Zs)z. Finally a version of

Zs is given by DsYs = limu↑s DuYs and sup
0≤r≤T

E
(

sup
r≤t≤T

|DrYt|p
)

< ∞.

Due to the linearity of equation (4) (see [PP2]), we can give an explicit representation of DrYt.

From now on, we denote hx(s) = hx(s, Xs, Ys, Zs) and similarly the other derivatives. We introduce

a probability P̃ equivalent to P , given by

(5)
dP̃

dP
= ET := exp{

∫ T

0

hz(s)dWs − 1
2

∫ T

0

h2
z(s)ds},

which is well defined because of the boundedness of the derivative hz. The Radon Nikodym deriva-

tive, that defines P̃ , is therefore strictly positive P−a.s., giving the equivalence between the two

measures. Hence all the a.s. statements in P̃ transfer to similar statements w.r.t. P and viceversa.

Under P̃ , W̃t = Wt −
∫ t

0

hz(s)ds is a Brownian motion and equation (4) becomes

DrYt = g′(XT )DrXT +
∫ T

t

[hx(s)DrXs + hy(s)DrYs]ds +
∫ T

t

DrZsdW̃s,

so taking the conditional expectation under P̃ with respect to Ft, we get for r ≤ t

DrYt = EP̃ (g′(XT )DrXT +
∫ T

t

[hx(s)DrXs + hy(s)DrYs]ds|Ft),
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that has the explicit solution (which can be checked replacing in the above equation)

DrYt = EP̃ (e
∫ T

t
hy(u)dug′(XT )DrXT +

∫ T

t

e
∫ s

t
hy(u)duhx(s)DrXsds|Ft).

Switching back to P and substituting the expression of DrXt, we obtain

DrYt = EP (ETE−1
t e

∫ T
t

hy(u)dug′(XT )DrXT +
∫ T

t

EsE−1
t e

∫ s
t

hy(u)duhx(s)DrXsds|Ft)

= E(e
∫ T

t
[hy(u)− 1

2 h2
z(u)]du+

∫ T
t

hz(u)dWug′(XT )ζT

+
∫ T

t

e
∫ s

t
[hy(u)− 1

2 h2
z(u)]du+

∫ s
t

hz(u)dWuhx(s)ζsds|Ft)ζ−1
r σ(r,Xr) = ξtζ

−1
r σ(r,Xr),

where ξt,x
s =

dY t,x
s

dx
denotes the derivative of the flow associated with (3). This derivative can be

written explicitly as

ξt = E
(
ψT ψ−1

t g′(XT )ζT +
∫ T

t

ψsψ
−1
t hx(s)ζsds|Ft

)
,

where ψ is the solution of the equation

ψt = 1 +
∫ t

0

hy(s, Xs, Ys, Zs)ψsds +
∫ t

0

hz(s,Xs, Ys, Zs)ψsdWs.

Further, if we assume that the coefficients b, σ and h are smooth in the spatial variables, then we

can associate with Y the following quasilinear parabolic partial differential equation

(6)





[ ut +
1
2

σ2uxx + bux + h(·, ·, u, uxσ) ](t, x) = 0

u(T, x) = g(x),

then it is known (see [PP2]) that Y t,x
s = u(s,Xt,x

s ) and Zt,x
s = (uxσ)(s,Xt,x

s ). We remark that one

can easily prove that the function u(s, ·) is smooth with uniformly bounded derivative.

Indeed differentiating Y t,x we obtain

ux(t, x) = E(ψt,x
T ζt,x

T g′(Xt,x
T ) +

∫ T

t

ψt,x
s ζt,x

s hx(r,Xt,x
s , Y t,x

s , Zt,x
s )ds).

Therefore ux results bounded from the boundedness of the derivatives g′ and hx, since the derivatives

of the flows, ψt,x and ζt,x have bounded moments.

3 Existence of Densities

Once established the weak differentiability of the process Y , we are interested in understanding the

sufficient conditions to ensure that Y has marginal laws which are absolutely continuous with respect

to the Lebesgue measure.

To do so, we need to evaluate the Malliavin variance of Y

γYt = ξ2
t

∫ t

0

[ζ−1
r σ(r,Xr)]2dr

= E
(
ψT g′(XT )ζT +

∫ T

t

ψshx(s)ζsds|Ft

)2

(ψ−1
t )2

∫ t

0

[ζ−1
r σ(r,Xr)]2dr.
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This is clearly composed by two parts:
∫ t

0

[ζ−1
r σ(r,Xr)]2dr that comes from the forward equation

and ξt, coming directly from the backward one, so the problem is reduced to analyzing the non-

degeneracy of the two components.

We start with the forward part, related with the existence of densities for forward equations with

time dependent coefficients. This is a long standing problem; a first answer was given by Taniguchi

(see [T]), assuming a restricted Hörmander condition (that in the one-dimensional case reduces to

ellipticity) and smoothness of the coefficients b and σ in time, later some attempts to remove the

regularity in time or the restricted Hörmander condition were made. Florchinger ([F]) tries to do

both, but the proofs are wrong as it can be seen when comparing them with a counterexample given

in Taniguchi’s paper, while Cattiaux and Mesnager’s results ([CM]) apply for coefficients Hölder in

time, but still require the restricted Hörmander condition to be satisfied. Instead Chen and Zhou

([CZ]) are able to use an unrestricted Hörmander condition, but they are forced to assume that

the coefficients near zero have an order of Hölder continuity which depends on the order of the

Hörmander condition. Here we give a characterization using Hölder properties that seem to be more

appropriate, under the unrestricted Hörmander condition.

To proceed, we need to introduce the following additional hypothesis on the coefficients of (2)-(3)

(A) σ, b, g and h have continuous derivatives in space as many times as needed with derivatives

bounded independently of t. Besides σ and b are continuous at the initial point (0, x0).

To carry out the extension of Hörmander’s condition we have to define extensions of derivatives

to any real order between 0 and 1.

Let α ∈ R+, for α = 0 we define

A0(t, x) = σ(t, x), B0(t, x) = A0(t, x), D0(t, x) = A0(t, x)−A0(0, x) x ∈ R.

By induction on n ∈ N ∪ {0}, we take An, Bn and Dn as defined and we define further

Bn+1(t, s1, . . . , sn+1, x) =
∂Bn

∂x
(t, s1, . . . , sn, x)b(sn+1, x) x ∈ R,

∂βAn

∂tβ
(0, x0) = lim

t→0

Dn(t, x0)
tn+β

, for β ∈ (0, 1],

where the limits are to be understood in the extended real line. That is, they may take the values

±∞. Next for α ∈ (n, n + 1], we set

Aα(0, x0) =
∂α−nAn

∂tα−n
(0, x0) +

1{α=n+1}
(n + 1)!

Bn+1(0, . . . 0, x0).

Finally we define

Dn+1(t, x0) = Dn(t, x0)− ∂

∂t
An(0, x0)tn

+
∫ t

0

∫ sn+1

0

. . .

∫ s2

0

[Bn+1(t, s1, . . . , sn+1, x0)−Bn+1(0, . . . , 0, x0)]ds1 . . . dsn+1.
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Our main hypothesis is

(H0) There exists α ≥ 0 such that Aβ(0, x0) = 0 for all 0 ≤ β < α and Aα(0, x0) 6= 0.

In particular this assumption implies that all terms above, in particular Aβ , are well defined in the

extended real line for β ≤ α. Also note that Aα(t, x0) has not been defined for t 6= 0.

Theorem 3.1 : Let us assume hypotheses (i)-(iii), (A) and (H0) are satisfied and let us set K =

kb + ky + kσkz. For fixed t ∈ (0, T ) and a measurable set A ⊆ R with P (XT ∈ A|Xt) > 0, we denote

g = min
R

g′(x), ḡ = max
R

g′(x),

gA = min
x∈A

g′(x), ḡA = max
x∈A

g′(x),

h(t) = min
[t,T ]×R3

hx(s, x, y, z), h̄(t) = max
[t,T ]×R3

hx(s, x, y, z).

If one of the following holds for the same fixed t

ge−sgn (g)KT + h(t)
∫ T

t

e−sgn (h(s))Ksds ≥ 0, gAe−sgn (gA)KT + h(t)
∫ T

t

e−sgn (h(s))Ksds > 0(7)

ḡesgn (ḡ)KT + h̄(t)
∫ T

t

esgn (h̄(s))Ksds ≤ 0, ḡAesgn (ḡA)KT + h̄(t)
∫ T

t

esgn (h̄(s))Ksds < 0(8)

then the random variable Yt has a probability distribution that is absolutely continuous with respect

to the Lebesgue measure.

Proof: As previously stated in Section 2, we need to prove that Yt ∈ ID1,p
loc for p > 1 and that γYt is

invertible a.s.

The first point comes directly from Theorem 2.2, where it was shown that Yt ∈ ID1,p for any

p > 2. The second point needs an argument for the diffusion part and another for the backward

component.

First we prove that E
(
ψT g′(XT )ζT +

∫ T

t

ψshx(s)ζsds|Ft

)
6= 0. By Itô’s formula, it is easy to

show that ψtζt is the stochastic exponential

ψtζt = exp
{ ∫ t

0

[bx(s,Xs) + hy(s) + σx(s,Xs)hz(s)]ds
}
×

exp
{ ∫ t

0

(σx(s,Xs) + hz(s))dWs − 1
2

∫ t

0

(σx(s,Xs) + hz(s))2ds
}

= HtMt.

The process H verifies e−Kt ≤ Ht ≤ eKt, where K = kb + ky + kσkz, because all the coefficients

are Lipschitz, while the process M is a stochastic exponential P−martingale, since it verifies the

Novikov condition thanks to the conditions (i)-(iii).

If we define a probability measure Q equivalent to P by setting
dQ

dP
= MT , Q a.e. we have

E
(
ψT g′(XT )ζT +

∫ T

t

ψshx(s)ζsds|Ft

)
= E

(
g′(XT )HT MT +

∫ T

t

hx(s)HsMsds|Ft

)

= EQ(g′(XT )HT +
∫ T

t

hx(s)Hsds|Ft

)
.
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On the other hand

ge−sgn (g)KT + h(t)
∫ T

t

e−sgn (h(s))Ksds ≤ gHT + h(t)
∫ T

t

Hsds

≤ g′(XT )HT +
∫ T

t

hx(s)Hsds ≤ ḡHT + h̄(t)
∫ T

t

Hsds

≤ ḡesgn (ḡ)KT + h̄(t)
∫ T

t

esgn (h̄(s))Ksds

and either (7) or (8) gives ξt ≥ 0 or ξt ≤ 0 a.s. (under either P or Q)

Assume (7) is verified, by the previous argument we have

ξtψt = EQ

(
(g′(XT )HT +

∫ T

t

hx(s)Hsds)(1{XT∈A} + 1{XT∈Ac})|Ft

)

≥ EQ

(
(g′(XT )HT +

∫ T

t

hx(s)Hsds)1{XT∈A}|Ft

)

≥ EQ

(
(gAHT + h(t)

∫ T

t

Hsds)1{XT∈A}|Ft

)

≥ (gAe−sgn (gA)KT + h(t)
∫ T

t

e−sgn (h(s))Ksds)Q(XT ∈ A|Ft) > 0

because of the equivalence between P and Q. To finish we need to prove that
∫ t

0

[
ζ−1
r σ(r,Xr)

]2

dr > 0.

This follows from the result in the appendix.

Remark 3.2 : The above result holds for t < T . When t = T , YT = g(XT ) needs a study of its

own. One straightforward case is given when XT has a density and g is an invertible function.

The above conditions (7) and (8) are required to avoid the degenerate case when g′ and hx cancel

each other. This may happen easily so that the law of Yt has a point mass, even if Xs has a smooth

density for all s.

Example 3.3 :

Let us consider Xt = Wt, a standard Brownian motion, and

Yt = E(W1 +
∫ 1

t

f(s)Wsds|Ft) for f(s) =

{
0 s ≤ 1

2

4(−2s + 1) s > 1
2 .

In this context, for t ≤ 1/2, we have g′ ≡ g = ḡ = 1, h(s, x, y, z) = f(s)x, h̄ ≡ 0, K = 0 h ≡ −4,

thus condition (7) (or (8)) is not verified. In fact, by the martingale property of W , for all t ≤ 1
2

Yt = Wt(1 +
∫ 1

t

f(s)ds) = Wt(1− 1) = 0

and it does not have a density.
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Remark 3.4 : Incidentally the previous theorem provides information about the sign of the deriva-

tive of the solution of the associated PDE (6). Indeed, under (7) with the strict inequality verified

on some subset A, we have that ξt,x
s > 0 a.s. for any s ≥ t and DrY

t,x
s = ξt,x

s (ζt,x
r )−1σ(r,Xt,x

r ).

On the other hand, a version of Zt,x
s is given by lim

v↑s
DvY t,x

s and if u results differentiable, also

Zt,x
s = ux(s,Xt,x

s )σ(s,Xt,x
s ).

Therefore, applying all our equalities to the flow Xt,x and specializing them at the initial time t,

we obtain

ξt,x
t (ζt,x)−1

t σ(t, x) = Zt,x
t = ux(t, x)σ(t, x)

but (ζt,x)−1
t = 1 and the previous inequality implies ux(t, x) > 0 a.e. x for σ(t, x) 6= 0.

We now give a result that guarantees the condition P (XT ∈ A|Ft) > 0. If the support of this

conditional law is R, then the positivity is implied simply by λ(A) > 0 (λ denotes the Lebesgue

measure). Characterization of the support of probability laws is a well known problem. Usually,

one expects that the uniform ellipticity condition is sufficient to obtain that the support of the

probability law is the whole space.

Various versions of the so called support theorems are available. For the sake of completeness

and consistency we briefly present one here, adapted to our current situation. In the proof we use

a method that appears in [MS]. Their proof exploits two convergence results in α−Hölder norm

(α ∈ [0, 1
2 )) for approximations of the diffusion and its skeleton, obtained by a linear interpolation

of the Brownian motion. We were able to extend it to the time dependent case, as long as the

coefficients are uniformly Hölder of some order β1 > 1
2 for the diffusion and β2 > 0 for the drift as

functions of t for any choice of x (that is to say β1, β2 do not depend on t and x). Another related

result appears in [GP]. This problem can also be treated using analytical tools (see [D], chapter 3).

Proposition 3.5 : Let the hypotheses of theorem 3.1 hold. Besides we assume that σ is uniformly

Hölder of order β1 > 1
2 , while b, σx are uniformly Hölder of order β2 > 0 as functions of t for all

x ∈ R and that there exists a positive constant c such that |σ(t, x)| ≥ c for all (t, x) ∈ [0, T ] × R.

Then λ(A) > 0 implies that P (XT ∈ A|Ft) > 0 a.s. for all t ∈ (0, T ).

Proof: By the Markov and the flow properties, we have that

P (XT ∈ A|Ft) = P (XT ∈ A|Xt) = P (Xt,Xt

T ∈ A|Xt) = P (Xt,y
T ∈ A)|y=Xt .

Therefore we need to show that conditions (A1) and (A2) of proposition 2.1 in [MS] are verified for

the sequences S(Wn)t −Xt and Xn
t − S(θ)t, where

S(θ)t = x +
∫ t

0

σ(s, S(θ)s)θ̇sds +
∫ t

0

[b(s, S(θ)s)− 1
2
σσx(s, S(θ)s)]ds(9)
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with θ ∈ H2 = {θ ∈ L2(0, T ] : θ̇ ∈ L2(0, T ]} and

Wn
t = W k−1

2n ∨0 + 2n(t− k

2n
)[W k

2n
−W k−1

2n ∨0]

n ∈ N, 0 ≤ k ≤ 2n,
k

2n
≤ t ≤ k + 1

2n

Xn
t = x +

∫ t

0

b(s, Xn
s )ds +

∫ t

0

σ(s,Xn
s )dWs −

∫ t

0

σ(s, Xn
s )Ẇn

s ds +
∫ t

0

σ(s,Xn
s )θ̇sds

S(Wn)t = x +
∫ t

0

σ(s, S(Wn)s)Ẇn
s ds +

∫ t

0

[b− 1
2
σσx(s, S(Wn)s)]ds.

Actually condition (A1) is straightforward verified, because of the Lipschitz property of the coeffi-

cients, while the Hölder property in time becomes important in order to verify the second condition.

In particular, as the above approximations are of Wong-Zakai type, the diffusion coefficient has to

be Hölder of order higher than 1/2. The calculations involved are lengthy and we omit them here

for briefness, but they go exactly along the lines of the result in [MS]. Besides it is to be noted that

a careful computation allows to consider Lipschitz coefficients, relaxing the boundedness hypothesis

used in the proof of Millet and Sanz. This argument proves the characterization of the support of

the law as the topological closure of the set {S(h)T ; h ∈ H2}. Now we prove that this set is R.

We remark that up to this stage, it is not necessary to employ the elliptic hypothesis on σ, which

we use in the following part.

From now on, using Girsanov’s theorem we may assume, without loss of generality, that the drift

of X is given by b = 1
2σσx. Given the characterization of the support, it is enough to prove that for

any y, z ∈ R, there exists a function θ ∈ H2 such that S(θ)(t,y)
t = y, S(θ)(t,y)

T = z.

For this, let us notice that, for a smooth path ϕ : [t, T ] → R so that ϕt = y and ϕT = z, we may

choose ˙̄θs =
ϕ′s

σ(s, ϕs)
, which implies S(θ̄)(t,y) ≡ ϕ. From here the result follows.

We may generalize Theorem 3.1 applying Itô’s formula to obtain a second order condition, when

h is independent of z.

Theorem 3.6 : Let us assume that h does not depend on z, that the hypotheses (i)-(iii), (A),(H0)

are verified and set K = kb + ky + kσkz. For fixed t ∈ (0, T ) and a measurable set A ⊆ R with

P (XT ∈ A|Xt) > 0, a.s., we denote by

g̃(x) = g′(x) + (T − t)hx(T, x, g(x)),

h̃(s, x, y) = −{hxt + bhxx − hhxy +
1
2
(σ2hxxx + 2zσhxxy + z2hxyy) + (bx + hy)hx}(s, x, y),

g
1

= min
R

g̃(x), ḡ1 = max
R

g̃(x)

gA
1

= min
x∈A

g̃(x), ḡA
1 = max

x∈A
g̃(x)

h1(t) = min
[t,T ]×R3

h̃(s, x, y), h̄1(t) = max
[t,T ]×R3

h̃(s, x, y).

11



If one of the following is satisfied

g
1
e−sgn (g

1
)KT+ h1(t)

∫ T

t

e−sgn (h1(s))Ksds ≥ 0, gA
1
e−sgn (gA

1
)KT+ h1(t)

∫ T

t

e−sgn (h1(s))Ksds > 0(10)

ḡ1esgn (ḡ1)KT + h̄1(t)
∫ T

t

esgn (h̄1(s))Ksds ≤ 0, ḡA
1 esgn (ḡA

1 )KT + h̄1(t)
∫ T

t

esgn (h̄1(s))Ksds < 0(11)

then the random variable Yt has a probability distribution that is absolutely continuous with respect

to the Lebesgue measure.

Proof: With the same notation as before, it is enough to prove that

E
(
MT HT g′(XT ) +

∫ T

t

MsHshx(s,Xs, Ys)ds|Ft

)
6= 0.

Changing the probability measure and applying Itô’s formula, we obtain

EQ

(
HT [g′(XT ) + hx(T )(T − t)] +

∫ T

t

[Hshx(s)−HT hx(T )]ds|Ft

)

= EQ

(
HT [g′(XT ) + hx(T )(T − t)]−

∫ T

t

∫ T

s

Hr[hxt + bhxx − hhxy](r,Xr, Yr)drds

−
∫ T

t

∫ T

s

Hr[
σ2

2
hxxx + Z.σhxxy +

1
2
Z2

. hxyy + (bx + hy)hx](r,Xr, Yr)drds

−
∫ T

t

∫ T

s

Hr[σhxx + Z.hxy](r,Xr, Yr)dWrds|Ft

)

By virtue of the conditional expectation, the martingale part gives no contribution.

To conclude, we can follow the same steps as before applied to the functions g̃ and −h̃, defined

in the statement.

Remark 3.7 : In general, this method is not useful to obtain higher order conditions as they would

involve the differentiability of the process Z. One might think to circumvent this difficulty by ex-

ploiting the relation Zs = σ(s,Xs)ux(s,Xs) and the possible regularity of u, but this would generate

a condition depending on the solution of the quasilinear parabolic partial differential equation (6).

4 Smoothness of Densities

In this section we study the smoothness of the marginal densities of Y . Under the assumptions of

the previous theorems we know γYt is invertible a.s. To ensure the smoothness of densities, we need

to find what conditions make γ−1
Yt

∈
⋂
p>1

Lp, so that we can apply theorem 2.3.3 of [N1]. Throughout

the section we will assume that the coefficients b and σ are time independent and that they are

infinitely differentiable in space with bounded derivatives of all orders uniformly in time.

We start with a preliminary result on the solution of equations.

12



Lemma 4.1 : For adapted processes Γ, F 1, F 2,K ∈ ID1,∞, such that F 1, F 2 are bounded and

E(|ΓT |p) < ∞, E( sup
0≤t≤T

|Kt|p) < ∞ sup
0≤s≤T

E(|DsΓT |p) < ∞,

sup
0≤s≤T

E( sup
s≤t≤T

|DsKt|p) < ∞ sup
0≤s≤T

E( sup
s≤t≤T

|DsF
i
t |p) < ∞, for i = 1, 2

for any p ≥ 2, let us consider the backward equation

(12) Vt = ΓT +
∫ T

t

(F 1
s Vs + F 2

s Us + Ks)ds−
∫ T

t

UsdWs.

Then Vt, Ut ∈ ID1,∞ for any t, and the derivatives (DsVt, DsUt) verify the equation for r ≤ t,

DrVt =DrΓT +
∫ T

t

(F 1
s DrVs + F 2

s DrUs + DrKs + DrF
1
s Vs + DrF

2
s Us)ds−

∫ T

t

DrUsdWs

and sup0≤r≤T E supr≤t≤T |DrVt|p < ∞.

Proof: The proof of this lemma goes exactly along the same lines as the proof of theorem 2.2 and

we refer the reader to [PP2]. We just describe briefly the idea. Considering the Picard iterations

associated to equation (12)

V 0
t = E(ΓT |Ft) U0

t = −DtV
0
t

V n+1
t = E(ΓT +

∫ T

t

(F 1
s V n

s + F 2
s Un

s + Ks)ds|Ft) Un+1
t = −DtV

n+1
t ,

by the hypotheses on the processes F 1, F 2,K, Γ, one can show by induction on n, that each iterate is

in ID1,∞ and that the estimates are independent of n. From the convergence of V n, Un in Lp([0, T ]×
Ω) and proposition 1.5.5 of [N1] we obtain that also the solution of (12) belongs to ID1,∞.

Lemma 4.2 : Let b, σ, h, g be infinitely differentiable in space with bounded derivatives of all orders

greater than one, then Yt ∈ ID∞ for each t.

Proof: To verify that Yt ∈ IDk,p for all t and any choice of k, p, we proceed by induction on k.

Theorem 2.2 gives the statement for k = 1 and any p, so we assume that Yt ∈ IDk,p for any p and

prove the same holds for k + 1. Taken a sequence of times 0 ≤ r1 ≤ r2 ≤ · · · ≤ rk ≤ t, the k−th

Malliavin derivative of Yt verifies the following linear equation

Dk
r1...rk

Yt = Gk(XT ) +
∫ T

t

[hy(s)Dk
r1...rk

Ys + hz(s)Dk
r1...rk

Zs + Hk(Xs, Ys, Zs)]ds

−
∫ T

t

Dk
r1...rk

ZsdWs, where

Gk(XT ) =
k∑

j=1

g(j)(XT )
∑

D
k(I1)
r(I1)

XT . . . D
k(Ij)

r(Ij)
XT

Hk(Xs, Ys, Zs) = hx(s)Dk
r1...rk

Xs +
k∑

j=2

∑

j1+j2+j3=j

∂jh(s)
∂xj1∂yj2∂zj3

∑
D

k(I1)
r(I1)

Xs · · ·Dk(Ij1 )

r(Ij1 )XsD
k(J1)
r(J1)

Ys · · ·Dk(Jj2 )

r(Jj2 )YsD
k(L1)
r(L1)

Zs · · ·Dk(Lj3 )

r(Lj3 )Zs

13



and the sums are taken over all possible partitions I1, . . . , Ij , I1, . . . , Ij1 , J1, . . . , Jj2 , L1, . . . , Lj3

of {1, . . . , k}. By hypothesis, g(j), hy(s), hz(s) and
∂jh(s)

∂xj1∂yj2∂zj3
are bounded for any choice of

the indices, consequently Gk(XT ) and Hk(Xs, Ys, Zs) satisfy the hypotheses of Lemma 4.1, thus

Dk
r1...rk

Yt, D
k
r1...rk

Zt belong to ID1,∞.

Remark 4.3 : Actually D.Yt can be defined even if g and h are not regular in x, as long as γ−1
XT

∈ Lp

for all p > 1.

For simplicity, consider Yt = E(δa(XT )|Ft), t < T , where δa stands for the Dirac delta function.

If XT is non-degenerate conditioned to Ft for any t < T , then one can use the integration by parts

to write

E(δa(XT )|Ft) = E(1{XT≥a}δT
t ((DrXT )γ−1

XT
)|Ft).

In this sense Yt is uniquely defined. To prove that Yt ∈ ID∞, we choose a sequence of smooth

bounded functions gk converging weakly to δa. Since the conditional density of XT given Ft is

smooth and bounded, then Y k
t = E(gk(XT )|Ft) converges to Yt in Lp(Ω) for any t < T . Besides, by

the integration by parts formula, we have for any r ≤ t

(13) DrY
k
t = E(g′k(XT )DrXT |Ft) = E(gk(XT )δT

t ((DrXT )γ−1
XT

D·XT )|Ft).

Integrating by parts once more, by dominated convergence theorem, the right side of equality (13)

converges, which, by Lemma 1.2.3 in [N1], gives DrYt.

The above remark becomes important when considering binary options (g(x) = 1{x≥K}) or

when studying the properties of fundamental solutions of the associated quasilinear parabolic pde’s

(g(x) = δa(x)).

Using this remark one may extend the next two theorems in certain cases when g and h are not

regular in x.

Now we are going to describe two ways to obtain the regularity of the density of Yt. In the first,

we require global conditions similar to those in Theorem 3.1. In the second, in order to localize our

conditions, we add the hypothesis of uniform ellipticity for the diffusion, since we need to apply the

lower bounds estimates as in [A] or [KSIII] for the densities of X.

Theorem 4.4 : Let b, σ : R → R and h, g be infinitely differentiable in space with bounded deriva-

tives of all orders greater than one and the Hörmander hypothesis be satisfied, that is either σ(x0) 6= 0

or there exists n ∈ N such that σ(n)b(x0) 6= 0.

Let t ∈ (0, T ) be fixed and assume the same notation as in theorem 3.1. If there exists a constant

µ > 0 such that one of the following holds

ge−sgn (g)KT + h(t)
∫ T

t

e−sgn (h(s))Ksds > µ,(14)

ḡesgn (ḡ)KT + h̄(t)
∫ T

t

esgn (h̄(s))Ksds < −µ,(15)
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then Yt has an infinitely differentiable density for t ∈ (0, T ).

Proof: It is enough to prove that γ−1
Yt

∈
⋂
p>1

Lp.

E((γ−1
Yt

)p) = E
( 1

[ξ2
t

∫ t

0
(ζ−1

r σ(Xr))2dr]p

)
.

By Hölder inequality we have

E((γ−1
Yt

)p) ≤
[
E

( 1
ξ4p
t

)]1/2[
E

( 1

(
∫ t

0
(ζ−1

r σ(Xr))2dr)2p

)]1/2

the second factor is bounded by virtue of the Hörmander hypothesis, hence we only have to show

the first is bounded. We assume now that (14) is satisfied, as the other case follows similarly. So we

have

ξt = E
(
ψT g′(XT )ζT +

∫ T

t

ψshx(s)ζsds|Ft

)
ψ−1

t = EQ

(
HT g′(XT )+

∫ T

t

Hshx(s)ds|Ft

)
ψ−1

t > µψ−1
t .

Here Q is the measure determined by the change of measure in (5). Therefore we obtain immediately

E
( 1

ξ4p
t

)
≤ C

µ4p
, which is finite because the properties of the flows.

As before it is not difficult to obtain second order conditions of smoothness. Instead, we show

how to localize condition (14).

Theorem 4.5 : Let b, σ be bounded and b, σ, h, g be infinitely differentiable in space with bounded

derivatives of all orders greater or equal than one and let |σ(·)| ≥ c > 0 (i.e., σ is uniformly elliptic).

If for fixed t ∈ (0, T ) the first inequality in either (7) or (8) holds and there exist µ > 0 and a set

A ⊆ R with λ(A) > 0 such that correspondingly one of the following is verified

gAe−sgn (gA)KT + h(t)
∫ T

t

e−sgn (h(s))Ksds > µ(16)

ḡAesgn (ḡA)KT + h̄(t)
∫ T

t

e−sgn (h̄(s))Ksds < −µ,(17)

then Yt has a smooth density.

Proof: The proof is done in two steps. For the first we consider the smoothness of the density of

Y
(s,x)
t for s close to t with t fixed. For this, consider the Malliavin variance of Y

(s,x)
t ,

γ
Y

(s,x)
t

= (ξ(s,x)
t )2

∫ t

s

[(ζ(s,x)
r )−1σ(r,X(s,x)

r )]2dr.

We have that for s < t,

( ∫ t

s

[(ζ(s,x)
r )−1σ(r,X(s,x)

r )]2dr
)−1

∈
⋂
p>1

Lp,

therefore is enough to prove that (ξ(s,x)
t )−1 ∈

⋂
p>1

Lp.
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We assume hypotheses (7) and (17) are satisfied and we show that for s ≤ t, Y
(s,x)
t has a smooth

density of order ν > 0, if t − s is small enough. From theorem 3.1, we get (with the obvious

modifications) that H
(s,x)
T g′(X(s,x)

T ) +
∫ T

t

H(s,x)
r h(s,x)

x (r)dr is (Q or P ) a.s. nonnegative, then

ξ
(s,x)
t = EQ

(
H

(s,x)
T g′(X(s,x)

T ) +
∫ T

t

H(s,x)
r h(s,x)

x (r)dr|Ft

)
(ψ(s,x)

t )−1

≥
(
gAe−sgn (gA)KT + h(t)

∫ T

t

e−sgn (h(r))Krdr
)
Q(X(s,x)

T ∈ A|Ft)(ψ
(s,x)
t )−1

> µQ(X(s,x)
T ∈ A|Ft)(ψ

(s,x)
t )−1.

Since ψ
(s,x)
t ∈

⋂
p>1

Lp, according to Proposition 2.1 it only remains to prove that for any ρ > 0,

Q(X(s,x)
T ∈ A|Ft)−1 ∈ Lp for some p ≡ p(ρ), or equivalently that P (Q(X(s,x)

T ∈ A|Ft) < ε) ≤ εβ for

ε ≤ ε0 and β = β(p).

To obtain this result we use the lower bounds estimates for densities of diffusions as proven by

[KSIII], Theorem 4.13. By virtue of the uniform ellipticity of σ (see Lemma 4.6), there exists a

positive non-random constant C such that

Q(X(s,x)
T ∈ A|Ft) ≥ C

(T − t)1/2

∫

A

exp(−|X
(s,x)
t − y|2

C(T − t)
)dy.

Therefore we can conclude

Q(X(s,x)
T ∈ A|Ft) ≥ C√

T − t

∫

A

exp(− (X(s,x)
t − y)2

C(T − t)
)dy

≥ C√
T − t

exp(− (X(s,x))2t
C(T − t)

)
∫

A

e−
y2

C(T−t) dy = CA(T − t) exp(− (X(s,x)
t )2

C(T − t)
).

Let ε > 0 be so that
ε

CA(T − t)
< 1 (note that T − t is fixed), using a similar Gaussian type upper

bound for the density, one obtains

P (Q(X(s,x)
T ∈ A|Ft) < ε) ≤ P (CA(T − t) exp(− (X(s,x)

t )2

C(T − t)
) < ε)

= P

(
|X(s,x)

t | >
√
−C(T − t) ln

ε

CA(T − t)

)

≤ C1

∫

{|x|>
√
−C(T−t) ln ε

CA(T−t)}

1√
t− s

exp(−C2
(y − x0)2

t− s
)dy

≤ C3

(
ε

CA(T − t)

) T−t
C3(t−s)

,

for some proper constants C1, C2, C3 and ε ≤ ε0, independent of s < t < T . Therefore, by Proposition

2.1, Y
(s,x)
t has a degree of smoothness depending on t− s, increasing to infinity as t− s gets closer

to 0.

In the following, we denote by p
(s,z)
Y (t, y) the density of Yt at point y when X starts at z at time

s. Note that this density exists due to Theorem 3.1. To finish the proof we use the Markov property
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for X.

p0,x0
Y (t, y) = E(δy(Y 0,x0

t )) = E(E(δy(u(t,X0,x0
t ))|Fs))

= E(E(δy(u(t,Xs,Xs

t ))|Fs)) =
∫

E(δy(u(t,Xs,z
t )))p(0,x0)

X (s, z)dz

=
∫

E(δy(Y s,z
t ))p(0,x0)

X (s, z)dz =
∫

ps,z
Y (t, y)p0,x0

X (s, z)dz.

Therefore in order to prove the differentiability of order k of p0,x0
Y (t, y) is enough to prove the

differentiability of order k of ps,z
Y (t, y) for some s ≤ t that may depend on k. Using the previous

result that establishes that if s is close to t then the density of Y s,z
t is smooth to a high degree, we

end the proof.

Lemma 4.6 Under the same conditions of Theorem 4.5

Q(X(s,x)
T ∈ A|Ft) ≥ C

(T − t)1/2

∫

A

exp(−|X
(s,x)
t − y|2

C(T − t)
)dy.

for a non-random constant C.

Proof: To simplify the notation, we assume without loss of generality that s = 0. Recall that

dQ

dP
= MT = exp{

∫ T

0

(σx(Xs) + hz(s))dWs − 1
2

∫ T

0

(σx(Xs) + hz(s))2ds}.

We consider a regular approximation of the identity ψλ such that ψλ(x) = x if |x| ≤ λ − 1 and

|ψλ(x)| ≤ λ for all x ∈ R and we denote

Mλ
T = exp

{
ψλ

(∫ T

t

(σx(s, Xs) + hz(s))dWs

)
− 1

2

∫ T

t

(σx(s, Xs) + hz(s))2ds

}
.

Therefore we can write

Q(XT ∈ A|Ft) = E(1{XT∈A}MT M−1
t |Ft) = E(1{XT∈A}Mλ

T |Ft) + E(1{XT∈A}[MT M−1
t −Mλ

T ]|Ft)

= E(1{XT∈A}Mλ
T |Ft) + Rλ.

By the boundedness of σx, hz and ψλ, we have e−λ−K(T−t) ≤ Mλ
T ≤ eλ+K(T−t), thus

Q(XT ∈ A|Ft) ≥ e−λ−K(T−t)P (XT ∈ A|Ft) + Rλ

and applying Theorem 4.13 in [KSIII], the following estimate holds

Q(XT ∈ A|Ft) ≥ C(T )e−λ

(T − t)1/2

∫

A

exp(−|Xt − y|2
C(T − t)

)dy + Rλ.

Now we estimate the residue, assuming λ > 1

|Rλ| ≤ E(1{XT∈A}Mλ
T |MT M−1

t (Mλ
T )−1 − 1| |Ft)

≤ eλ+K(T−t)E(1{XT∈A}
[
eλe

∫ T
t

(σx(Xs)+hz(s))dWs + 1
]
1{| ∫ T

t
(σx(Xs)+hz(s))dWs|>λ−1}|Ft)

≤ Ceλ(eλ + 1)E(1{XT∈A}
[
eλe

∫ T
t

(σx(Xs)+hz(s))dWs ∨ 1
]
1{| ∫ T

t
(σx(Xs)+hz(s))dWs|>λ−1}|Ft)

≤ C(T )e3λ

(T − t)1/8

( ∫

A

exp(−|Xt − y|2
C(T − t)

)dy
) 1

4
exp{−C

(λ− 1)2

T − t
},

17



where we used the Hölder inequality and the flow property. The proof finishes by choosing λ

appropriately large.

5 Tail Behavior

Here we give some upper bounds for the tail behavior of the density of Y . As in the previous section

we assume that all coefficients are smooth with bounded derivatives and that b and σ do not depend

on time. The tails behave as lognormal tails if the coefficients grow linearly and as Gaussian tails

if the coefficients are bounded. The time dependence does not seem to be optimal except in the

uniformly elliptic case.

Theorem 5.1 : Assume the same conditions as in Theorem 4.4 or 4.5. Then we have that the

density of Yt satisfies for large |y|

p0,x0
Y (t, y) ≤ A0

(1 + |x0|p)
t(n+ 1

2 )∨(4n)
exp

{
− [ln(1 + |y − u(t, x0)|) + A1]2

A2t

}

in the case of Theorem 4.4. and

p0,x0
Y (t, y) ≤ A0

(1 + |x0|p)√
t

exp
{
− |y − u(t, x0)|2

A2t

}

in the case of Theorem 4.5. Here p > 1 and A0, A1, A2 are positive constants, while n = 0 in the

case that σ(x0) 6= 0 and n ≥ 1 is the index such that σ(n)b(x0) 6= 0 in the case of Theorem 4.4.

Proof: Let us fix t ∈ (0, T ). For one dimensional random variables we know that

(18) p0,x0
Y (t, y) = E[1{Yt>y}δ(γ−1

Yt
D.Yt)] ≤ P (Yt > y)

1
2

[
E([δ(γ−1

Yt
D.Yt)]2)

] 1
2
.

First we study the last factor. One can dominate this term using (1.48) in [N1]

(19) E([δ(γ−1
Yt

D.Yt)]2) ≤ E
( ∫ t

0

(γ−1
Yt

DsYt)2ds
)

+ E
( ∫ t

0

∫ t

0

(Du(γ−1
Yt

DsYt))2dsdu
)
.

For the first term the following estimate holds for any p > 1

E
( ∫ t

0

(γ−1
Yt

DsYt)2ds
)

= E
(
γ−2

Yt

∫ t

0

(DsYt)2ds
)

= E(γ−1
Yt

)

= E
(
[ξ2

t ζ−2
t γXt ]

−1
)
≤

[
E

(
[ξ−1

t ζt]2q
)] 1

q
[
E

(
[γ−1

Xt
]p

)] 1
p ≤ C0

(1 + |x0|p)
t2n+1

,

where in the last inequality we used either theorem 4.4 or 4.5 and the upper bound estimates for

forward SDE’s, as in Corollary 3.25 in [KSII], with n coming from the order of the Hörmander

condition verified by X (hence n = 0 in the case of theorem 4.5). Similarly one can prove that

‖γ−1
Yt
‖p ≤ C0

(1 + |x0|p)
t2n+1

, with n chosen as before.

Thus it remains to estimate the second term in (19), which by the chain rule is

E
( ∫ t

0

∫ t

0

(Du(γ−1
Yt

DsYt))2dsdu
)

= E
( ∫ t

0

∫ t

0

[γ−1
Yt

DuDsYt − γ−2
Yt

∫ t

0

2DuDvYtdvDsYt]2dsdu
)
.

18



To bound efficiently these quantities, one needs to obtain that for p ≥ 1

E
( ∫ t

0

(DsYt)2ds
)p

≤ Ctp, E
( ∫ t

0

∫ t

0

(DuDsYt)2duds
)p

≤ Ct2p

and the last immediately implies, by Jensen’s inequality,

E
( ∫ t

0

(∫ t

0

DuDsYtds
)2

du
)p

≤ Ct3p.

The first two inequalities follow directly from Lemma 4.2. Applying the three bounds we obtain

E
( ∫ t

0

∫ t

0

(Du(γ−1
Yt

DsYt))2dsdu
)

≤ C
(
‖γ−1

Yt
‖24t2 + ‖γ−1

Yt
‖412t4

)
≤ C(1 + |x0|p)4t−8n.

We still need to estimate the first factor in (18). We recall that Y t,x
s = u(t, Xt,x

s ) where u is a C1,2

solution of equation (6). Using the flow properties and the explicit formula for the solution of linear

backward sde’s (like in section 2) one obtains that ux is bounded uniformly in t.

Now we first consider the situation of Theorem 4.4. Without loss of generality, we may take

y > |u(t, x0)|, then

P (|Yt| > y) ≤ P
(
|u(t,X0,x0

t )− u(t, x0)|+ |u(t, x0)| > y
)
≤ P

(
c|X0,x0

t − x0| > y − |u(t, x0)|
)

≤ P
(

ln(1 + |X0,x0
t − x0|2) > ln(1 + c−2(y − |u(t, x0)|)2)

)

Using Itô’s formula we decompose ln(1 + |X0,x0
t − x0|2) = At + Mt, where the total variation part

verifies |At| ≤ C1t for some constant C1 and the martingale part

Mt =
∫ t

0

2(X0,x0
s − x0)σ(X0,x0

s )
1 + |X0,x0

s − x0|2
dWs

verifies < M >t≤ C2t, for some constant C2. By the martingale exponential inequality (see (A.5)

in [N1]), we finally obtain

P (|Yt| > y) ≤ P
(
At + Mt > ln(1 + c−2(y − |u(t, x0)|)2)

)

= P
(

< M >t≤ C2t,Mt > ln(1 + c−2(y − |u(t, x0)|)2)− C1t
)

≤ 2 exp
{
− [−C1t + ln(1 + c−2(y − |u(t, x0)|)2)]2

2C2t

}
,

for some positive constants. Joining the two estimates, the result follows.

In the case of Theorem 4.5, the situation is similar but one does not need to apply the logarithmic

transformation.
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6 Appendix

Here we prove the result on existence of densities for non-homogeneous diffusions. This is related

with previous results in [CZ] and [CM] and it is of interest in itself.

Theorem 6.1 Let us assume that, uniformly in t, σ(t, ·), b(t, ·) are in C∞b (R) and besides that

they are continuous at (0, x0). If condition (H0) is satisfied, then Xt has a law that is absolutely

continuous with respect to the Lebesgue measure.

Proof: We show our result by contradiction, hence we assume that
∫ t

0

ζ−2
s σ(s,Xs)2ds = 0, which,

by the continuity of the processes and of the coefficient, implies that σ(s,Xs) = 0 a.s. for all s ≤ t.

If hypothesis (H0) is verified for α = 0, that is σ(0, x0) = A0(0, x0) 6= 0, we immediately reach a

contradiction. Next we proceed by induction on α.

If α ∈ (0, 1] and Aβ(0, x0) = 0 for all 0 ≤ β < α, by using Itô’s formula we may write for all s ≤ t

∫ s

0

B1(s, r,Xr)dr + D0(s, x) =
∫ s

0

σx(s,Xr)b(r,Xr)dr + σ(s, x0)− σ(0, x0)

= σ(s, Xs)− σ(s, x0) + σ(s, x0)− σ(0, x0) = σ(s,Xs) = 0.

The term of biggest order in
∫ s

0

B1(s, r,Xr)dr + D0(s, x0) is exactly Aα. Indeed dividing the latter

by tα and taking limits as t → 0 we obtain

Aα(0, x0) = 1{α=1}B1(0, 0, x0) + lim
t→0

σ(t, x0)− σ(0, x0)
tα

= 1{α=1}B1(0, 0, x0) + lim
t→0

D0(t, x0)
tα

= 0,

which contradicts our hypothesis Aα(0, x0) 6= 0.

Let α > 1 and Aβ(0, x0) = 0 for all β < α. In particular, for j ≤ [α] ([·] = integer part), we have

∂Aj−1

∂t
(0, x0) +

1
j!

Bj(0, . . . , 0, x0) = 0.
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Therefore, using Itô’s formula we obtain
∫ s

0

∫ sj

0

...

∫ s2

0

Bj(s, s1, ..., sj , Xsj
)ds1...dsj + Dj−1(s, x0)

=
∫ s

0

∫ sj

0

...

∫ s2

0

[
Bj(s, s1, ..., sj , Xsj

)−Bj(0, ..., 0, x0)
]
ds1...dsj + Dj−1(s, x0)− ∂Aj−1

∂t
(0, x0)sj

=
∫ s

0

∫ sj

0

...

∫ s2

0

[
Bj(s, s1, ..., sj , Xsj

)−Bj(s, s1, ..., sj , x0)
]
ds1 . . . dsj + Dj−1(s, x0)

− ∂Aj−1

∂t
(0, x0)sj +

∫ s

0

∫ sj

0

...

∫ s2

0

[
Bj(s, s1, ..., sj , x)−Bj(0, ..., 0, x0)

]
ds1...dsj

=
∫ s

0

∫ sj+1

0

...

∫ s2

0

Bj+1(s, s1, ..., sj+1, Xsj+1)ds1...dsj+1 + Dj(s, x0).

This proves by iteration (under the inductive hypothesis) that for all j ≤ [α] and s ≤ t

(20)
∫ s

0

∫ sj

0

...

∫ s2

0

Bj(s, s1, ..., sj , Xsj
)ds1...dsj + Dj−1(s, x0) = 0.

To finish the proof we have to consider two cases. If [α] 6= α, then writing (20) for [α], dividing

both sides by tα and taking limits for t → 0 we find that

0 = lim
t→0

D[α](t, x0)
tα

,

because the integrand B[α](s, s1, . . . , sj , Xs[α]) is a.s. bounded, giving the contradiction with (H0).

If [α] = α, first note that B[α] is continuous at (0, ..., 0, x0). Then using the same procedure we

instead obtain

0 = lim
t→0

Dα−1(t, x0)
tα

+
1
α!

Bα(0, . . . , 0, x0).

that is different from 0 by hypothesis. This ends the proof.
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